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%e discuss the theory of photoexcitation of an autoionizing resonance. %e solve a set of
coupled stochastic integrodifferential equations which are based on the Fano model for au-

toionization, but which include the effects of weak elastic collisions, weak or strong laser ex-

citation, and finite laser bandwidth. We determine the exact photoelectron spectrum and

give formulas for spectral peak positions and widths. Redistributive scattering is evident, as

are various effects normally associated only with transitions between discrete levels. Under

certain conditions symmetries and fixed points of the electron spectrum can be predicted.

I. INTRODUCTION

Certain phenomena that are common in bound-
bound radiative transitions are typically not ob-
served at all in bound-free transitions. For example,
stimulated emission is not normally considered to be
a process that accompanies photoionization. In this
paper we discuss atypical situations, in which
bound-free transitions may exhibit effects that are
unusually similar to those found in bound-bound
transitions, without requiring unusually powerful
laser excitation. All of these effects are associated
with repeated coherent continuum-to-bound elec-
tronic recombination.

%e have made a nonperturbative theoretical study
of bound-to-continuum radiative transitions in
which the continuum dectron state is an autoioniz-
ing state which is reached by near-resonant laser ex-
citation from a lower discrete state. We have ex-
tended the Fano atomic model' of autoionization
(see Fig. 1) and have included effects of "transverse"
or off-diagonal relaxation. In this paper we concen-
trate on the details of the photoelectron spectrum,
and describe the results of the interference of the
transition between discrete states

~
0} and

~
1}with

the transition between
~

0 } and the continuum. Bal-
ance between the coupling strengths associated with
these transitions defines a threshold for the onset of
significant changes in the photoelectron line shape.
In some situations this threshold is rather low, and
it can be altered significantly by off-diagonal relaxa-
tion.

%e have already discussed, in a paper we will
designate as RE for convenience, the existence and
location of a certain "confluence" of laser-atom
coherences, when the exciting laser power is a few
times greater than the threshold just mentioned. An
earlier paper of Lambropoulos contained numerical

evidence for such a confluence in free-free transi-
tions, and Lambropoulos and Zoller have analyzed
the bound-free case using a model slightly different
from ours. Subsequently, Agarwal et al. have en-

larged the scope of these studies by including some
effects of radiative relaxation (i.e., spontaneous
emission) without giving up the nonperturbative
character of the earlier work. Other theoretical
studies that also deal with aspects of laser-induced
coherences in autoionization have been presented by
Armstrong et a/. , Belier et ah. , Coleman and
Knight, and Andryushin et ah.

In the present paper we will explain the details of
the calculations presented in RE, and expand the
scope of these studies further by considering the ef-
fect of phase relaxation on the transitions. Such
transverse or off-diagonal relaxation affects the rela-
tive phase between the atomic dipole moment and
the electric field of the incident laser. It may be
due, for example, to soft elastic collisions of the
atoms, or to laser phase fluctuations. As we show,
the effects of phase relaxation can be different from
the effects discussed by Agarwal et a/. The differ-
ences arise because radiative relaxation is a type of
lifetime relaxation, associated with a fixed ratio be-
tween diagonal and off-diagonal relaxation rates:
y~ ly~ ——2, whereas phase diffusion contributes only
off-diagonal relaxation. The greatest physical
difference between these complementary relaxation
models is that purely off-diagonal relaxation permits
redistributive scattering, 9 whereas radiative relaxa-
tion (along with other lifetime relaxation mechan-
isms) does not.

In Sec. II we discuss the model that we use for the
atom. It is a two-Lorentzian generalization of
Fano's model, and is characterized by the same
asymmetry parameter of Fano, denoted q. In Sec.
III we introduce our relaxation model and identify

Oc1983 The American Physical Society



PHOTOEXCITATION OF AN AUTOIONIZING RESONANCE IN. . .

tloncd ln RE, and ldcntlfy thc RRbi ffcqUcncy Rs

well Rs the ac Stark shifts assoriated with Autler-

Towncs linc spllttlng. IQ Scc. VI we summarize

our findings briefly. Discussion of time-dependent

cffccts, sUch Rs population tIapplng, ' and thc
consldcratlon of anothcf fclaxatlon IDodcl, Rfc de-

ferred to subsequent papers.

FIG. 1. (a) Schematic electron energy levels showing

degeneracy of discrete level
~
1) and a continuum level

~

co). The (Coulombic) interaction V, mixes
~
1) and

~
ai). Both

~
1) and (co) are connected to ~0) via the

radiative interaction V„. Crosses shorv that R number of
posslblc 1ntcractlons (radlatlvc decay, continuum-

continuum transitions, ctc.) al c artiflclally suprcsscd ln

the model. (b) Schematic energy levels of the same atom
after the Hamiltonian is partially rediagonalized to ac-
count for thc CouloIBbic mixing, follo%ing FRno (Rcf. 1).
Only continuum states

~
co), superpositions of

~
1) and

~
ro), remain above the ionization threshold. The original

~

1)- ~0) transition frequency co~a is related to the laser

frequency a)L by the offset 5 (the detuning). Spread of
frequencies Rt the end of the mL arrow indicates an unceI-

tainty due to laser bandvndth or collisions.

the Heisenberg operator equations that govern the
atom's response to the incident laser field. %C con-
nect the HclscQbcfg variables with thc notation Used

in RE. The Inethod of solution is shown in the Ap-

pendix. Section IV is devoted to the simplest exam-

ple of dlscfctc-contlnuUID cxcltatlon, 01 which thc
limit q~(x) allows the Fano profile to be replaced

by 8 Lorentzian function. Explirit analytic expres-
sions 8rc given fof thc photoclcctron spcctruID Rs 8,

func'tlon of lascf intensity (or, 1Tlorc convcnlcntly,
tfRnsltlon Rabi frequency ), lascf dctUnlng, and
off-diagonal relaxatlon rate. A complex "level-
shlft formula is obtained ln closed form ln terms
of which spcctI'81 peaks Rnd widths cRQ bc easily
determined.

