
PHYSICAL REVIE% A VOLUME 27, NUMBER 4 APRIL 1983

Nonlinear trave1ing-wave equiiibria for free-electron-laser applications

Barton I Rnc Rnd Ronald C. Davidson
P/asma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02D p

(Received 3 August 1982)

The class of large-amplitude traveling-wave solutions to the nonlinear Vlasov-Maxwell
equations is iiivcstigatcd in which thc wave pattern is statioIiary In 8 fr8IDc of rcfcrcncc
moving with the pondermotive phase velocity II =~/(k+k, ). Here, ~ =2m/k is the
wavelength of thc transverse helical wiggler field, and (~,k) are, xespectively, the frequency
and wave number of the saturated radiation field which is assumed to be monochromatic
and circularly polarized. The conservation of (average) density, momentum, Rnd energy are
imposed as additional exact constraint equations that connect the final (saturated) and ini-

tial states of the combined electron-beam —radiation-field —wiggler-field system. These con-

straint equations reduce the generality of the nonlinear equilibrium Bernstein-Greene-
Kruskal solutions and allow cstiIDatcs to bc made of thc saturRtcd field RIDplitudc in tcITDs

of initial properties of the beam-wiggler system. As a simple example that is analytically
tractable, we consider the case where the initial distribution I'0(y) and the saturated un-

trapped distribution F„(y') are prescribed by rectangular distribution functions centered
around axial velocity u, =m/(k+ ko), assuming a moderate field amplitude with

br ebkr——lmc k & 1 and small fractional energy spread in the beam electrons. For a tenu-

ous beam with to=kc and k=(1+or/c)yrko, where yr =(1 or'/c '—) '~2, it is found that the
saturated amplitude of the radiation field is given approximately by

10( 1 b2 )1/2 2I 2

~here b =e8 /mc2ko, ALme2 is the characteristic half-width energy spread in the labora-

tory fraIDc» Rnd coI» =4%'Elbe /Nl is thc nonrclativlstic plasIDR frequency sqURI'cd.

There have been several theoretical' and experi-
mcntsl6 investigations of the free-electron laser
(FEL) which generates coherent electromagnetic ra-
diation using an intense relativistic electron team ss
an energy source. For beam propagation through a
transverse helical wiggleI' field, there have been
many thcorctical estimates (c,g., Rcfs. l —5) of thc
gain (growth rate) during the hnear phase of insta-
bility. Few calculations, ' however, have ad-
dressed the nonlinear development and saturation of
the instability. Particularly important for FEL ap-
p11cations 18 thc development of R self-consistent
theoretical model that estimates the saturated ampli-
tude of the radiation field (and hence the overall ef-
fic1cncy of radiation gcncIat1on) in terms of proper-
ties of the electron beam and the wiggler field.

In the present article, we investigate the class of
large-amplitude traveling-wave solutions to the non-
linear Vlssov-Maxwell equations in which the wave

pattern is stationary in a frame of reference moving
with the pondermotive phase velocity [Eq. (15)]

Here, Ao ——2m/ko is the wavelength of the helical
wiggler field [Eq. (1)], and (to,k) are the frequency
Rnd wRvc QUIDbcI' of thc satuiatcd Iad1atioIl field.
That is, in the final saturated state, the electron
beam, helical wiggler field, snd radiation field sre
assumed to cocxlst 1Q R quasistcady equilibrium, Rnd
the corresponding solutions to the Vlasov-Maxwell
cquat1ons Rrc determined self-consistently (Secs.
II—IV). A very important feature of the present
analysis 18 that thc conservation of (RvcI'Rgc) density,
momentum, Rnd energy are incorporated as addi-
tional exact constraint equations that connect the fi-
nal (saturated) and initial states of the combined
electron-beam —radiation-field —wiggler-field system.
These constraint equations reduce the generality of
thc nonlinear cqmllbrium solution„and allow cst1-
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mates to be made of the saturated field amplitude
(for example) in terms of initial properties of the
beam-wiggler system.

As 8 general remark, the existence and properties
of stationary, traveling"wave solutions to thc non-
linear Vlasov-Poisson equations' ' have been exten-
sively studied for electrostatic perturbations in the
nonrelativistic regime. These solutions are referred
to as nonlinear BGK (Bernstein-Greene-Kruskal)
waves. In the relativistic, electromagnetic analysis
presented here, we will make use of many of the
techniques developed in the electrostatic case.

