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The "triggering" of transient maser systems using excited Rydberg atoms as active medi-

um is investigated theoretically and experimentally. We show how the maser pulse charac-
teristics are modified by the interaction of the active medium with small amounts of
resonant mm-wave radiation. The phase, polarization, and emission delay of the radiated
field are modified by this triggering: this can be used to detect very small powers of mm-

or sub-mm-wave radiation. A complete discussion of the quantum and thermal noise of
these detectors is presented. A demonstration of the feasibility of this technique is report-
ed. Triggering signals corresponding to a detectivity of 3&10 ' W/Hz' at 108 6Hz
(A, =Z. S mm) have been measured at room temperature. The quantum-noise limit—
corresponding to 6&10 ' %/Hz' —should be reached with liquid-helium-temperature-
cooled detectors.

I. INTRODUCTION

In a preceding paper, ' hereafter referred to as
RAM I, we have presented a simple theoretical
description of transient Rydberg atom masers
operating in the millimeter (mm)-wave domain and
described some experiments performed with these
devices. In this second paper, we focus on the
"triggering" of these maser systems by external ra-
diation impinging on the atomic medium and we
study, theoretically and experimentally, various ap-
plications of this effect to the detection of
millimeter-wave radiation.

Transient Rydberg masers are, as other similar
super-radiant devices, unstable systems whose emis-
sion is initiated by electromagnetic field fluctua-
tions. At 0 K background temperature, these fluc-
tuations are due to spontaneous emission and the
transient regime of Rydberg masers starts on the
vacuum field fluctuations noise. At a finite back-
ground temperature T, the fluctuations of thermal
radiation add their effect and, as soon as
k~T/Ace & 1, overcome the vacuum field ones (k~
and A': Boltzmann and Planck constants; m: maser
frequency). The maser emission is then initiated by
the blackbody background photons present in the
cavity. In RAM I, we have merely recalled the
ad hoe semiclassical procedure used to describe the
effect of the vacuum field fluctuations on the atom-
ic system and we have generalized it, without
demonstration, to introduce the effects of blackbody

radiation as well. At 0 K, the procedure amounts
to assigning an initial random polarization to the
atoms in the maser cavity. The amplitude of this
polarization obeys a Gaussian statistics with a mean
value inversely proportional to the square root of
the atom number So. The random choice of the in-

itial polarization governs the delay of the maser
emission bursts which slightly fluctuates from one
realization of the experiment to the next. In order
to describe the maser initiation for T+0 K, we
have in RAM I assumed, without proof, that the in-

itial polarization still obeys Gaussian statistics with
a new mean value which is now proportional to
[i + ins )/Xo]'~, where ns [exp(fun/ks T——) I]—
is the average number of blackbody photons per
cavity mode (n&-k&T/Ace in the Rayleigh-Jeans
limit, kqT p&%co ). This change in the initial condi-
tion entails a logarithmic change in the delay of the
maser emission. More generally it is clear that any
external electromagnetic field impinging on the
atoms, whether it is of thermal origin or not, will

induce measurable changes in the maser emission
behavior, since it will perturb the early stage of the
radiation process which largely governs the bulk of
the emission characteristics.

In this paper, we propose to study these changes
theoretically and experimentally. In a first theoreti-
cal part {Sec.II) we will essentially solve the follow-
ing simple problem. %'e will assume that a small
external electromagnetic field with well-defined fre-
quency, phase, and polarization impinges on the
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maser active medium at the very moment when its
initial population inversion is achieved and we will

study all the modifications of the maser emission

characteristics induced by this signal. The interest

in this problem is twofold: (i) Once the response of
the maser system to triggering by monochromatic
radiation is known, it is only a matter of amplitude
and phase averaging to compute the effect of ran-

dom field triggering. We will thus be able to derive

the maser response to blackbody radiation and give

solid ground to the formulas quoted without proof
in RAM I; (ii) as we will see, the modifications to
emission induced by an external perturbation are

very sensitive to the amplitude of this perturbation.

Not only the delay of the emission is (logarithmical-

ly) changed, but also the polarization and phase
fluctuations of the emitted field are drastically
modified. The maser emission tends to lock on the

polarization and phase of the impinging signal as
soon as it becomes of the order of the spontaneous

(or blackbody) Auctuations. As a result, one can
make use of these changes to detect very small

amounts of millimeter-wave radiation and thus

achieve detectors whose sensitivity is basically lim-

ited by the background temperature, a very attrac-
tive possibility in a frequency domain (100 to 300
6Hz and more) ~here good detectors are in high
demand. In the experimental part of this paper
(Secs. III and IV), we describe experiments in which

we have demonstrated the practical feasibility of
such unstable triggered detectors, very similar in

their principle to recently reported triggered super-

radiant devices operating in the near-infrared do-

main. ' %e will show that signals of the order of
blackbody radiation noise at room temperature are
detected with a present detectivity figure of 3.10
W/Hz'~ . This is a clear indication that Rydberg
masers could be used at low temperature as quan-

tum (single photon) detectors of millimeter-wave ra-

diation.
The setup used to perform these experiments is

basically the same as the one described in RAM I,
with a major difference concerning the detection
procedure. Instead of detecting indirectly the maser
emission through Rydberg level population changes,
we observe directly the bursts of millimeter-wave
radiation with the help of a heterodyne Schottky
diode receiver. This technique provides us with the
time resolution and the phase and polarization sen-

sitivities which were lacking in the indirect method
and which are clearly essential features in these
triggering experiments. Section III of this paper is
devoted to the detailed analysis of this new detec-

tion method along with the description of the
millimeter-wave calibrated source used to trigger
the maser emission. In Sec. IV, the triggering ex-

periments themselves are described and a detailed

analysis of the sensitivity of the technique is

presented. Obviously, the present stage of this ex-

periment is only preliminary to a more complete
study of the possibility of these new devices. Im-

provements, presently in progress in our laboratory,

include the coohng of the whole system to liquid-
helium temperature in order to reduce the black-

body background noise. These improvements will

be rapidly discussed in the last concluding part (Sec.
V).

II. THEORY OF RYDBERG MASER
TRIGGERING

%e are interested here in the description of the
evolution of an ensemble of Rydberg atoms placed

in an open Fabry-Perot cavity, prepared at time

t =0 in a given initial state and subjected to the ef-

fect of a continuous-wave small external elec-

tromagnetic field. %e choose to describe the sys-

tem evolution within the semiclassical framework

already outlined in RAM I. The atomic polariza-

tion H(z, t), the population inversion 4~(z, t), and

the field envelope 8'(z, t) evolve according to cou-

pled nonlinear Bloch-Maxwell equations. We re-

strict ourselves to the case of a moderate finesse

cavity. In the absence of triggering, we have seen in

RAM I that the emission consists in a single burst

of radiation emitted after a delay of a few Tz (Tz
being a characteristic maser evolution time inverse-

ly proportional to the atom number Xq). It is clear
that the effect of a small injected field on this sys-

tem is important only at the beginning of the emis-

sion process, when the self-radiated component is
still small. After a time of the order of T~, the
self-radiated component starts to dominate the
small impinging field and the effect of the latter
one on the system evolution rate becomes indeed

quite negligible. In other words, it is important to
study the modification induced by the impinging
field only during the early phase (0 & t & T~ ) of the
emission process and one can disregard its contribu-
tion during the bulk of the emission. %hat happens
in the early phase of the process is however very

important, inasmuch as it governs several features
of the emission at later stages. As we have seen in