Section V addresses the finite-q model. %e show

that it is still possible to give explicit analytic ex-

pfcsslons fof thc pllotoclcctfon spcctf UID, and wc
obtain the most general complex level-shift formula
ln this case. The spcctfal linc shape shows slgnl"
icant redistributive effects for large values of thc
off-diagonal lclaxatlon fate. wc ldcntlfy 8 syIDIDc-

try pfopcfty of thc spectrum, lnvolvlng thc cxchangc
of elastic and inelastic peaks. %C discuss the effect
of relaxatlon on the confluence of coherences men-

IIl Flg. 1 wc show thc atomic model %c %111 dls-

cUss. It, 18 81ID11RI' to thc 81IDplcst IDodcl adopted by
Fano in his discussion of autoionization in 1961.' It
is characterized by three matrix elements

Vci -——(0
i

V d i
1 ),

Vc(ai)=(0
i V„a ir0),

v, (~)=(l
~
v,.„, ~~),

(2.2)

H =+{)+0]++tt) + Vcoul+ VI'ad

%herc thc b8fe cncfglcs 8fc glvcn by

Following Fano, we begin by diagonalizing H&~c
=H~+0 + Vc,„~ and we denote the eigenvectors
of Hl„c by round brackets. That is,

» cl~)=~I~). (2.6)

The new eigenbasis fully accounts for the finite life-
time of state ~1} due to autoionization via the

w"ere Vmd =[—d'EL, (r)]itw~ is the radiative dipole
lntcfactlon cnclgy ln thc fotatlng-%ave approxMla"
tion, ' and Vc,„~ is any (typically Coulombic, but see
Ref. 7) configuration-mixing interaction energy that
couples the discrete state

~
1) with the continuum

~

co). Here we have used a circumflex to designate
atomic operators. The laser field EL (t) will be treat-
ed classically, and coL is the laser photon frequency.

The Hamiltonian for the model can be written
4,'with A= 1)
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FIG. 2.. 2. {a)Plots of I' {e),given in Eq. {2.10) for sevq ), or several values of the asymmet

as

. 2. , q. . ) or sev e ry parameter q showing the Fano
ea er range o q values. The line

ano zeros at

q ~ (x). Numerical enhancement via the ve sm
e ine becomes a Lorentzian curve centered at

same scale and t
a e very small exponent 0.1 is used to brin a

h

Coulombic co fnfiguration-mixing interaction.
~ ~ ~

can express the radiative energy in terms of the new

cigenbasis vectors:

V d ——I doiQ i0)(nil +H.c. , (2.7)

and the new bound-free radiative matrix element 0„
is given in terms of the old matrix element by

y ( ) iy ~()+q
e(oi) i— (2.8)

Here q is an arbitrary phase and q is the Fano asym-
metry parameter that reAects the relative strength of
radiative coupling between ~0) and ~j1)
o at between

~
0) and

~

co). As the direct
bound-free coupling becomes relatively weaker, q be-

comes lal'gcI. Finall y, e(co) is Pano's dimensionless
reduced energy

E(ai) = [ei Nip p—(ei)]/—) i,
whcrc Gpio=E —E l h0

's the discrete-discrete transi-

mill i n
tion energy, p(u) is a small energy shift h' h

'gnore, and (2y&) is the lifetime for autoioni-
zation of state

~
1) into the continuum due to Vc,„i.oil '

2yi ——2m
i Vi(oi) i'. (2 9b)

That is the, the autoionization linewidth (half-width at
half maximum) is yi. The bare density of continu-
um states has been tak t be
(ei

~

ai') =5(c0—ei'). As (2.8) and (2.9a) indicate,

ffo

1

e in e continuum arising
fom thc confliguratlon Inixing.

Foor later reference we remind ther d fc ica cr of onc of
ano s main indings. The absolute square of the

radiative matrix element
~
0 is essentially the

4

hnear weak-laser absorption cro

Vo(ro) is relatively insensitive to changes in ai. Th
the sha e

angcs ln 6). Thus

r e+q)/(e —i). We plot the square of this
factor, the "Fano profile" E(e) where

+(e)=(e+q)'/(++1), (2.10)

as a function of e for several q values in Fig. 2.
Note that each curve has a zero at a=-
peak at @=1= /q. The zero arises from complete de-
structive interference between th
charm

ween t e two ionization
c annels open to an dectron in state

~

0). Wh
hoton

'ns a e . en the
ng, p otoa sorptionp )eld ls suffiiciently strong h t b rp

ted in i . 2.
is no longer well described b hy t e cross section plot-

in ig. 2. Nevertheless, both the peak and the
zero in the Fano rp o~ile continue to have a st
inAuence on
'

A n the laser-atom interaction. Wc will re-
a s rong

turn to this point later.
It is obvious that (2.8) can be rewritten

')/4npi &—i q +i (2.11)

where we have identified the Rabi frequency' of the
interaction:

Qo=+ y4n( i+qi)Vo(oi)e's'. (2.12)

By an appropriate choice of tp, 0 is defined
n . & it is clear that Fano's model consists

of thesu e
flat

p rposition of a Lorcntzian resonanc d
background. It will be useful t od'f

Qcc an a

model sli htl
u o m 1 y thc

width.
g y by giving the Aat background a f' 't

. This can be done in several ways. The most
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convenient modification, from the standpoint of an-

alytic simplicity of the final formulas, appears to be
to turn the flat background into a very broad
Lorentzian. Thus in our model we replace {2.11)
with

&o 1 1 io
E i —g +i e I&—

This can be called a two-Lorentzian model for au-
toionization. Note that the sign of 0 has been
changed relative to that of RE, but we will take the
limit a ~ (x), ~here the difference is clearly insignif-
icant.

%C have presented in RE some of the principal
results of an analysis of the radiative phenoInena as-
sociated with the two-Lofentzian Fano-type Inodcl
described here. These include broadening and nar-
rowing and splitting of the free-photoelectron spec-
trum undcf vaf1ous conditions, and a certain conflu-
ence of bound-free coherences. These phenomena
arc related to those we discuss below, and we will re-
call them later at the appropriate places in our
Rnalys1s.

In this section we add a new feature to the two-
Lorentzian model. %C assume the existence of
atomic dipole phase diffusion in order to study the
effect of phase incoherence on autoionization. One
can say that the phase incoherence arises, for exam-
ple, because the exciting laser is not perfectly Inono-
chromatic, or because the atom is subject to random
weak elastic collisions. In any event, the incoher-
ence that we introduce in this section is off-diagonal
(or transverse, in the sense of optical resonance' ). It
has no effect on excited-state lifetimes, but causes
11nc broadening 1Q absorption. Thus 1t is phys1cally
distinct from the incoherence arising from finite
lifetimes discussed by Agarwal 8f Ql.

%C will use the Wiener-Levy description of phase
diffusion' for definiteness. If we denote by g(t) the
phase of the atomic dipole moment relative to the
laser field, then t(t(t) is a Gaussian stochastic pro-
cess, Rnd the instantaneous frequency deviation is
delta coffclatcd:

« j(t, )j(t, )))=2),~(t, -t, ) . (3.1)

Here the double angle bracket indicates an average
over the statistical ensemble, and yT is the (trans-
verse) coherence time associated with the phase dif-
fusion. It is well known that %iencr-Levy phase
diffusion is associated with Lorentzian spectral line
shapes, ' which do not describe accurately either
collisional or laser broadening very far from line
center. Thus wc must restrict our attention to cases

p(t) =
~

'p(t) ) &'8 t) ~,
and the exact state function can be written as

~
Wt)) =a(t)

~
0)+ f drop„(t)

~
~0) .