To briefly summanze specific assumptions, w'c

consider a tenuous relativistic electron beam propa-
gating in the z direction through a transverse helical
wiggler field with B~=const [Eq. (1}].For simplici-

ty, perpendicular spatial variations are omitted in
the analysis (B/Bx =0=B/By}, and the beam density
and current are assumed to be sufficiently low that
equilibrium electric and magnetic self-fields are
negligibly small. Moreover, consistent with the

tenuous beam approximation, space-charge pertur-
bations are neglected (Compton regime with Q=O).
%c examine the class of exact solutions to the fully
nonlinear Vlasov-Maxwell equations of the form
[Eqs. (19) and (31)]

fb(z, p, t) =nb5(P„}5(P~}F(z uzt —p, ),
where nb ——const is the density, P„and P& are the ex-
act transverse canonical momenta [Eq. (3)], and the
radiation field (MT,u, k) is prescribed by the
constant-amplitude, circularly polarized wave form
in Eq. (10).

Transforming to thc pondcrmotlvc frame vari-
ables (z',p,', t') defined in Eq. (26), it is found that
the most general stationary solution (B/Bt'=0) to
the nonlinear Vlasov equation is given by [Eq. (38)]

F((y') =F) (y') = —,FT(y')

for the trapped particles with

[1+b +br 2bTbl—cos(k'z')]'~ &y'&[I+(b„+br) ]'

and by [Eq. (40)]

F„(y')=F, (y')+F, (y')

for the untrapped particles with y'p [1+(b +br) ]'~ . Here 8'=y'tttc is the particle energy in the ponder-
motlve frame and k' bT and b are defined by k'=(k+ko)lyP bT=e5BT Imc2k and b- =eB rmc2ko
where y =(1—

uz /c ) ', c is the speed of light in vacuum, and ttt is the electron rest mass. Moreover, F
(F& ) re(er to forward (backward) moving particles in the pondermotive frame with p,

'
y 0 (p,

'
& 0). To summa-

rize, with regard to Maxwell s equations, the final nonlinear BGK equilibrium equation that relates u, k, bT,
b, Fr(y'}, and F„(y') is given by Eq. (41), supplemented by the consistency conditions (42) and (46) which in-
volve the "initial" distribution function Fo(y). As in the electrostatic BGK analysis, ' it is found from Eq. (41)
that a specification of the untrapped distribution function F„(y') is sufficient information to reconstruct in de-
tail the trapped-particle distribution function FT(y') [Eq. (48)]

y' =[I+(b.-+b.)']'"
To thc cxtcnt summarized in the previous para-

graph (corresponding to Secs. II—IVA), since m, k,
58r, and F„(y') are yet unspecified and undeter-
mined quantities, it is important to recognize the
tremendous gcncI'allty (and ambiguity) of the final
saturated BGK state and its relationship to the "ini-
tial" (t =0) state in the absence of a radiation field
(5A„=0=53&). To reduce the generality inherent in
such a standard BGK analysis, in the remainder of
Sec. IV we make use of the exact conservation rela-
tions for (average) density, momentum, and energy

I

to provide three additional constraint equations that
relate tu, k, Mr, and F„(y') to the initial distribution
function Fo(y) and the wiggler field (B,ko). The
coiiservatioii eqiiatioiis [Eqs. (5S)—(57)] oi' alternate
forms thereof [e.g., Eqs. (69), (71), and (74)] together
with Eqs. (42), (46), and (48) then form the final re-
sults of this paper and can be used to investigate the
properties of saturated FBI. states for a broad class
of initial distributions Fo(y) and final untrapped
equilibria F„(y').

As a simple example that is analytically tractable,
in Sec. V we consider the case where Fo(y) [Eq. (82)]
and F„(y') [Eq. (83)] are prescribed by rectangular
distribution functions centered around U,
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=co/(k +kp), assuming bz b « 1 and small frac-
tional energy spread in the beam electrons. For a
tenuous beam with co=kc and k=(1+v&/c)yzko, it
is found that the saturated field is given approxi-
mately by [Eq. (95)]

2
Np Up

5Bp ——

10(1+b ) c kp21/2 2 2

where

b~ =eB~/mc kp,

AL mc is the characteristic half-width energy
spread in the laboratory frame, and