RAM I, the delay of the emission, its fluctuations,
and the emitted field polarization all depend on

what has taken place during the crucial time around
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t =0, These simple considerations naturally lead us
to solve the problem in the following way. The sys-
tem evolution is divided into tw'o stages: an early
evolution phase (invisible for the detectors since the
field is too small) during which the injected trigger-
ing field is taken into account (0&t & a few Tz)
and a latter (t & a few Tq ) phase during which the
main (i.e., measurable part) of the evolution does
occur and during which one can consider that the
triggering field has been switched off. A very sim-
ple approximation can be made for the study of the
first stage. It is legitimate to assume that the popu-
lation inversion has not appreciably changed from
its initial value, which amounts to replacing in the
Bloch-Maxwell equations the time-varying M(z, t)
quantities by the constant Eo. The equations then
become linear, which considerably simplifies their
solution. The atomic polarization appears to be the
sum of two independent exponentially increasing
contributions: a "spontaneous" one, which is the
one that one would obtain for a free-running, un-

triggered maser and an induced one, which is pro-
portional to the triggering signal. The ratio of these
two solutions is a measure of the triggering effect.
This linear solution, valid up to time t —T&, can
then be considered as a new initial condition im-

posed to the evolution of the maser in the later
phase. This phase obeys more complicated non-
linear equations but, on the other hand, the effect of
the injected field can be neglected during it and the
general form of the solution is known from the free
maser problem. One then essentially has to under-
stand how the change in the initial condition of the
nonlinear problem does modify the feature of the
emission process. In fact, the whole procedure we
have just outlined is a mere generalization to the
case of triggering by an external field of the one
which is used to describe the initiation of super ra-
diance by the spontaneous emission field. One
can indeed consider that the maser is triggered by
two competing fields: the vacuuIn fluctuation field
and the impinging one, and it is quite natural to use
the same theoretical method to describe the effects
of both perturbations.

We start this section by recalling the notations
and the results of RAM I concerning the case of a
free-running maser triggered by spontaneous emis-
sion only (Sec. II A}. We then briefly introduce the
linearized Bloch-Maxwell equations which describe
the early stage of the maser emission in the presence
of a small monochromatic triggering signal (Sec.
II 8). We solve these equations and we compare the
spontaneous and trlggci ed contributions by dcfln-

ing a triggering factor q that we simply express in
terms of the number of triggering photons imping-
ing in the maser cavity during the characteristic
time TR (Sec. IIC). We next show how the emis-
sion delays and phase depend upon this triggering
factor (Sec. II 0}. The effect on the field polariza-
tion are discussed in Sec. IIE. Application of the
formalism to the case of triggering by blackbody ra-
diation is presented in Sec. IIF where we demon-
strate the formulas admitted in RAMI. Section
IIG deals with the practically important case in
which the maser is triggered by blackbody photons
and by an additional external signal. The analysis
of this case allows us to evaluate the thermal noise
of a detector based on the maser triggering effect,
which will be essential for the discussion of the ex-
periments described in Sec. IV.

A. "Free-running" maser equations

For sake of completeness, we recall in this sub-
section the main results of RAM I concerning the
evolution of an untriggered "free-running" Rydberg
atoID Inascr. Wc arc dealing as in RAM I with a
maser made of Xo two-level atoms in an open
Fabry-Perot cavity (in fact, the actual atoms are
emitting on an nS 1 yp ~n I 1 y2 tiansltlon bctwccn
two levels exhibiting each a twofold degeneracy. As
shown in RAM I and as discussed below in Sec.
II E, this situation can be analyzed in terms of a su-

perposition of two classes of two-level atoms). For
sake of simplicity, we restrict ourselves to the case
of an active mediuIn much smaller than the emis-

sion wavelength k. In that case all atoms see the
same electromagnetic field 8'o(t) and they all have
the same polarization 9'(t) and population differ-
ence $ (t) between the upper and the lower state.
When no lmplnging radiation falls on the system
(free-running or spontaneous maser), H(t), .]: (t),
and 8'o(t) obey the following Bloch-Maxwell equa-

tions [Eqs. (8) and (11) in RAM I]:

dH id
dt

(g Q~~ g ~~+)
dt 2'

where d is the electric dipole matrix element be-

tween the two states involved in the transition (typi-
cally 500 a.u. for a transition between neighbor
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Rydberg levels with principal quantum number
n-30), m is the atomic frequency, and T„„, iop,
and L, are the cavity damping time, transverse waist
dimension, and intermirror length, respectively.
The solution of Eqs. (1a)—(1c) is readily obtained

by the introduction of the Bloch angles 8O and P de-

fined by

M= Xocos8o,

H =leod sin(9pe

which in the case of a short-damping time cavity
(see condition below) obey the following equations:

d8o
sinH . (3b)

dt 2'
T~ is the characteristic maser emission time defined
as

Ts = fr&01—8
(4)

where f is the cavity finesse, related to T„„and I.
by the relation

1 LT„„= f—
C

2~o ~o
P(8o) = exp

g2 g2

with a mean-square value 0 for 8o given by

g 2~ —1/2

(10b)

Starting from the small nonzero Ho value, Ho

evolves according to the damped-pendulumlike
equation (3b) and reaches the value L9o ——m. at time
t = + ~. The light intensity proportional to
(dOo/dt) exhibits a bell-shaped time variation
described by the hyperbolic secant solution

2
doo

(12)
dt

1 1

4TR cosh'[(t tD)i2—,Tti ]

Op
td(0o )= —2' ln

2

The average delay (tD ) and delay fluctuation

«D ((tD & «——D &')'"—

are given by

whose delay tD fluctuates from one realization of
the experiment to the next, reflecting the distribu-
tion of possible Op values. The delay ta{8o) corre-
sponding to an initial value I9p is

co d

3~soke
{6)

and p is proportional to the diffraction limited solid
angle of the cavity mode:

I is the partial spontaneous emission rate associat-
ed to the transition (tD) = TiilnXO,

Ata ——1.3' .

B. Triggered maser evolution
in the linear regime

(13c)

P(P') = (10a)

=3'p=
477 N p

The condition for Eq. (3b) validity is that T&

should be much longer than T„„:
TR && Tcav ~

Knowing 8(t) from the solution of Eq. (3b), the
field envelope 8'o(t) is given by

d8o 8'o(t)d

dt

The initial value 80 and P
' of 80 and iI) at time t =0

are, for a free-running maser, random quantities re-
Aecting the fluctuations of the vacuum field. The
probability laws for Oo and P' are

Let us now assume that a small electromagnetic
field radiated by an external source impinges on the
active medium (it is coupled to the cavity through a
waveguide). Let us call 8', the complex amplitude
of the impinging radiation at the atom location in
the cavity. This field is monchromatic with a fre-
quency which, for sake of generality, is assumed to
be detuned by a small amount hm from the transi-
tion frequency co. hm, which might be of the order
of or larger than the maser bandwidth TR ', is as-
surned to be much smaller than the cavity width
T„„sothat the cavity can sustain the triggering
field:

AQ) Tcgv g( 1

With these assumptions, the Maxwell equation (Ic)
of the free-running maser has to be modified and
now reads
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d &0 &0 2') 9'+ e
2Tcav &0~OL 2Tcav

while the Bloch equations (la) and (1b) are not
changed.