(3.6)

The pure-state amplitudes a(t) and P„(t) were used
in RE, and a similar approach based on state ampli-
tudes was followed by Lambropoulos and Zoller
Rnd by Coleman and Knight. The connections with
Eqs. (3.4) are as follows [recalling (3.5)]:

~
a(t)

~

'=&0(t),

a«(t)P„{t)=B„{t)e

g(t)p. (t)=C (t) . (3.8c)

In contrast to RE, and to Re's. 3 and 7, we can-
not here assume that our atom-laser interaction per-

where uL is not many times yT away from line
center (nominally located at ~]o——E& —Eo).

The Hamiltonian for the model, in the presence of
transverse incoherence, is the same as before except
for the following replacement in (2.7):

n O„e+'@".
In other words, we can write, in the rotating coordi-
natC ffame,

H =Eo
i
0) & 0 [ + f dto co

i
co)(to

i

+ f dc0 Q„e+'@"
i
0)(t0

i +H.c. (3.3)

Note that thc round bfackct states, which 1ncludc
the original discrete excited state

~

1 ), are used here.
The Hamiltonian given in {3.3) is exact in the dipole
and rotating-wave approximations. %C will simpli-
fy some of the algebra later by choosing Eo ——0. Re-
call that, although E& —Eo is not apparent in (3.3),
it is coiitaiiied iii Q„[see (2.13) and (2.9)].

The three principal atomic variables of the pho-
toexcitation process are

Po i0)&0i, (3.4a)

B„=
i
0)(c0

i

e'+", (3.4b)

C =
/

co)(ro'
[

. (3.4c)

%c will designate quantum expectation values sim-

ply by fcmoving thc cifcumflcx. That is, fof any
opcfatof A wc have

A:—&A ):—Tr[PA ], (3.5)

where p is the atomic density operator.
Expectation values allow direct contact with the

formalism used in RE as follows. If the atomic evo-
lution can be described with pure states, then the
density operator remains a projection operator for
all time. In the Schrodinger picture one then has
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mits a pure-state description. This is because of the
"collisional" relaxation effects introduced by the
random phase P(t) T. he consideration of radiative
relaxation effects also generally prevents a pure-state
description. Nevertheless, Eqs. (3.8) guide our inter-
pretation of the dynamical variables. For example,
we note that Po(t} is the population of the ground
state, and C (I) is the probability (per unit frequen-

cy) that the electron has energy m.

Thc Iclcvant equations foi thc dynamical vari-

ables are easily found in the Heisenberg picture, us-

ing obvious elementary commutators. For exam-

ples, we have

llo&&ol, fo&&~II= lo&&~l, (3.9a}

+ifl+„. (3.10c)

Notice that C „ is not subject to the relaxation pro-
cess P directly. This is obvious in the case of laser
phase diffusion. It is also true in the case of col-
lisional dephasing when collisions act to shift all
continuum levels equally, which we assume.

Equations (3.10a)—(3.10c) are stochastic integro-
differential equations. They are exactly solvable
under the conditions of our model. The solutions
have two complementary aspects, temporal and
spectral. We will deal here with the spectral aspects,
and describe the predicted spectrum of electrons in
the state

l
co). The relevant solutions are obtained

by a method explained in the Appendix. Sections IV
and V deal with the results appropriate to sym-
metric (q~ 0o) and asymmetric (finite-q) Lorcntzian
models, respectively.

Heisenberg's equation of motion Q/r)t=[ ~ leads
to the following dynamical equations, which must
be solved:

BPo/Bt= i f d—ro 0+ +H.c. ,

BB„/Br= i (co —
gaol

—g)B i 0—J'o—
+l f dN Q~ C~~

BC„ /Bt =i (ro co')C— i fl+~—„

values of q.
Ii might be thought that the one-Lorentzian

model offers little of interest. ' lt is easy to verify
that formula (4.1) is identical to 1/m times the pho-
ton absorption rate of a two-level system with tran-
sition frequency co&0 and upper-state lifetime (2y&)
exposed to incident photons with energy ~ and Rabi
frequency 00. However, the Lorentzian form of
(4.1) is not enough to make this the same problem as
absorption by a lifetime-broadened two-leVel atom.
We note that, in a certain sense, the one-Lorentzian
continuum model has no broadening at all. That is,
each state

l
ro) is an exact eigenstate of

Ho+H&+H +Vc,„& with zero decay rate. The
parameter y& has a structural, but not a dynamic sig-
nificance in the

l
co) basis.

The analogy with a simple two-level system is in
some respects misleading. The one-Lorentzian con-
tinuum problem has three independent energies: the
0-1 transition energy m&0, the incident photon energy
eL, and the photoelectron energy u. In this respect
the photoionization process considered here is closer
to the more complex two-photon process of stimu-
lated Raman scattering. ' The latter analogy has
been noted by Knight' in the case of a nonresonant
infinitely broad continuum. The connection with
double —optical-resonance phenomena in general was
made by Lambropoulos and Zoller3 and by An-
dryushin et al.

In this section we use the one-Lorentzian continu-
um to explain the features of autoionization that do
not depend on Fano-type interferences. %e do this
by focusing our attention on the long-time probabili-
ty that an electron is in state

l
ro). We will call this

quantity the photoelectron spectrum 8'(~);

8'(ar)= lim C„„(t).
f—+ oo

Our model allows 8'(co) to be computed directly
and completely analytically, in a form that, in many
respects, can be interpreted by inspection. The
method is given in the Appendix. The result is

~'(y, ~./X)+~(X~~T+~. /4)
m8 (u)=— 2

~aa-~) —y,y.—flo/41 +(fr ~).)

IV. PHOTOELECTRON SPECTRUM,
ONE-LORENTZIAN CONTINUUM

00 yi/m

4 (~o —io) +'8 (4.1)

In Sec. V we examine the same problem for finite

We first discuss the one-Lorentzian case, in effect
taking the limit q~ao while holding 00 fixed, so
that

where 5 is the "inelasticity" of the ionized electrons
of frequency co,

5=6)—NL (4.4a}

and 6 is the usual detuning of the laser from the ab-
sorption line,

(4.4b)

and y is the sum of linewidths,
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peak, with width w and h
'

h;„,1 an eight h incl ~'Vl+fT .

XT —o and yT @0 W
' ' ' possible for

separately.
We consider the two cases

ess imit of (4.2
'

f ( ~ee so the analysis in RE in the

(4.9a)~ inel 71

and

hinel ~0/ V1~ +( inel)
2

The inelastic
' ' '

roapeak is lifetime broad, '
eg i-

f }1

3(a) where we h d
o t ese features are shown in F'

extra factor of 0'
ave drawn lo

g.

hei h, Po 0 normalizes th

p
e insignificance of

F h 1 fQ
P

o 0 chosen, the
is 1000 times nnarrower than th

e elastic peak width
he plotting grid and

(4.9b)

0
m 8'(co) =y,=?'i

~
~+(5)~ (5)i' (4.5a)

~ I ~ I

CITAT AN AUTOIONIZING R SONANCE IN

with W + denoting complex Lorex orentzian functions

1
1

5——,(b+A+iyl)
(4.5b)

A=A +iB, (4.6a)

where A can be inte rinterpreted as a compl 1ex evel shift

(a)

3 -2

-4-

' -6-
0

C3
O

-8

4

0.