~& ——4%nbe /m

is the nonrelativistic plasma frequency squared.
Moreover, making use of Eq. (48), the trapped-
particle distribution function F~(y ) is given by Eq.
(98) for the choice of untrapped distribution func-
tion F„(y') in Eq. (83). Equation (95) can be used to
estimate the efficiency g of radiation generation

[Eq. (96)] for the model choice of distribution func-

tions in Eqs. (82) and (83).
One surprising conclusion in the present analysis

is discussed at the end of Sec. IVC. When the con-
servation equations are imposed as additional con-
straints relating the BGK solutions to the initial
state, it is found that for 5Bz-&0 solutions to exist it
is necessary that the initial beam distribution func-
tion Fc(y) has some degree of energy spread. That
is, in the present analysis, an initially cold beam will
not lead to acceptable final BGK states with
5Bz&0. While at first this conclusion may seem
surprising, we hasten to point out that the present
analysis is restricted to a very narrow class of BGK
equilibria in which it is assumed a priori that the sa-
turated state corresponds to a monochromatic, cir-
cularly polarized radiation field. An alternate way
to state the conclusion is that a constant-amplitude
state in which the wave form is purely mono-
chromatic and circularly polarized is not accessible
from initial conditions with zero beam energy
spread. Of course, from a practical point of view,
the beam emittance in laboratory experiments is
small but nonetheless finite.

The organization of this paper is the following.
In Secs. II and III, we outline the basic assumptions
and equations that describe the self-consistent BGK
equilibrium solutions for a relativistic electron beam
propagating in combined helical wiggler and circu-
larly polarized monochromatic radiation fields. The
solution for the trapped-particle distribution func-
tion Fr(y') is derived in Sec. IV in terms of the un-

trapped distribution F„(y'), and the conservation
equations for average density, axial momentum, and
energy are expressed in a form useful for subsequent
applications. In Sec. V we consider a specific exam-

ple of a saturated BGK equilibrium in which the in-
itial [Eq. (82)] and final untrapped [Eq. (83)] distri-
bution functions have a simple rectangular form
that permits straightforward analytic estimates
of the trapped-particle distribution function [Eq.
(97)) and the saturated radiation-field amplitude 5Br
[Eq. (95)].

II. THEORETICAL MODEL AND ASSUMPTIONS

The present analysis assumes a relativistic elec-
tron beam with uniform cross section propagating in
the z direction. The beam density and current are
assumed to be sufficiently small that the influence
of equilibrium self-generated electric and self-
generated magnetic fields on particle trajectories
and stability behavior can be neglected, i.e.,~p ~p
E, =0=B,. Moreover, the electron beam propagates
through an equilibrium helical wiggler magnetic
field described by

B (x)= —B cos(kpz)e„+B sin(kpz)e„,

a/ax =0=a/ay,

and 8/Bz generally nonzero. It is also assumed that
the electron beam is sufficiently tenuous that the
Compton-regime approximation is valid with negli-

gibly small longitudinal fields,

5E, = —85$/Bz =0.
The transverse electromagnetic wave fields,
5Ez-(x, t) and 5Bq(x, t), can be expressed in terms of
the vector potential 5A(x, t) as

5Ez.—————5A, 5Bz.——V X5A,
c Bt

where

(2)

5A(x, t) =5A„(z,t)e„+5A&(z, t}e& .

where B„=const is the field amplitude, A,p
——2~/kp

is the wiggler amplitude, and e„and e„are unit vec-
tors in the plane perpendicular to the propagation
direction. Strictly speaking, the approximate form
of the wiggler field given in Eq. (1) is valid only near
the magnetic axis,

kp(x +y )

which is the region considered in the present
analysis.

Perturbations are considered in which the spatial
variations are one dimensional with
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In the present geometry, there are two exact single-
particle invariants in the combined wiggler and radi-
ation fields. These are the canonical momenta, P„
and Pz, transverse to the beam propagation direc-
tion, i.e.,

P =p„——~„(z}——5A„(z,t) =const,
C C

P» =p» ——A»(z) ——5A„(z,t) =const,
C C

For present purposes, we examine the class of ex-

act solutions to the fully nonlinear Vlasov equation
of the form3'4

fb(z, p, t) =nb5(P„)5(P» )F(z,p„t),
where nb ——const is the density, and P„and P„are
the exact invariants defined in Eq. (3). Frofn Eq.
(4), note that the effective transverse motion of the
beam electrons is "cold." Substituting Eq. (4) into
the Vlasov equation for fb(z,p„t) gives