As in the free-running maser case, we will solve
these equations with the initial condition 8'o ——0 and
%+0, the initial value of P being given by the vac-
uum fluctuation description recalled above. The
extra-source term in Eq. (15) accounts for the fact
that, in the absence of any active medium (9' =0),
the cavity would fill within a time T„„with the
triggering signal and the field inside the cavity
would reach within this short time the steady state
value g'0 ——g', e' '. Equation (15) with the initial
condition 8'o(0) =0 thus precisely describes the case
of a triggering field which would be suddenly
switched on at the cavity entrance mirror at the
time of the maser pumping, and not the case of a
continuous signal already present at time t =0 on
the atoms, a situation more likely to occur. Howev-
er, as T„„is assumed to be much shorter than T~,
the cavity filling time is negligible compared to the
maser evolution time and the two situations are
equivalent. We thus can avoid to change the initial
conditions of the problem, which would slightly
complicate, without any benefit, the analysis to
come. As we are in the fast damping regime
(T„„&T~), the dÃoldt term in Eq. (15) is negligi-
ble compared to 8'0/2T„„and the Maxwell equa-
tion reduces to

4l6) Tcey ~+ g elMf
Ec7rlDOL

and we get for 80m'~ the linearized evolution equa-
tion

d(8oe'~) 8oe'~ 8',d

dt 2' (20)

which can be deduced from Eq. (3b) by linearization

(replacing sin8O by 80) and by adding the triggering
field term. We should note that, since the imping-

ing field is assumed to be very small compared to
the peak field of the maser emission, the triggering
term in Eq. (20) should obviously satisfy the condi-
tion

8',d

T„
(21)

Note also that, contrary to the case of Eq. (3a), the
phase P is now time varying: starting from the ran-

dom phase $0, it can change in time to lock to the

triggering field phase.

C. Solution of the linear regime:
The triggering coefficient

Equation (20) shows that the complex Bloch an-

gle evolution is due to two independent additive
terms: the "spontaneous maser" term 8O/2T+ and
the triggering field contribution ( I',d /fi)e "a"".
The solution of this equation with the initial condi-
tion Hp(0)=8& and P(0)=$' can be written as the
sum of a spontaneous and a triggered term:

8o(t)e'~'" =8,p(t)+8,„g(t)

which, combined to (la) and (1b), describes the trig-
gered maser evolution. We now proceed to solve
these equations in the linear regime describing the
early stage of the emission. M being close to Xo,
one can replace M by Xo in Eq. (1a) which becomes
linear '

8, (t) =e'~'8'oe
Sp

t/2'
8,„g(t)=8&(e

8',d
8) ——

i he@ —(1/2' )

(23a)

(24)

d% id
dk

Eliminating 8'o between Eqs. (16) and (17), one gets

+—Nor, e

To emphasize the similitude with Eq. (3b), we make
the notation change,

H=iNod80e'~ (80 and P real),

Note that in these equations, the quantities 8,p,

8«z, and 8i are complex quantities, contrary to 8o,
which remains a real angle. Let us now consider
times t small enough for the linear regime to be still

tl2T~
valid and large enough for e " to be much bigger
than e' "' in Eq. (23b):

Tg ~t ~TglnXO .

We can for such times neglect in Eq. (23b) the com-
plex exponential and write

8,„.g(t)=8)e
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Equations (23a) and (25) now show that both the
triggered and the spontaneous solutions increase ex-

ponentially at the same rate and stay proportional
to each other. For the forthcoming discussion, it is
convenient to introduce the absolute value of the ra-

tio between the triggered amplitude and the average
spontaneous solution:

1

0)'9=
0

q is a natural measure of the effect of the triggering
which will be called the triggering coefficient.

From Eqs. (11)and (24), one gets

g) 1 5'd
hco, Xo TR,

(9
'

2TR

kM + 1

4TR

W is the normalized Lorentzian function centered
at the atomic frequency (b,co=0), whose width is

equal to the maser emission bandwidth.
Equation (27) can be given a simple physical in-

terpretation in term of the number n,'",g of trigger-
ing photons stored in the cavity. This number is
defined by

and even more simply, at resonance (Ace =0),

Equation (33) merely states that the triggering coef-
ficient is at resonance equal to the square root of
the number of triggering photons impinging on the
cavity during the maser characteristic evolution

tl.me.

D. Changes in maser emission delay

and phase induced by the triggering field

FoHowing the general procedure outlined in the
introduction of this section, we now proceed to
make the connection between the initial linear stage
of the emission process and the subsequent non-

linear one. %e choose arbitrarily to end the initial

phase at a time to such that, from this time on, the
effect of the triggering field can be neglected. This
condition can be expressed as

I
()o(ro)

I

2TR fi

%e want also 8o(tp) to be small enough for the
linear regime to be valid up to time to, which can be
expressed as

I
Oo(to)

I
((1.

Equation (21) implies of course that conditions
(34) and {35) are compatible and leaves some free-
dom for the definition of to which must be taken of
th.e order of a few TR.

tp 9TR {36}
%e can thus eliminate 5', between Eqs. (27) and

(29) and after some straightforward calculation tak-
ing into account Eqs. (4)—(7), one gets

'g =W Aco, n ~~y (30)
2TR Tc»

In fact (TR/Tc»)n, '"„ is nothing but the number of
triggering photons impinging at the cavity entrance
mirror during the time interval TR. &e will simply
call n,'"gp this number:

trig R trig
IIP T c»

C»

which allows us to write finally
r

n Imp
R

q being of the order of a few units (smaller than
ln Xo -10).

For each choice of initial condition Oo and P', let
us introduce the parameters 8' and 1(' defined as

8'e'~ =e'~'Op+8) . (37)

Then, according to Eqs. (22), (25), and (36), the
linear solution of the evolution equation at time to
can be written as

e '
Op(t )=6I'e'~ e~~

This small value of the Bloch angle reached at
time to can now be considered as the new initial
condition for the maser evolution during the non-

linear stage t &to. The evolution then obeys the
nonlinear equation (3b) whose general solution is an
hyperbolic secant pulse [Eq. (12)]. According to the
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results of RAM I recalled in Sec. IIA, we infer
from that analysis that the maser pulse has the
same shape as the free-running maser, with a phase