6=5
y =0

q =CO

A +iB=+i8 =[(6+i?'i) +Qo]'~ (4.6b)

(4.7b)

and

ia.i =?'1&0~4(~'+? i ) (4.8a)

(4.8b)h, l
——{W,l)

and thu s the elastic peak
'

wit
ypea is purel

ey unit area. Foror t e inelastic

The structure of AT o +iB indicates that our

y as t e Rabi

In the limit of a weak excitinIn t e ea exciting field the two f

elastic" spectr

'on as "elastic" and "'-

f
'"'""""'""

irst contribution depen-

~~02/2

~'+? i

(4.7a)

ylQ0/2—Vl g2~$
and so the twtwo factors in (4.5) igive rise to spectral

L

The weak-field widths and h
'

s and heights of the te wo

wi t wel and

i
Q, a I ~ I a I ~ I s I ~ I

-2 0 2 4 6

~ \ ~ V T ~ I ~

(b)

20-
3

CI4 0
i Q

no
0.4 0.2 0. i

y ~ 1 $ I

y =0

q =co

0.05

0-io' -2-iQ -iO' -iO' -10

FIG. 3. (a) Plots of ' eo s of Qp/4 times the c ron

ine astic

p
e auto-ionization li

ues are in
ion inewidth y1. That is,

t rouh
=r o low th'

ela
ghout the paper. (b) A greatl

this convention

astic peaks of the s
y expanded view of the

e spectra shown in

tark shifts are in

in (a). Peak heights

(4.8b) a
are in agreement with

, a ter account is tak
' ' '

on
axis h 1' 1'

a enofthelo ' ' ' ona
ication of the spectrum by 0 /4
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the true peaks are skipped. These are shown in Fig.
3(b) on a greatly expanded frequency scale, which
has enough resolution to show the small peak shift
(the so-called ac Stark shift) given in Eq. (4.7a) as
well.

In the case of higher laser power the dependence
of various spectral features on Qo is less simple than
what is shown in Figs. 3(a) and 3(b). No scaling re-
lations allow Qo to be removed from 8'(m) corn-

pletely, and the intrinsic spectral shape changes with

Qo. This is shown in Fig. 4 where Qo varies over
four orders of magnitude altogether. Both detuning
5 and inelasticity 5 are scaled to Qo/2, and the spec-
trum itself is scaled as in Figs. 3(a) and (3b).
Nevertheless, the character of the spectrum changes
dramatically. It is no longer accurate to identify the
two peaks with e18stic and iIielastic scattering pro-
cesses. One notes that the positions of the peaks
shift as a function of Qo. Even on the scaled axis,

1

where x =(u —
co& )/( —,Qo), the peaks shift from

their urely elastic and inelastic positions 0 and 2 to
2 and 1+&2.

In Fig. 5 the progressive splitting is shown against
aI1 uilscaled axis. The weak-field curve shows a

familiar strong preference for elastic scattering. Its
peak at m=mI is approximately three orders of
magnitude higher than the peak at co —coL ——b, (i.e.,

at co=ui). However, an increase of Qo from Qo ——1

to 8 (we will consistently quote numerical values in
units of the autoionization width yi) is sufficient to
split the spectral peaks by a factor of 4 times their
weak-field splitting, and to bring the inelastic peak
almost to parity with the elastic peak. This is noth-
ing but the appearance of the Autler-Townes ef-
fect," normally associated with radiative probes of
discrete two-level systems, in the electron spec-
trum. ' It is well known in the case of discrete-
discrete transitions that for Qog&h, y& the two
Autler-Townes peaks are spht by (Qo+5 ) and
are symmetrically located on either side of 5= + —,h.
They have a width determined by the "probe" used
to observe them. Here we see the same features,
even though the upper state is continuous, not
discrete. In this case the "probe*' is Coulombic leak-
age from

l
1 & to

l
~) here, so the widt is y, . Au

of these features are evident in Fig. 5.
Case (ii): With collisions and/or finite laser band-

width (yz&0). A pure-state analysis is no longer
possible, and the results of RE are not useful.
However, we can again factor the denominator of
the spectrum and so can still describe the results in
terms of an elastic and an inelastic peak. In this
case we find

m 8'(~)= 4 Q~+ y
'2 ' 2 '2

y —BT 5+AT y+BT
2 2

+
2

Again there is a complex level shift

AT ——AT+iaaf

~ ~

(4.11a)

l

and Aq and BT are only slightly different from 1
and 8 given in (4.6):

AT+iBT j[h+i (y) ———yr)] +Qol '~ . (4.11b)

: 6-" Qo Q =~0'
Also, y is the sum of autoionizing and transverse
widths:

(Q. )
FIG. 4. Plots of Ao/4 times the electron spectrum

shogun on a scaled frequency axis: x =(ru —aI. )/( 2
Qo).

Note the fixed point at a=co~ for all values of Qo. The
height of the highest left-hand peak is 3.16.

Note that. in the definition of A~+iBT we find

yi —yT instead of yi+yT. This is an indication of
coherent transient interference in the autoionization
process by the laser signal. In the present context it
is a strong-field effect. The weak-field limit of
(4.10) is interesting because it sho~s not only that all
dependences on the difference yi —yT vanish, but
also makes clear our earlier remark about the simi-
larity of the present problem to resonance fluores-
cence and Raman scattering. In particular, one
finds, as QO~O that (4.10) predicts
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FIG. 5. Plots of the electron spectrum, showing in-

creasingly significant Autler-Townes splitting as Qo in-
creases from 1 to 8. Note the same fixed point as in Fig.
4

This is exactly the expression one obtains when the
weak-field resonance fluorescence spectrum of
Knight et al. ' is normalized to unity (and thereby
made independent of Qp, incidentally). This can be
seen most directly by comparison with Eq. (13) of
Raymer and Cooper. ' As in the "collisionless" case
discussed above, the weak-field heights and widths
of the elastic and inelastic peaks are easily obtained.
In the weak-field limit, expression (4.10) reduces to a
sum of two Lorentzian peaks if 6))y. The scatter-
ing strengths of these two peaks then satisfy a sim-
ple sum rule. If we denote by S,l and S;„,l the areas
of the separate peaks, then we can write

or
Sel —y1 ~y~ Sinel —yT ~y

S,l+S;„,l ——1 .

(4.14a)

(4.14b)

In strong contrast to the collisionless case, here the
inelastic scattering strength is significant if yT is an

appreciable fraction of yl, even for weak fields, and

may even be larger than the elastic scattering
strength. The inelastic electron peak has an origin
quite similar to that of the collisionally assisted
fluorescence studied recently by Raymer et al. , ' and
is an example of spectral redistribution in scatter-
ing. Figure 6 shows how dramatically an increase in
collisional assistance (increase in yT) can affect spec-
tral redistribution. Both the position and shape of
the spectrum are grossly changed. In contrast, re-
laxation due to finite level lifetimes, for example ra-
diative relaxation, does not give rise to spectral
redistribution.