A„(z)= —(8~/kQ)cos(kQz) +U.———~(.,p„t) ~I~(z,p,~t) =8
Bt Oz Bz Bpg

Ay (z) = (8~ /kQ)sin(kQz)

are the components of vector potential for the
equilibrium wiggler field in Eq. (1). In Eq. (3), —e
is the electron charge, c is the speed of light in vacu-
um, and p„=ymU„, and pz ——ymuz are the transverse
mechanical momenta.

for the evolution of I' (z,p„t). Here,

H(z,p„t)=ymc2

is the particle energy for P =0=P where y js de-
fined by

y= y(z,p„t)= 1+ + (A„+53„)+ (Ay +53@)~

Moreover, U, =OH/Bp, =p, /ym is the axial electron velocity in Eq. (4). Substituting Eq. (4) into the Maxwell
equations for 5A„(z,t) and 53~(z, t), the equations describing the fully nonlinear evolution of the vector poten-
tial perturbations can be expressed as

, 5A„=—,(A„'+5A„) f 'F A„' f— (7)
Qt Qz mc

Q2 Q2
M =—c' at' az' (A»+5A») f F A» f Fo—

where y=y(z, p„t) is defined in Eq. (6), Fo ——Fo(p, )

is the unperturbed distribution function in the ab-

sence of radiation field, 5A„=0=5A», F =F(z,p„t)
solves the nonlinear Vlasov Eq. (5), and yo is defined

by

1/2
g e

yQ= yQ(p, )=— 1+—
m c

Q

I

in obtaining Eq. (9). Equations (7) and (8) are ~~~~t

within the context of the neglect of equilibrium
self-generated field effects and the approximate ex-

pression for the helical wiggler field given in Eq. (1).
No assumption has been made that the radiation- or
wiggler-field amplitudes are small.

III. MONOCHROMATIC
TRAVELING-WAVE BGK EQUILIBRIA

Note that mme is the particle energy for
5A„=0=5A» [Eq. (6)] and that use has been made
of

(e /m c")[(A„)+(A») ]=e'B /»n c410

=const

A. Basic equations

We now specialize to the case where the trans-
verse electromagnetic fields are prescribed by the
constant-amplitude circularly polarized wave form

58T( x, t) = —Mrcos(kz —~t)e„

—
AT sin(kz —~t)e~, (10)
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where the wave magnetic field satisfies
58T ——V )(5A with

5A( x, t) =5A„(z,t)e„+5Ay(z t)ey

58T
cos(kz —cot)e„

k

58,
sin(kz —a)t)ey, (11)

where the abbreviated notation

e8~ e58T

c'ko mc'k

has been introduced in Eq. (16). For future refer-
ence, making use of p, =ymu„ it can be sho~n from
Eq. (16) that U, can be expressed in terms of y and

g = (k +kp )z tpt—

Therefore, the pondermotive force in Eq. (5) can be
expressed as

e8 58T
F,= —mc =

2
—cosg, {13)

where the axial coordinate g is defined by

g=(k+kp)z tpt—

and the wave electric field is given by

5E = —(1/c)(B/Bt)5A .

In Eqs. (10) and (11), the amplitude 58' =const, and
co and k are the wave frequency and wave number,
respectively. For 5A given by Eq. (11), it is straight-
forward to show that

(A'+52„)'+(Ap+5A, )'=8 /kp'+(58r)' jk'
—2(8 /ko)(58T/k)

X cos[(k +kp)z tot], —

{12)

as

= 1 ——(1+b„+bT 2b br—cosg), (18)

where y is defined in Eq. (16).
In the time-honored manner, having specified the

precise wave form in Eqs. (10) and (11), we now
make use of the nonlinear Vlasov-Maxwell equations
(5), (7), and (8), to determine the corresponding self-
consistent BGK equilibrium distribution

F=F((,p, ),
where the explicit dependence on z and t occurs only
through the combination

g=(k +kp)z tot =—(k +kp)(z —
vent) .

Substituting Eq. (19) into Eq. (5) gives

=(k+kp)(z —v~t) .

In Eq. (14)

{14)

(v, —vi, )
—— F(g,p, )=0,BH

z Bz Bpg

is the effective phase velocity of the pondermotive
potential, i.e., the phase velocity of the beat wave
produced by the combined wiggler and transverse
electromagnetic wave fields. Moreover, from Eqs.
(6) and (12), y can be expressed as

a ' 1/2

y= 1+ +b +br 2b brcosg-
m c

where Up
——a/(k+ko) H =ymc is defined in Eq.