II
' and a peak delay tp such that

F

8e q/2

ta —t, = —2TRln
2

&IdQ&~1D(1)&

TR

I I I [ I I I I [

8e= —2TRln ——qTR .
2

The overall emission delay, measured from time
t =0, is then

8e
tD =ta —to+/ TR = —2TR ln

2

Hence, as could have been expected, the maser
characteristics (phase 1(' and delay tp) are indepen-

dent of the arbitrary time t0 chosen to perform the
connection between the two emission phases. Equa-
tions (37) and (40), together with the probability
laws (10a) and (10b) provide us with all the infor-
mation needed to analyze the statistics of an ensem-
ble of maser pulses triggered by the same field
8',e' "'. The maser pulses will somewhat fluctuate
in phase and delay from one reahzation of the ex-
periment to the next. These fluctuations are direct-
ly connected to the one of 8' and P', which through
Eq. (37) reflects those of the vacuum field. The
magnitude of these fluctuations depends of course
upon the size of the triggering coefficient q. The
average values of the pulse delay and phase are also
related to q. Instead of deriving cumbersome
analytical formulas for these physical quantities, we

can obtain them from simple geometrical argu-

ments. The complex amplitude 8'e'~ can be
represented as a vector, sum of a "fluctuation-free"

0 1 2 3 4 5 6 7 8 9 l0

Q2

FIG. 2. Shortening (tD(0)& —(tn(rl)& of the maser

emission delay versus the triggering coefficient q . Delay
variation is measured in units of Tq.

vector 8i, and of a random one 80e'~, whose length
is equal to 8o and direction defined by ([)'. The tip
of the 80e'& vector is moving randomly from pulse
to pulse without getting too far away from a circle
of radius 8=2i~No. The construction of the
8'e'& vector is represented on Figs. 1(a) and 1(b) in
the two cases g g 1 and g y 1. It is clear from this
construction that the average value of 8' is merely

(8'& =(8', +«'&)'"

8( 1+ 2)1/2

As a result the average delay of the triggered maser
pulse is

(,tp(rl) & = TRln (42)

The variation of (tp(ri ) & with ri is plotted on Fig.
2.

The delay fluctuation is directly linked to the
length fluctuation of 8' which the construction
shows to be of the order of 8 (in both q g1 and

rl & 1 cases). One thus has

br (ri ) =[(r' &
—(,t &']'"

8 b

FIG. 1. Geometrical construction of the effective tip-

ping angle parameters 8' and f'. The c number 8'e'~ is

represented by a vector, sum of the triggered contribution

Hl, and the spontaneous contribution 80. (a) Case of a

small triggering coefficient g &1. (b) Case of a large

triggering coefficient g p 1.

8
TR

(8e& (1+g2)1/2

This formula is of course only intended to give an
order of magnitude. A more accurate expression
should coincide with the free-running maser fluc-
tuation when g is going to zero. One will thus take
[see Eq. (13c)]
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1.3T&
htD(g )=

(1+g )
(43)

The geometrical construction also shows that the
average phase (g) is obviously the one of the im-

pinging field. Taking this phase as a reference, we

write

(44)

To estimate the order of magnitude of the phase
fluctuations, we observe that the vector representing
0' rotates randomly in all directions for g &1
whereas it stays well defined in a finite angle when

t) & 1. We chose to call b,P this angle and we thus

get, after a mere inspection of Figs. 1(a) and 1(b),

for t) & 1

1
hl( -2 sin ' — for tl & 1 .

7l

(45)

A more precise definition of the phase correla-
tions which will be useful in the following is ob-
tained by computing the average value

(cos(g; —QJ. )), where 1(; and l(J are the phases of
two independent maser pulses. This quantity is ob-
viously going to zero for t) =0 [maximum phase
fluctuations, large random values of the angle

p; —IIJ, see Fig. 1(a)] and tending to 1 for ri»1
[small fluctuations; p; and l(J. are strongly correlat-
ed, see Fig. 1(b)]. The exact computation of this
average involves some trigonometric calculations.
One gets

(cos(I(; —g&)) =f(rI ) (46)

with f(ri ) plotted on Fig. 3 (we will not give here
the complicated analytical expression of this quanti-

ty).
Formulas (42) to (46), together with expression

(32) giving g, describe all the effects of the trigger-

ing of a two-level atom maser by an external mono-

chromatic field. The average delay and delay fluc-
tuations are reduced by the triggering as well as the
phase fluctuations. The change of the average delay
is only logarithmic in q, whereas the reduction in

phase and delay fluctuations is more sensitive (it in-
volves more rapidly varying functions). The critical
value above which the triggering effects become sig-

nificant is g =1. This value is achieved with a flux

of one photon of resonant radiation impinging at
the entrance mirror of the maser cavity during the
characteristic maser time Tz. If the triggering field
is detuned from resonance, the sensitivity to trigger-
ing decreases according to the Lorentzian law [Eq.
(32)] and practically vanishes for a detuning of the
order of the maser bandwidth 1/T~.

E. Polarization changes induced

by the triggering field in a simple case

%e now proceed to study the maser emission po-
larization changes induced by a linearly polarized
triggering field. These effects are not described
within the two-level atom model of previous subsec-

tions and require an analysis involving degenerate
atomic transitions. The situation we have in mind
is sketched in Fig. 4. The impinging radiation is

polarized in a waveguide A and the output maser

signal is analyzed in a waveguide B coupling the

cavity to the detector. The A and B waveguides po-
larization directions are either parallel or perpendic-
ular to each other. The atoms in the cavity oscillate

SOURCE

I I I I I I I

ATOMS

0.5

0 I I I I

0 1 2 5 4 5 6 7 8 9 10

7l2

FIG. 3. Plot of the function f(t)') representing the
variation versus g of the maser emission phase correla-
tion f ( t) ') = ( cos( t(; —PJ ) ) .

DETECTOR

FIG. 4. General scheme of' the setup allowing us to
study the polarization-triggering effects.
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n Pi/Z

FIG. 5. Level scheme relevant to the nS)/2~n'P)/2
maser emission.

components tend to lock to the common phase of
the triggering field, which results in a locking of the
maser polarization along the direction of the elec-
tric vector of the impinging radiation. More pre-

+i)+
cisely, since 8'p -e —,the averaged values of the
radiated field intensities, respectively parallel and
perpendicular to the triggering field, are

&
~ gI~)) l+&cos(l(+ —y )),

(
~
g,

~

'& ~ l —(cos(l(+ —(( ) ),
and the average polarization rate is

& ~g~, ['& —(]g, ~')

& /@'iii'&+& /@'j i'&

=(cos(t)j+ —l( )),

on an nS&~2~n'P~~2 transition, both levels having
each a twofold degeneracy (see Fig. 5). Two circu-
larly polarized field components g'0 (t) and 8'0 (t)
are emitted, respectively, along the

~
nS„,,m, + l/2& ) n a„„m,= —l/2&

I n~u2, mz ———l/2) ~
I
n'~ty2, my+ i/2)

transitions (arrows in Fig. 5). When the maser is
not triggered, these two components are radiated in-
dependently with uncorrelated phases and small
random delay differences (as discussed in details in
RAM I Sec. II I). The resulting field has then gen-
erally an elliptical polarization, almost linear for
most of the pulse evolution time, with a big axis
randomly rotating around the cavity axis from
pulse to pulse. The detector accordingly "sees" sig-
nals strongly fluctuating from pulse to pulse, owing
to the fact that the waveguide 8 projects along its
fixed polarization direction this randomly oriented
radiation.