For moderate or strong fields the spectrum can be

n W(co)~
(&'+y')

(4. 13)
[(r0 10) +rl][(~ L ) +yT]

0 -4 -2 0 2 4

FIG. 6. Plots of the electron spectrum, showing the
significance of transverse relaxation in determining spec-
tral line shape. Note the spectral symmetry for yT ——yt
(= 1.0).

completely different, and the clear distinction be-
tween elastic and inelastic effects can be lost. Exact-
ly resonant excitation (4 =0) gives a case of some in-
terest, because we then have

AT+IBT~[QO (yl ) T) (4.15)

This implies that one of AT and ST must vanish, de-
pending on the size of Qp relative to the difference

yl —yT. If BT vanishes, the spectrum has two peaks
located at

15,=+—,A, (4.16)

~w(~)= yl

(01—N1) +r1
(4.18)

and they both have half-width yl. The spectrum has
the pure Autler-Townes form if QO »

~ y, —yT ~

.
On the other hand, if AT vanishes, the spectrum

has a single peak located at 5=0, and this single
peak has two widths:

r+= —,
I
r+BT

I

. (4.17)

[In the low-power limit these widths are just y1 and

yT, as in (4.13) for 01L ——011.] Figure 7 shows the de-
tails of the transition between the one-peaked and
two-peaked forms at resonance.

According to these remarks, W(co) is unaffected,
at resonance, by the exchange of yl and yT. This is
only part of a more general symmetry in the spec-
trum. W(co) is also invariant under the double ex-
change (~l,yl)~(~L, ,yT). Thus, for example, in
Figs. 6 and 8 the curve labeled yT ——1 (numerical
values in units of yl) is completely symmetric about
5=0.5 and 2.0, respectively, namely, symmetric
about 5=6/2 in both cases.

There is a well-defined limit of W(co) for very
large yT. We find, when yT is large enough,
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0,5

G=O

y* 3

q =

shown when yT ——0; and it is not true for finite q if
Qo is properly adjusted. %e will discuss time depen-
dences in another paper. '

The nature of the spectrum for high laser power
has already been discussed for yr ——0. There are
very Ininor high-power differences when yr&0. In
the generalized high-power limit defined by

(~o+~')'"»X] Xr

O 4 8

FIG. 7. Plots of the electron spectrum, showing the
transition from one-peak {weak-field) to two-peak
{Autler- Townes) line shapes.

In other words, the electron spectrum becomes en-

tirely inelastic and completely insensitive to the de-

tails of the light line shape as long as the light band-

width is large enough. The shape of the electron
spectrum comes to reflect only the structure of the
continuum if yT»Qo, h, y&. This is shown most
clearly in Fig. 8 where both yT ——100 and y~ ——1000
are sufficiently large, and so give very similar, near-

ly Lorentzian, spectra with half-widths of 1.0.
Equation (4.18) shows plainly the normalization

adopted for the spectrum, namely,

f W(co)dao =- 1 . (4.19)

This is because our spectrum is defined in the very

long-time limit. All bound-state electrons are even-

tually ionized, with unit probability and independent

of laser power. Only the spectral distribution of
electrons is inAuenced by Qo. This is not at all true
for short times, as Lambroupoulos and Zoller have

there are spectral peaks located at 5=5+, where

5 = —,[6+(0 +b, )'~ ], (4.21)

and they have the same width, —,(y]+yT), and

height. Since the peak splitting is just (00+6 )'~

the definition of the high-power limit ensures that
the two peaks are distinct from each other. Just as
in the monochromatic case, this can be called the
pure Autler- Townes" region of power dependence.

Finally, we recall our remarks in Sec. I. The ex-
istence of Autler-Townes spectral features is evi-

dence for the repeated coherent continuum-to-
discrete electronic recombination mentioned there.
The generalized level-shift formula (4.11b) contains
the criterion for such recombination, and it is the
same as (4.20). That is, condition (4.20) guarantees
that a fraction of the electronic probability oscillates
between states ~0) and ~co). If Qo&&b, , this frac-
tion can be significant. %e emphasize the coherent
aspect of such probability oscillation (Rabi oscilla-
tion) and caution the reader that it is quite different
from inverse bremsstrahlung or other incoherent
recombination processes. Graphs of coherent
recombination versus time were shown in RE and in
Refs. 3 and 7.

V. PHOTOELECTRON SPECTRUM,
PANO-SHAPE CONTINUUM

00=8
6=4

2-
q = C)

y=0
T

O. I

3

l- I GOO

~ ~ ~ I t P ~ f I s I ~

In this section we turn our attention to the two-
Lorentzian, or extended Fano-shape, continuum.
Recent experiments have identified autoionizing
states with low values of q, in the range q=2—10,
for which the Fano asymmetry is significant. In
this section we obtain the long-time spectrum of
photoelectrons for such asymmetric cases. %e con-
tinue to use the model given in (3.3) and (2.13), for
which our equations (3.10) are exactly soluble for ar-
bitiary q.

The integral equation (A. 11) of the model, for ar-
bitrary q, has the following kernel [see (A. 12)]:

FIG. 8. Plots of the electron spectrum, showing spec-
tral redistribution as the transverse relaxation rate is in-

creased. Asymptotic Lorentzian shape is approached by
the curves for yT ——100 and 1000.

p (z)E~ =
(Z +P~—lCO)(Z +P~—ldll )

p](z)
(z +y] —l ~)(z +y] —l co")

(5.1)
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where y~—=cry[ and

00/4 2y
pi(z) = 1—

A (z, —iy)) (1+iq)(y~+y))

(5.2a)

used for 0 . The obvious strategy, therefore, is to
solve first for

D~
A~ = ding

Z +y~ —ltd
(5.3)

Qp/4
p (z)=--

A (z, —iy )

yo' ycT

yi(1+q ) (1—iq)(y —y[}

and 4 (z, co) is still defined by (A. 10) with (2.13)
I

D ~

A~= f do)
z +yi —le

and later for D . These tedious calculations lead to
an explicit expression for the electron's spectrum.