If a linearly polarized field 8',e™is impinging
on the atoms, the two 8'+(t) and 8' (t} field com-
ponents are correlated to each other since they are
both triggered by the projections 8'+e™and
8', e' ' of the same linearly polarized field along
the two counterrotating polarization components
(with a convenient phase choice, one has

8',+ =8', =Ã, /W2

here). As a result the average phase and delay
differences between 8'p+(t) and @p (t) tend to de-
crease. The phases P+ and P of the two circular

where (cos(l(+ —l( )) is given by Eq. (46), t) be-

ing the triggering factor corresponding to one circu-
lar component of the impinging field. Hence, one
can simply write

which shows that the polarization rate varies exact-
ly as the phase correlation function of the two-level
atom maser. As soon as g & 1, the maser emission
becomes strongly polarized along the triggering
field electric vector. This effect also results in a
strong decrease of pulse to pulse fluctuations for the
field transmitted by the analyzer to the detector. If
8 and A polarizations are parallel, one expects to
get for q »1 a nonAuctuating signal two times
larger than the average free-running maser signal.
If 8 and A polarizations are perpendicular, one
predicts for g »1 a near zero signal on the detec-
tor. These dramatic effects provide a very sensitive
way of detecting the triggering field (see Sec. IV).

F. Triggering by blackbody radiation

The discussion of Sec. II E can easily be general-
ized to describe the effect of blackbody radiation
triggering. In this case, however, the triggering
field is incoherent and has a random phase and am-
plitude. Accordingly, the triggered contribution Hi
to the Bloch angle is also a random quantity. Its
fluctuation and average value are simply related to
the Bose-Einstein statistics of the blackbody photon
number. Let us call nz the random number of
blackbody photons which happen to be in the cavity
mode at the time t =0 when the maser is fired. The
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probability P {nz} for the n~ distribution is given by
the Boltzmann law:

tions as the free-running (T=O) maser, provided
one replaces in the expression of the initial Bloch
angle Xo by

with an average value
Xo(1+ng }

The effect of the blackbody radiation triggering is
thus to reduce the average delay to a new value

The frequency of these photons is distributed

over the spectral width T,„' of the maser cavity.
According to Eq. (28), only the frequency com-

ponents falling within the maser emission band-

width T& 'gT,„' are effective for triggering the
maser. As a result, the random number of black-

body photons to take into account is

2 8 trig —ng s

Tf sv

qz thus appears to be merely equal to the square
root of the number of blackbody photons in the

cavity mode. At the arbitrary time to chosen to end

the linear stage of the emission process, the maser
Bloch angle is a random quantity given by Eq. (37)
with random amplitude and phase parameter 0~ an

l(~ given by

8ge =e'~'0o+e ggO . (54)

In this expression P,. and Ps are the random nn-

correlated phases of the vacuum fluctuations and

thermal radiation fields, respectively. Oo is the ran-

dom vacuum field amplitude obeying the Gaussian
statistics of Eq. (10b) with a mean-square value

8=2/~Nq and 7ls is also, according to Eqs. (53),
(50), and (51), a Gaussian quantity with a mean-
square value q~ ——n~ . The sum of these two in-—1/2

dependent Gaussian parameters is again a. random-

phase Gaussian variable with a mean-square value
equal to the sum of the mean-square values of its
components:

(8$ ) =8 (1+ng )

(1+ng) .
Xo

(55)

Since the statistics of (9& and 9O obey the same
general law, the behavior of the blackbody triggered
maser pulses is described exactly by the same equa-

trig CSV

ng = ng
TR

and the random blackbody triggering coefficient q~
is, according to Eq. (30),

(rn(T})= Tain
(1+ng)

without changing the phase and delay Auctuations.
Of course, since the blackbody background is not
polarized, the phases of the different polarization
components of the maser emission are triggered by
uncorrelated fields and the fluctuations of the po-
larization of the maser output are not affected by
the blackbody photons. %'e thus establish theoreti-
cally all the results quoted without proof in RAM I.

G. External triggering of a maser
at finite temperature

%e end this section by discussing the case of
practical interest in which a maser, triggered by
blackbody radiation photons, is also subjected to a
small fluctuationless external field. This situation
is of course relevant to the problem of the noise of
triggered maser detectors in which the signal to be
measured is competing to initiate the system evolu-
tion not only with vacuum fluctuations but also
with thermal radiation. During the early evolution
phase of the emission, the two (thermal and exter-
nal) fields add up their effects independently since
the equations of motion are then linear. As a result,
the Bloch angle at the end of this phase can be ex-
pressed as

'e'~e =~me +~&,

where 8s and ps are the random variables
described in Sec. II F and 0i the triggered contribu-
tion computed ln Sec. IID.

Equation (57) is strictly the same as Eq. (37) with
the blackbody angles replacing the spontaneous
ones. Since the statistics of these two random quan-
tities obey the same law, the study of the subsequent
maser evolution in this case strictly parallels the one
we have developed in Sec. II D. %'e are led to de-
fine a temperature-dependent triggering factor as

9i
q(T) =
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which according to Eq. (55}can be written as

8
rt(T) =

0) /0

(1+n~)'
{59)

„tagn; p
R

1+ng

As for the average emission delay it is obtained

from Eq. (42) by replacing No by Eo(T) and q by

g(T) and one gets the simple result

( t p( T) ) = Ttt ln t
1+ng+Wn. p

(61)

which shows that the blackbody and external pho-

tons are adding their effects to shorten the emission

delay.
The decrease with T of the effective triggering

coefficient clearly describes the "noise*' of the
blackbody radiation background. The signal to be

detected becomes unable to modify the maser prop-
erties as soon as g(T) & 1, i.e., as soon as the num-

ber of resonant photons impinging in the cavity per
time interval T~ is smaller than the average black-

body photon number per mode.

III. GENERAL DESCRIPTION
OF THE RYDBERG MASER

TRIGGERING SETUP

We have described in details in RAM I the Ryd-
berg maser system and the indirect detection pro-
cedure consisting in monitoring by field ionization
the populations of the Rydberg levels involved in
the maser transition. As already noticed, this
method is not suited for the study of the time
dependence of the maser emission since the atoms

We recognize in this expression the triggering
factor 8~/8 corresponding to a T=O K maser.

Hence, all the effects of the triggering are described

as in the T =0 K temperature case, provided one

divide the triggering factor by (1+n~)' . The new

delay fluctuations, phase correlation, and polariza-

tion rates are still given by Eqs. (43), (46), and (49)

with 7/ being Ieplaced by

are analyzed after they have left the cavity, i.e., a
long time after the emission has ended. Nor is it of
course suited for a polarization or a phase analysis
of the emitted radiation. In order to study these
characteristics of the maser radiation, it is necessary
to detect directly the microwave bursts of radiation.
Using a Schottky diode heterodyne receiver, we
have built such a detector and coupled it through a
waveguide to the maser cavity. In this section we
recall briefly for sake of completeness the main
features of the Rydberg maser setup which have

been described in detail in RAM I and we analyze
more precisely the micro~ave apparatus used to
trigger the maser and to detect the signals.

A. General view of apparatus

The general setup is outlined on Fig. 6. An open
Fabry-Perot cavity is coupled by two waveguides to
a tunable microwave source (Box 1) and to a
millimeter-wave receiver [Boxes 2(a) and 2(b)]. The
cavity is crossed by a Na atomic beam, excited by
two collinear pulsed laser beams into the 33S~~&

Rydberg level (pulse repetition rate -5s '). The
cavity is tuned to resonance with the
33S ) ~2 ~32P ) ~2, or 33S)~2 ~32P3g2 transitions
(107892 MHz and 107714 MHz, respectively) and
the occurrence of maser action is checked by
analyzing the atomic population level changes
detected downstream the atomic beam by the field
ionization detector (Box 3). Simultaneously, the
bursts of mm wave are detected by the Schottky re-

ceiver and recorded by a fast transient digitizer
scope interconnected to a videotape recorder and to
a signal averager. The purpose of the experiment is
to study the changes in delay, phase, and polariza-
tion induced by triggering the maser with a well-

known small microwave field. We now proceed to
describe in details the apparatus contained in Boxes
1 and 2 of Fig. 6.

B. Microwave triggering source (Box 1)

The very small amount of millimeter-wave radia-
tion needed to trigger the maser pulses (typically in
the pW range) is produced by frequency multiplying
the output of an X band klystron in a homemade
harmonic generator. The klystron is phase locked
on a commercial quartz stabilizer (Microwave sys-
tem MOS5) and its frequency is measured by a fre-
quency counter. Its 100 mW microwave output
around 12 GHz is sent through a SO 0 coaxial cable
to a Schottky diode mounted in a millimeter
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FIG. 6. General bloc diagram of the maser triggering experiment setup. Box 1: microwave triggering source system.
Box 2(a): heterodyne receiver. Box 2(b): local oscillator providing the reference for the heterodyne receiver. Box 3: Ryd-
berg atom field ionization detector for indirect detection of maser emission by population transfer monitoring.

waveguide and working as a frequency multiplier
(harmonic generator in Box 1). The working point
of this diode is optimized by adjusting the direct
bias current (0.5 to 20 mA) sent to the diode
through a polarization tee. The inner dimensions of
the diode waveguide mount are 2& 1 mm (F band)
and the harmonic frequencies above the waveguide
cutoff frequency {75 GHz) are generated. The fol-
lowing powers of harmonics are obtained: 100 p%
at 84 6HZ (harmonic rank p =7), 10 pW at 108
GHz, which is the frequency of interest (p =9), 1

IM% at 180 GHz (p =15), and 10 % at 220 GHz
(p = 18}. The p =9 harmonic is favored by tuning a
back short mounted in the waveguide behind the
diode. The cavity selection also helps reducing the
powcl of othcf Unwarltcd harmonics 1IIlplnglng on
the atoms. Finally, the atoms resonant with the
ninth harmonic are not at all sensitive to the very
small RIQOUnt of mllllIDctcf-wave powcl fcnlalnlng
Rt thc othcl ffcqucnclcs.

The power of millimeter-wave radiation imping-
ing on the atoms is controlled by a variable 30-da
attenuator in front of the harmonic generator and

by a second attenuator between the harmonic gen-
erator and the cavity, It can easily be reduced to
the 10 ' %' IRngc Rnd ls estimated by measuring
the power transmitted by the (empty) cavity and
detected by the Schottky diode receiver (see below).

The frequency I" of the triggering signal is direct-

ly obtained by measuring I" /p with the frequency
counter. It can be tuned by changing the klystron
frequency. The spectral purity of this signal is
better than a few kHz at 108 GHz, far below the
—10 MHz bandwidth of the maser emission.

C. MilliIneter-wave cavity and its coupling
to the source and to the receiver

Thc triggering signal pfopRgatcs first ln R fcc-
tangular wa, veguide, and then is coupled through a
IcctangulM-clrculRr transition into R clrcglM
waveguide (brass pipe of 4-mm inner diam), By ro-
tating the rectangular section of the guide around
the circular guide axis, one can choose the linear
polarization of the triggering signal impinging on
the atoms. After the cavity, the outgoing signal is
coup1ed to the detector by a rectangular guide
which also plays the role of a polarization analyzer.

Thc coupling of fadlatlon ln Rnd out thc cavity ls

made through small (1.3-mm diameter) holes drilled
ln its mirrors. %c have chcckcd by Using polRfizlng
grids that the radiation polarization is not Rppreci-
Rbly modi6cd by passing thI'ough these coUpllng
holes.

The cavity itself (cavity No. 1 of RAM I) is of
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the Fabry-Perot sernicofocal type. Its length L is
connected to the resonant wavelength by the rela-

tion

L =—(4q+1) .
8

In our case q is equal to 51 and the cavity lengths
are L i ——71.203 and L z

——71.321 mm for the
107892 and 107714 MHz of the 33S~32P~~& and

335~32P3/2 transitions, respectively. The mea-

sured Q quality factor is 6100, yielding a charac-
teristic decay time T„,=9 ns.

The coupling losses of the cavity are symmetri-

cal. There is a 9.5-dB loss at the input mirror and

another 9.5-dB loss at the output. These values

have been estimated by measuring a total 19-dB loss

for the cavity transmission and by checking that the
milhmeter-wave power needed to saturate an atomic
transition inside the cavity is the same whether the
millimeter wave is coupled through one mirror or
the other. This loss figure means that the actual

power impinging into the cavity is a factor
10 -9 times larger than the power measured by
the detector.

D. Millimeter-wave receiver

The detection is achieved by a Schottky diode
heterodyne receiver mixing the signal to be mea-
sured with a reference millimeter wave produced by
a stabilized carcinotron source. The detection setup
is detailed in Boxes 2(a) and 2(b) of Fig. 6. The
principle of the detector is to down convert the
millimeter-wave frequency F to a low radio fre-
quency value F~ {equal to 130 MHz) by beating it
in the mixing element shown in Box 2(a) (mixer No.
1) with a local oscillator frequency FLo exactly 130
MHz apart from F. The mixing element is a GaAs
Schottky diode ongmally built for radroastronomy.
The local oscillator [Box (21)] is a Thomson-CSF
carcinotron phase locked on the ninth harmonic of
the X band klystron also used for generating the
triggering signal (see Sec. III B above). The carci-
notron stabilization procedure has already been
described. A small part of the klystron output
(frequency I'/p) is mixed to part of the carcinotron
output in the harmonic mixer No. 2 [a Schottky
diode of the same kind as the harmonic generator in
Box No. 1 (Ref. 7)]. This mixer provides the pth
harmonic of the klystron (frequency F ) and beats it
against the carcinotron output. The beat note is
compared in a phase detector with the signal com-

ing from a 130-MHz oscillator. The phase error

signal is then converted into dc voltage, amplified,
and added to the power supply voltage of the carci-
notron in a standard feedback loop. As the klystron
is exactly tuned to the frequency F/p, the carcino-
tron is automatically locked to the required fre-

quency FLO ——F+F~.
The local oscillator signal is coupled to the re-

ceiver (harmonic mixer No. 1) through a direction-
al 10-dB loss coupler. The receiver requires a local
oscillator power of about 1 mW, so that a stabilized
carcinotron power of -10 m% is needed and easily
obtained. The beat note generated at 130 MHz by
the receiver is amplified in a wideband (0—250
MHz), low noise (1 dB), large gain (57 dB) pream-
plifier {Trontech W 110 F) followed by a 130 (+7)
MHz filter and by a 10—500 MHz, 20-dB gain fi-
nal amplifier (SCD Nucletudes 5-20-2). The output
beat note signal is then sent either to a powermeter
for calibration, or directly fed into the fast transient
digitizer scope, or else rectified by a diode so that
an envelope signal proportional to the pulse intensi-

ty is produced and sent to the scope. The digitizer
output is either directly recorded by a videotape

recorder, allowing us to sample the successive

pulses, or averaged and stored in a multichannel
analyzer.