%e give first the formula for the spectrum in the
collisionless case (when it can also be derived
straightforwardly as explained in RE). The col-
lisionless spectrum (normalized to unit area) reads

~~(~)=[~a~4(~+q')ri~(~ q)][[(~ ~)(ri+r. )+qriy. l'+[(~-i) )qril'],
~here the denominator polynomial is given by

~o q yiyn
P(o),q)= 5(5—A)(y)+y )—

4 (&+q')ri

(5.4)

+ 5[(()—a)' —y, y.]—,I(6—~)[y.+(&+q')y&]+&qy&y. ]
4(1+q )yi

(5.S)

Here 5 and 5 are again given by (4.4a) and (4.4b)
and the other symbols have the following defini-
tions:

M(0)=(ap —ap) +2eqS3

+2yi(a pbp+apbp ),
~3 ~3 1 I

bo I
'+ao&o +&'o&o

z+ ——5—, [6+Lq+i (y+ wq—)],

where we have introduced

iaq ——00/4(1+q )y&

f5 8)

(S.9)

The issue of finite-q autoionization is most easily
addressed in the limit o.~~, in which case the
atom under discussion is exactly Fano's model, a
single Lorentzian and a Aat continuum. It is that
case which we will discuss further. For finite y~
our stochastic equations give the following exact ex-
pression for the spectrum of photoelectrons:

2
2yr~3 &—~+qyi

m 8'(~) =mq 1+ . (5.6)
M(0) z+z

A.gain y is the sum of autoionization width and col-
lision width, y=y[+yz-, and now I.

q
is the generali-

zation of the complex level shifts given in (4.6) and
(4.11):

I q
=M+l &

M+1& = [[6+l(y(—yz —wq)]

+4w~y~(q+i) I'~

It is easy to establish the validity of the limits:

Iq ~ Ap —+ A.
q~ ce y~-+0

(5.13a)

(5.13b}

The form of 8'(co) given in (5.6) is surprisingly
compact and does not appear to have been anticipat-
ed, even in earlier related studies' in the much
simpler limit q~ oo. The significance of (5.6) is not
just that the spectrum is basically Lorentzian, but
that the degree of interference of the Lorentzians
(which is contained in the 5 dependence of the
numerator) is simple, even in the strong-field limit.
Obviously 8'(co) has two peaks, located at

5+ ———,(6+&), (5.15)

which has a direct physical meaning as linewidth for
very large Qp, and

and these peaks will have widths given by

y+=-, (y+~q+) . (5.16)

00 =Nqyi(q + l )

bp ——iA+y+wq .
However, in contrast to (4.5) and (4.10), there is a
nontrivial 5 dependence in the numerator of (5.4)
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an d (5.6). This arises from the interference of the
two channels in the Pano model. Remarka ybl

enough, the only evidence in the shape of 8'(ru) for
this interference is a zero in the photoelectron spec-
trum at 5=6 —qy&, i.e., at co=co&o—qy&. This is
shown in Fig. 9 where we have plotted spectra for
the same q values used in Fig. 2, and the curves are
seen to have the same zeros. The curve shapes in
Fi s. 2 and 9 are different because the electron ernis-
ion spectrum is shown here and the wea - ie p o-k-field ho-sion

~ ~ ~ ~

ton absorption spectrum is shown in Fig.
Figure 10 demonstrates several additional features

of finite-q spectra. First, the absence of transverse
relaxation in Fig. 10 means that the linewidths are
smaller compared with Fig. 9. Thus the same zero
at q= — is= —2 is present in the Qo ——1 curve as it was in

Fig. 9 but is much less effective, because the spec-
trum is nearly zero at q = —2 anyhow. Neverthe-
less, the zero still causes a slight skewing of the line.
Notice that the skewing is toward the zero, and is
accompanied by a spectral peak increase. Neither o
these effects would occur if the zero simp y
depressed the photoelectron probability in its vicim-
t . % can conclude that the zero is associated witty. e can c
quantum interferences among the electron's transi-
tion amplitudes. Note that the corresponding Qo ——1

curve for q =100 is completely symmetric. This is
consistent with the results of Sec. IV, obtained in the
limit q~ ~.

The curves in Fig. 10 corresponding to Qo ——3
show a much greater difference from each other.
The q =100 spectrum exhibits a normal symmetric
Autler-Townes shape, familiar from Sec. IV. How-
ever, the q =2 spectrum is very sharply affected be-
cause one of the Autler-Townes peaks is very close
to the zero. (Notice that the farther peak is also
strongly affected, showing the internal coherence of
the Autler-Townes effect. ) The most extreme mani-

'f 0 'r 0 't r 'I r

lO-

=2

FIG. 10. Plots of the electron spectrum for high- and
low-q values and for one-peak {weak-field) and two-peak
(Autler-Townes) line shapes. Effect of the zero for q =2
is evident in both line shapes. Height of the narrowest

peak is 12.8.

f t' f this alteration occurs whenever one ofesta ion o
In REthe spectral peaks falls exactly on the zero. In

we have termed this a conAuence of coherences be-
cause the existence of the zero is a coherence effect,
and the existence of an Autler-Townes doublet is
also a coherence effect." %henever such a conflu-
ence occurs, the spectral peak is infinitely high and
narrow. The lifetime of one excitation channel is
infinite, and a definite fraction of the atomic e ec-
trons is trapped in state

~

0). Coleman and Knight
have discussed trapping effects in detail, and show
that the dynamics of the trapping depends on cer-
tain complex eigenfrequencies which can be identi-
fied as iz~ given in (5.8), evaluated for yr ——0.

The exact conditions for confluence are easily de-
riv y red b requiring that the zero in the numerator of

in the(5.6) be counteracted by an identical zero in t e
denominator. This is the same as requiring

O 6 r r ~ ~ ~ ~ ~ ~ r ~ r r ' r

Qo

or

5—, [5+1.q+i(y+—wq j]= o h~qy&—(5.17)

O4I y =l
T

(5.18)+Lq ——5—2qy) —t'(y+ mq ),
which yields the following equations for the real and

imaginary parts of the square of (5.18):
3

" O2;
tvq =yl ~~q+yT s

2 (5.20)

IO

(d-(d„

FIG. 9. Plots of the electron spectrum for severa qv ral
values showing the same zeros as Fig.

' . 2.

These are obviously compatible only if yr ——0, in
which case the confluence condition can be written

0,=4y, (1+q )(y) —dL, /q) .
For q = —1 and A=y& this gives 0, =4y&, as
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predicted in RE.
It is easy to see that population trapping occurs at

the confluence. To show this, and to determine the
amount, it is sufficient to integrate 8'(co) over all
frequencies after imposing the confluence conditions

yT
——0 and mq

——yi —5/q. The result, for the total
probability of ionization is

Thus the asymptotic un-ionized fraction is

YlPo(ao)=
P)+Nq

(5.23}

3
5"

YT=0 24

FIG. 11. Plots of the electron spectrum, showing three
of the curves given in RE and in Ref. 4 to illustrate near-

confluent line shapes for yT ——0. Here the corresponding
curves for yr ——0. 1 have been added. Note that the peak
heights are suppressed, but the line shapes are unchanged.
In contrast, see Figs. 12(b) and 12(d).

which is in agreement with the corrected results of
Ref. 7 and with Beers and Armstrong. ~'