The noise characteristic figure of the detection
chain is measured by coupling it to calibrated noise
generators corresponding to various temperatures
and measuring the changes in the dc background
level on the powermeter. A noise temperature of
5000 +1000 K has been obtained, corresponding to
a mm wave background power I'~ of about
2.2)& 10 ' % in the 14 MHz &2=28 MHz double
bandwidth of the detector.

Let us notice that it is very important in the
maser triggering experiments to avoid a leaking of
the local oscillator field back into the cavity. The
carcinotron is indeed very powerful compared to
the signals one wants to measure. To avoid these
problems, a 35-dB isolator is inserted between the

cavity and the receiver. The amount of carcinotron
leaking signal into the cavity is then reduced to
about 2 p%. This is still a signal whose magnitude
is of the order of the triggering ones. However, it is
130 MHz apart from resonance and its effect on
the maser operation is completely negligible.

IV. OBSERVATION OF THE MASER
TRIGGERING SIGNALS

We now present the results of the triggering ex-

periments performed with this setup. We start by a
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brief description of the free-running untriggered
maser signals.

A. Typical characteristics
of the maser signals

Figure 7 shows two rectified maser emission
pulses observed without external triggering on the
335~32Pi&2 transition of Na. The pulse to pulse
intensity fluctuation are due in part to the random-
ness of the radiated polarization, but also to fluc-
tuations in the initial conditions themselves (the
masers are pumped by dye lasers whose power is
not reproducible to better than +20% from pulse to
pulse).

Typically, the number of atoms involved in our
masers is of the order of a few hundred thousand
when they operate as shown in Fig. 7, mell above
threshold. This figure is obtained by direct field
ionization measurement for pulses having typically
the intensity shown in Fig. 7. Incidentally, this or-
der of magnitude can also be confirmed by a simple
time and amplitude analysis of these pulses. Aver-

age emission delays are about 300 ns with pulse
duration of the order of 200 ns. A third of this
duration (-80 ns) is due to the finite response time
of the detection, so that one can estimate the real

emission width Rs Tgr ~3.5TR 120 ns. This cor-
responds to maser characteristics emission times T~

of the order of 30 ns (note that T„„is shorter, so
that the masers are operating in the damped re-
gime). Using formula (4} with f= 120,
p=9.2+10, Rnd I =20 8, onc finds that the
number of radiating atoms should typically be

So-6g 10

This figure is again confirmed by pulse intensity
estimates. The detected maser peak power in Fig. 7
Rre about 15' 10 ' %. The actually emitted
power is about 20 tiIIlcs lalgcr (thcrc is R facto1 9
coupling loss Rnd Rn cxti.a factoi. 2 because the field
escapes the cavity at both ends). In a 200-ns time
interval, we thus have 6&10 ' J of radiation cor-
responding to about 750000 millimeter-wave pho-
tons, in fair agreement with the above estimate
based on Tz measurements.

B. Observation of delay, polarization,
and phase changes induced by the triggering signals

%hen a sInall amount of millimeter-wave radia-
tion is sent on the atoms with its electric field paral-
lel to the detection waveguidc polarization, one
clearly observes a shortening of the emission delay
Rnd a strong decrease of the pulse to pulse ampli-
tude fluctuations (Fig. g). In order to quantitatively
study these effects, we have averaged the free-
running and triggered signal ovc1 100 pulscs
(avcraglllg tllllc —20 scc}. Flgllrc 9 cxhlblts typical
triggering effects. Trace (a) corresponds to the
averaged free-running maser output. Traces (b) and

t,
I14Q ~
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FIG. 7. Typical rectified maser pulse signals.
Dotted-line curve represents the laser excitation.
Dashed-line curve is the percussional response of the
Schottky diode receiver. Two upper traces are typical
maser signals obtained under identical conditions. Note
the large pulse to pulse fluctuation. Number of emitting
atoms is estimated to be Xo-2X 105.
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FIG. 8. Same signal as in Fig. 7 obtained with the ad-
dition of a —10 "%' triggering signal impinging on the
atoms. Note the qualitative decrease in emission delay
and fluctuation.
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FIG. 10. Demonstration of polarization-triggering ef-
fects. (a) Untriggered maser signal averaged over a hun-

dred pulses. (b) Maser triggered by a 10 "%' signal po-
larized parallel to the detector waveguide polarization
vector. (c) Detector output corresponding to the same

triggering power as in trace (b), the cavity being placed
between crossed polarizer and analyzer.

(c) show the signals observed, for the same average

pumping conditions, with a triggering power on the
atoms of about 10 ' and 2.5&10 ' %, respec-
tively. A still smaller triggering field effec~ is ex-
hibited on traces (d) and (e): trace (d) shows again
the free-running maser output and trace (e) a signal
produced with a trigger power of only -10
The reduction of the average emission delay is
clearly apparent on these recordings. The intensity
enhancement factor, i.e., the ratio (I, ) /(I, ~ ) of the
average triggered over spontaneous maser outputs is
also very striking. This factor, which is related to
the polarization rate of the maser radiation by the
formula

=98+1=1+f (i) '),I, )

tends to a maximum value equal to 2 for strong
triggering fields. The polarized triggering field then
channels all the maser energy in a well-defined po-
larization component and, on the average, twice as
much energy is received by the detector. This effect
is even more clearly displayed on Fig, 10 when we
compare the free-running averaged maser signal
[trace (a)] to the signal detected with an analyzer
parallel to the triggering field [trace (1)] and « the
signal detected with an analyzer perpendicular to
that field [trace (c)]. In this last case, the maser en-

ergy is completely blocked by the analyzer. %e
have also qualitatively observed the predicted
phase-correlation effect induced by the triggering.
To perform this experiment, we take advantage of
the fact that the low frequency 130-MHz signal
used to lock the carcinotron is precisely at the fre-

I I I
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FIG. 11. Demonstration of phase-correlation trigger-

ing effects. Trace (a): phase correlation signal obtained

with a 3&10 "% triggering field. Trace (b): recording

showing the diappearance of the signal when the Rydberg

atoms are suppressed. Trace (c): recording showing the

disappearance of the signal when the triggering field is

suppressed (free-running maser).

I

200

quency F~ of the beat note produced by the
Schottky receiver. This beat note contains thc
phase of the emitted radiation. By mixing it in a
double balanced mixer with the low frequency sig-
nal serving as a fixed reference, one gets a voltage

signal directly proportional to the cosine of the
phase of the maser radiation. Averaging this signal
amounts to measuring precisely the field correlation
function studied in Sec. IID. Figure 11 shows a
typical result. Trace (c) exhibits the phase correla-
tion signal for s triggering field of 3+10
Traces {a) and (b) are test recordings showing that
the correlation disappears when the triggering field

is suppressed [trace (a)], or when it impinges on an

empty cavity [trace (h)]. This effect is particularly



conven~en~ for field detection since lt appears as a
positive signal on a black backgfoUnd.

C«Data analysis; discussion
of the sensitivity of the method

for miHimeter-wave signal detection

We have measured the polarization rates A' and
the delay variations corresponding to the signals
registered in traces (b), (c), and (e) of Fig. 9, which
were triggered with very sInall impinging fields.
The obtained values for R and (ra(0)) —(rD('g ))
allow us to find with the help of Eqs. (42) and (46)
triggering coefficients q' respectively equal to 23,
11, and 1. [Figures 12(a) and 12(b) show a fair
agreement bctwccn thc measured quantltlcs and thc
theoretical predictions given by the solid lines. )
Tb18 experiment can thus bc considered as a IDca-

surcmcnt of very low lcvcls of monochromatic radl"
ation with a sensitivity of the order of the room
temperature blackbody noise (q = 1).

We have tried to check the consistency of these
results with a direct measurement of the same im-

pinging signals, transmitted to the heterodyne re-
ceiver through the cavity. In this control experi-

ment, the maser was switched off (by suppressing
thc lascl" pumping), Rnd thc triggering signal

transmitted by the cavity was measured by the
powermeter connected to the Schottky receiver and

to the amplifier chain. This measure amounts to
comparing, on the logarithmic dial of the powerme-

ter, the sum "noise + triggering signal" to the

noise alone. AQ x dB increase above the noise level

corresponds to a de~ected triggering po~er I, such

that.
~&+~x x

1 g

or

P, =P„(10""'-1). (65)

The po~er impinging in the cavity, I", , is actually

larger than I', by a factor equal to the cavity to
dctcctof coupling losses (9.5 dB). Hence

P,
' ~=9PJv(10 "~' —1), (66}

P&
P can ln turn be convcftcd into R number of im-

pinging photons per characteristic time Tq through
the formula

& imp
= xrg

2') (67)

(The factor 2 accounts for the fact that only one

circular component of the impinging field actually

triggers the maser pulses. ) At last, using Eq. (60),
lt. 18 possible to convcft thc tl;mp valUcs 1Qto tflggcf-
ing factors rI(T) (in our experiment T =300 K):
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FIG. 12. Comparison between measured triggering ef-

fects (boxes) and theoretical predictions (solid-line

curves). The three measured values correspond to the

signals (c), (d), and (e) of Fig. 9. (a) Decrease of the
maser emission delay. Theoretical curve is the same as in

Fig. 2. (b) Increase of the maser polarization rate %+1.
Theoretical curve is deduced from the one in Fig. 3 by a
vertical translation of I unit [see Eq. (63)j. In these fig-

ures, the vertical position of the experimental points are
directly deduced from the maser signals (Fig. 9). The
three horizontal positions (q values) are obtained by a
best fit to the theoretical curves, which can be considered
as a measurement of the corresponding triggering signals.
Note the fair agreement between experiments and theory,
with only one point being 30% off the theoretical predic-
tions.

It is clear that such a formula can yield only a very
rough estimate for absolute values of g (T), since
the notse level [P~ =2.2(+0.4) p%] ts known with
an uncertainty of +20%, T~ is also estimated
within +20% [Ts ——30(+7) ns), and the small-x
fraction is measured within +0. 1 dB. For the
impinging signals corresponding to traces (c), (b),
and (c) of Fig. 9, one measures, respectively,
x =0.1(+0.1) dB; x =0.2(+0.1) dB, and

x =0.5(+0.1) dB, corresponding to possible q (T)
values ranging between 0 and 15. A much more
precise check is obtained by comparing the g (T)
values with each other, since the uncertainty on I'~
and TR then cancel out. The ratio between the
number of triggering photons corresponding to
traces (b) and (c) of Fig. 9 is found to be 2.5(+1), in
fair agreemen~ with the value —",

, given by the

maser-triggering signals. Note that the smallest
value (q =1) detected by the maser experiment
could not be detected by the powermeter
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[x =0.1(+0.1) 18].
In conclusion, wc may say that we have demon-

strated the ability of these new types of millimeter-
wave detectors to reach the thermal noise level at
room temperature. An q =1 signal corresponds to
10 ' % impinging on the atoms in a bandwidth of
about 10 MHZ, which cxprcsscd in dctcctivity is
equal to 3)& 10 ' %'/Hz'~ . In principle, the quan-
tum noise level should be reached when the cavity
temperature is reduced to a value such that
kgT&Ae (T&5K at 100 GHz). A triggering fac-
tor of 1 would then correspond to a signal of
2&10 ' % and to a detectivity of -6&10
~/Hz'".

V. CONCLUSION AND PERSPECTIVES

Let us notice that the extreme sensitivity of these
detectors to radiation is not intrinsic to the fact that
the active medium is made of Rydberg atoms. Any
super-radiant system working in this frequency
domain would be as sensitive, even if the individual
atomic dipoles were much smaller. The systems
described in this paper are indeed reminiscent of
cm-wave maser devices used as amplifiers in ra-
dioastronomy detectors. ' (Let us note, though,
that these masers were used in a cw amplifier mode
and not in the transient regime described here. ) The
advantage of Rydberg-atom masers is that they can
easily operate in the mm-submm-wavc domain
where they provide a very large number of potential
resonant frequencies {see RAM I) with also the pos-
sibility of tuning over a wide frequency range the
Rydberg lines by Stark effect. "

Another method for using Rydberg atoms as
detectors has been recently proposed and demon-

strated, ' which makes use of the field ionization
property of these atoms. In this method, the
millimeter-waves photons are detected by the
change in the Rydberg ionization current they pro-
duce when they are absorbed by an atom. This
method also reaches the thermal noise level and
blackbody radiation cffccts have bccn put in evi-
dence in several Rydberg-atom experiments of this
kind. ' One should note that in these experi-
ments the Rydberg atoms are sensitive only to the
photon energy, whereas in our Rydberg maser ex-
periments, we detect the field phase and polariza-
tion as well.

In order to improve the Rydberg maser detectors,
several modifications of the experiment described in
this paper appear to be called for. %e have already
mentioned the necessary reduction of the back-
ground temperature to about 5 K. Another im-
provement would be to replace the pulsed excitation
by a cw laser pumping scheme. A small electric
field acting periodically on the atoms would allow
us to interrupt the continuous maser emission at a
high repetition rate and to monitor how the oscilla-
tion is restored when this field is switched off. Re-
petition rates of 1 MHz are possible, i.e., an im-
provement of a factor 10 over the presently pulsed
system. Changes in the transient behavior of these
high repetition rate relaxing maser systems would
allow us to measure with a much higher duty cycle
small amounts of cw millimeter-wave triggering ra-
diation, thus further increasing by time averaging
the ultimate sensitivity of the system.
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