The significance of the confluence is that it is the
analog of the Fano zero in the extended model.
That is, the existence of the zero in Fano's original
model indicates that quantum interference may, for
an appropriate choice of co&o—coL, shut off the
ground state from both of its ionization channels
(direct and indirect). The confluence line narrowing
shows that, no matter what choice is made for
~~o —coI, an appropriate choice of Qo (i.e., of laser
power) leads to a conspiracy of interferences with
the same effect: The ground state cannot be com-
pletely ionized. (Obviously this conspiracy is impos-
sible if co&o—cur &qy&. We will discuss this and re-
lated points in detail elsewhere. )

It is important to observe that the presence of col-
lisional incoherence (finite yT) does not eliminate
the Fano zero in the spectrum. This is clear from
expression (S.6), and is shown in Fig. 11, where three

of the curves given in RE are reproduced for yz ——0,
and corresponding curves for yT ——0.1 are added. It
may at first be puzzling that a finite yT does not
disrupt the exact destructive interference of the
Fano calculation. However, it must be realized that
the effect of dipole phase diffusion is exactly the
same on both of the participating dipoles (both
Heisenberg operators ~0)(1~ and ~0)(co

~
) and so

they do not accumulate any ~elati Ue phase
mismatch.

On the other hand, there is an absolute effect on
dipole coherence and, as a consequence, Autler-
Townes interference is weakened. This manifests it-
self, for example, in the elimination of population
trapping when yq&0, which we will discuss else-

where. ' The Autler-Townes effect (which might be
called "virtual" spectral redistribution) is also weak-
ened by increasing yT in the sense that it gives way
to real spectral redistribution. This redistribution is
shown for strong and weak laser excitation and
high- and low-q values in Fig. 12, and is similar to
the redistribution discussed in Sec. IV.

The four graphs in Fig. 12 are designed to serve
as summaries of the principle results obtained in the
present work. These results are most clearly
displayed for finite detuning, 6=4. Two of the
graphs, Figs. 12(a) and 12(b), show our predictions
for weak-field excitation. In the absence of col-
lisional broadening they show extremely high elastic
peaks with widths much less than yi. Ho~ever,
even a moderate amount of collisional relaxation,

yT
——y&, is sufficient to alter the spectral line shape

dramatically. When y~ p y& there is nearly complete
spectral redistribution. The peak of spectral
response comes at co=co& (i,e., at 5=5) in that case,
instead of at a) =mL (i.e., at 5=0).

The other two graphs, Figs. 12(c}and 12(d), show
our predictions for strong-field excitation. There is
noticeable Autler-Townes splitting for curves with
Qp Q QT and the same kind of spectral redistribution
as in 12(a) and 12(b) occurs with AogyT. For both
strong and weak fields, the high-q curves, Pigs. 12(a)
and 12(c), show a good approximation to the spec-
tral symmetry predicted for yT ——

y~ when q~ ~. It
should be noted that this is not pure Autler-Townes
doublet symm. etry, despite the equal heights and
widths of the peaks. Finally, the low-q curves, Figs.
12(b) and 12(d), give striking evidence of the effects
of the Fano zero on the spectral shapes. As we men-
tioned, even the spectra with large yT show exact
zeros at 5=5—qy&. The shape distortions shown
are all in the nature of a pulling toward the zero,
rather than a simple suppression of probability in its
vicinity.

When 5=0 there is, of course, no real redistribu-
tion since the elastic and inelastic peaks coincide.
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FIG. 12. Plots of the electron spectrum, showing the redistributive effect of large values of yT for both large and small

q. Large q plots show evidence of the exact symmetry obtained for yT ——y& (=1.0) when q ~ 00. Weak-laser q plots have

elastic peaks that far exceed the plot boundaries: in (a) the narrowest peak height is 9800, and in (b) it is 2168. Small-q

plots show that the effects of the zero at co —coL ——4—qy& ——7 are much more pronounced for Qo ——8 because Qo is close to
the confluence value given by (5.21), Q, =[4X10(1+4/3)]' =9.7.

Nevertheless, Autler-Townes splitting (virtual redis-
tribution) may be present. In Fig. 13 we consider
such a case because it allows another comparison
with results of Agarwal et al. , shown in their curve
labeled 0=0.1 (i.e., Qo ——40.4 according to the sum-

mary of parameter translations given below) in Fig.
3 of Ref. 4. As Fig. (5.5) shows, we find less reduc-
tion in the height of the main peak for the same
amount of relaxation as they considered
(yT/y~ ——0.1). This is perhaps entirely due to the ab-
sence of diagonal relaxation in our model.

Finally, for ease of comparison with other calcu-
lations we give a table of parameter translations.
The four basic parameters of all calculations are the
asymmetry, universally denoted q, the autoioniza-
tion linewidth, the detuning of the laser from the
discrete-discrete transition frequency, 5=co&0—coL,
and some measure of laser field strength, usually
called the Rabi frequency or generalized Rabi fre-
quency. In four previous papers the expressions
used for those parameters have the following

2-

~ ~

3
I-

!y=0

O. I

Q,=/40.4-

6=0
q=lO

0 I

-4
I ~ ~ ~ ~ a I I ~

-2 0 2

((d-(d )

FIG. 13. Plots of the electron spectrum on resonance

(no redistribution), showing the effects of yT. The cross
marks the peak position achieved with radiatiue relaxation
corresponding to yT ——0.1. The unusual value of Qo al-
lows comparison with the curve labeled y'=0. 1 in Fig. 3
of Agarwal, Haan, Burnett, and Cooper in Ref. 4 (see
parameter translations given on next page).
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translations into the present notation.
Lampropoulos and Zoller (for N~O):

n=&a, n(1+& ) ~ .

Rzyzewski and Eberly:

Agarwal, Haan, Burnett, and Cooper:
a = —5/y~,

I =2@i,
y= ratio of radiative linewidth

to autoionization linewidth,
comparable to our yT/y,

&=w~/y~ ——IIO/4(1+q')y', .
Coleman and Knight:

D=h,

~
) V„~ '=~, =n,'/4(I+q')q, .

VI. SUMMARY

%e have presented the results of a theoretical
study of laser-induced autoionization. %e have used
the simplest atomic model of Fano, but have con-
sidered a more general model of the laser-atom in-

teraction. Our results are valid for strong as well as
weak fields. They also take into account the ex-
istence of weak elastic collisions or a finite laser

bandwidth, through a statistical treatment of the rel-

ative phase between the atomic dipole and the laser
field.

In this paper we have confined our attention to
the long-time photoelectron spectrum. The method
we have used allows us to find the exact solutions of
coupled stochastic integro-differential equations for
Heisenberg operators (or density-matrix elements),
not Schrodinger state amplitudes. It is also useful
for obtaining finite-time expressions for atomic level

populations, inversions, and dipole moments (also
correlation functions). These further results will be
published separately, although some aspects of them
are already apparent in the electron spectrum (Rabi
frequency, decay rate, asymptotic level populations,
etc.).

%e have shown that the spectrum, given in Eq.
(5.6}, is a surprisingly simple product of two
Lorentzian functions (with Fano's interference
preserved). %e have found the positions and widths
of the two spectral peaks in terms of a complex level

shift L&, given in closed form in (5.13) for arbitrary
field strength. By comparison with other recent
work on extensions of the Fano model to strong
fields our results show the effect of an important
type of line broadening, arising from off-diagonal
(transverse) relaxation. The effects of transverse
broadening are different from those of lifetime
broadening. They include spectral redistribution,
and our electron spectra are related in that respect to
earlier results on transverse-broadened resonance
fluorescence and Raman-scattered photon spectra.
For arbitrary field strengths our electron spectrum
contains the exact ac Stark shifts of the model, and
cannot be written as a simple convolution of atomic
and radiative line shapes.

Independent of the field strength of the inducing
laser, it is clear that the Coulomb interaction in our
(Fano's) model acts as a probe of the two-photon
coupling between the original continuum states

~
co)

and the excited discrete state
~
1). In that light, the

present model has a wide range of analogs among
three-level systems. However, three-level systems
which incorporate a continuum have not been
thoroughly studied yet. Our results indicate that the
role of the asymmetry parameter q is more impor-
tant than previously shown. For example, the new
linewidth parameter u&, defined in (5.10), is associ-
ated with field strengths that are not necessarily
large but have still not been explored.

The confluence of coherences pointed out in RE is
another element of the results given here. %e have
shown that the confluence is still present even under
the influence of phase diffusion, and have explained
why it is not disrupted by the relaxation processes in
our model. The confluence shows that quantum in-
terferences, such as give rise to Fano's zero in the
electron excitation cross section, have more flexibili-
ty than a perturbative theory allows for them. This
is apparent in Figs. 10 and 12(d) where near-
confluent scattering is highly inelastic (energy non-
conserving in finite-order perturbation theory).

Other authors have recently used similar atomic
and radiation models to describe aspects of laser-
induced autoionization. None have yet included the
effects of purely off-diagonal relaxation as we have,
although there have recently appeared calculations
that do include radiative relaxation. Apart from the
inclusion of relaxation or not, there is little differ-
ence among the models used. Some authors employ
dressed atom-photon states in calculations with
quantized fields, but no consequences of such field
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quantization have been pointed out. Similarly, some
authors include processes such as higher transitions
within the continuum, or take somewhat more care-
ful account of the ionization edge than we have
done. These are potentially important in the right
circumstances, certainly, but probably no more im-

portant than effects almost universally ignored, such
as optical pumping within additional (lower) bound
states or the finite duration of the laser pulse.

At the present it appears that the neglect of small

obvious effects, or the near similarity of models, is

appropriate in theoretical studies of laser-induced

autoionization. The results are expected to be wide-

ly applicable, and not only to atomic systems. These
calculations thus serve the purpose of identifying the
parameters that retain their significance from one
atomic species to another and from one to another
configuration of atomic energy levels. They give the
overall shapes of spectral curves, rather than specific
numerical predictions.
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APPENDIX: SOLUTION OF STOCHASTIC
INTEGRO-DIFFERENTIAL EQS. (2.4}

There is a mell-known result from the theory of
multiplicative stochastic processes that applies to a
stochastic differential equation such as

dQ/dt =[Lo+x (t)L i ]Q,
where Q is a vector function of time and Lo and L i

are (possibly noncommuting) constant matrices.
Here x (t) is a Gaussian stochastic process satisfying
the white-noise condition

((x (t, )x (t, ) » =2Pgt, —t, ),
where double brackets indicate an average over the
ensemble of realizations of the process x(t). This
result is that ((Q » exactly satisfies the nonstochas

I

Po ——1,

8~ =C~ =0 .
CO

~ 0 COCO

We will denote mith a tilde the Laplace transform of
the exact quantum-mechanical and stochastic aver-

age of one of the variables. For example,

J,(z) = f «e—"((P,(t)-», (A5)

etc. Then, in place of Eq. (3.10), we have

zPO —1=—i dN 0 „+cc,
[z+i(~ ~t. }+rt.]B.

= —iA'J' +0i f dto'II' C„

[z i(t0 —oi')]C— =i II+„iII'„B—* .

(A6a)

Equation (A6c) is used to eliminate C, and Eqs.
(A6a) and (A6b) are simply written using

D—:II+„.
We find

zJ'0 ——1 i f d—co(D D„'), —

ifl [' D'„,
Dco = dN

~(Z,N) Z+i(N —N )

/II—i Po
A (z, co)

(A8)

A (Z, N)=z+yL+i(N —NL )

+ fdc0', . (A10}
Z+E(N —N )

By combining (A9) with its complex conjugate (n«e
that complex conjugation does not affect the La-
place variable z), D„can be eliminated, and we find

tie equation

«(Q» i«=«, +13L', )((Q» .

Such an equation, having constant coefficients, is

appropriately studied in the Laplace transform
domain.

These facts are applicable to the quantum-
mechanical expectation values of Eqs.
(3.10a)—(3.10c}, given Eq. (3.1). The initial condi-

tions appropriate to a discussion of ionization are

D = dN D ti dN
A (Z, N) z+i(N —N') P (z,N) z —i (N' —N")

+i dN' . , —1 Po.4 (z,N) z+i(N —N') A ~(Z, N)
(A11)
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Equation (Al 1) is an inhomogeneous Fredholm in-

tegral equation, with kernel

K(co,to ) = dco
Z+l(Q) —M ) A (Z, QP )

1
X tt

Z —l (6) —CO )

Therefore (Al 1) can be solved analytically if a spec-
tral decomposition of K is possible. The simplest
examples occur when

I Q~
I

is either Lorentzian in
form (Sec. IV) or a sufn of Lorentzians (Sec, V). For
example, if we let q~ Oo in Q we get

I~ I'=-, ~o
(to to—to) +yt

in which case E is factorable:

E (a),u') =A ) (m)A 2(~') . (A14)

The remainder of the solution for q~ao is
straightforwardly tedious, and leads to two principal
results. First, the time-dependent probability to
remain in the ground state is found to be

I' (t)= J . U '(z)e", (A1S)
2gf

—,&o(z+2y&)(z+y, +y, )
U(z) =z+

(z+2y, )[(z+y, +yr)'+6']+ —,Qo'(z+y, +yr)

Here 5 denotes the detuning of the autoionization
resonance from the laser:

6=N]o —GAL

Second, the spectral distribution of excited electrons
can be determined from C (t). This is most easily
obtained in the steady state (steady state corre-
sponds, here, to complete ionization) at t = ~ when
only the pole at z =0 in the Laplace domain contri-

butes. From (A6c) one obtains

(z) =(t /z)[D„(z) —D„(z)] .

Thus the spectrum 8'(m) is given by

8'(co) =i[a~(0)—D~(0)] . (A19)

In Sec. V we indicate the generalizations necessary if
g ls flnlte. The expllclt form of 8 ls explored in
Secs. IV and V.
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