(16), and use has been made of

which follows from g=(k+kp)z tot Mo—reov.er,
substituting Eqs. (11) and (19) into the Maxwell
equations (7) and (S) and rearranging terms readily
gives

~b bk' — + 2 f F(g,p, ) (A„+53„)= k —,+ 2 f Fp(p, ) A„,

b Ps bk2 — + f F(gp) (Ay+5')= k2 — + z f Fp(p) Ay,

(22)
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where

A„=—(B /ko)cos(koz),

A~ =(B /ko)sin(koz),

5A„and 5A& are defined in Eq. (11),

copb ——4mnbe /m

relative to the laboratory frame. For present pur-
poses, it is assumed that k pO and kogO. There-
fore, for a tenuous beam and m kc, it follows that
up gc. %e make the I.orentz transformation from
laboratory frame variables (z,p„t) to pondermotive
frame variables (z',p,', t'), where

z'=yp(z —upt),

is the nonrelativistic plasma frequency-squared,
y(g,p, ) is defined in Eq. (16},and yo is defined in

Eq. (9}. Given the sinusoidal dependence of Ao and
A»0 on (koz) and the sinusoidal dependence of 5A„
and 5A» on (kz —cot), it can be shown (Appendix A)
that the square-bracket coefficients in Eq. (23} must
separately be equal to zero, i.e.,

aP=c k +co»s f Fo(p, ), (24)
yo(p, )

and

pz =yp(pz —UpH/c )=ypy~ (~s Up} s

t'=yp(t —vpz/c ),

U 2/c 2)—i/2

(26}

co =c k +co»s f F(g,p, ),
y( p*)

(25}

is the axial velocity in the pondermotive frame, and
H'=y'mc is the energy, where

1/2

1+
q i +b (z') (28)

where F(g,p, ) solves the Vlasov equation (20}. In
Eq. (24), Fs(p, } is the "initial" distribution function
in the absence of radiation fields, 5A„=O=SA„, and
it is assumed that Fo(p, ) is a known (specified)
quantity with normalization

f dp, FO(p, )=1 .

Note that Eq. (24) effectively plays the role of a
"dispersion relation" relating the oscillation frequen-

cy ~ and wave number k. On the other hand, Eq.
(25) together with Eq. (20) play the role of con-
straint equations that determine the beam distribu-
tion function F(g,p, ) given that the electromagnetic
field has the circularly polarized wave form
prescribed by Eqs, (10) and (11). Analogous to the
electrostatic BGK case, ' we will find (Sec. IV) that
if the distribution of untrapped beam electrons is
specified, then Eqs. (20) and (25) can be used to cal-
culate the corresponding self-consistent distribution
of trapped beam electrons.

B. Lorentz transformation to pondermotive frame

For the purpose of investigating the nonlinear
8GK solutions to the Vlasov equation (20) and the
Maxwell equations (23)—(25), it is convenient to
transform to the pondermotive frame of reference
moving with the beat wave phase velocity

H ~ BH 8

Qp Bz Bz Qp

where BH'/Bpg =U,' =p,'/y'm, and y'=H'/mc is
defined in Eq. (28}.

It is clear that F =F(y') solves exactly the non-
linear Vlasov equation (31) in the pondermotive
frame. Indeed, the most general solution to Eq. (31)
can be expressed as

F=F) (y')6(p,' )+F((y')8( —p,
' ),

where 6(x) is the Heaviside step function

8( )
+1, x&0
0, xgO. (33)

The two functions F& and I'& correspond to the
distribution functions for electrons with positive and
negative momentum,

In Eq. (28),

b (z')=b +br —2b brcos(k'z'),

where k' is defined by

k'=(k +ko }/yp,

and b and bT are the normalized magnetic-field
amplitudes defined in Eq. (17). In primed variables,
the nonlinear Vlasov equation (20) in the pondermo-
tive frame can be expressed as
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p,
' =+mc[y'2 —1 —b (z')]'i2,

in the pondermotive frame. From Eq. (29), the
quantity b (z') oscillates (spatially) between the
maximum value

and

y'=y~y(& —&~v, /c ) .

After some straightforward algebra, it then follows
that

b'+ ——(b +br)'=

and the mlnlmQm value

b =(b —by) =

eB e 5BT
2 2mc ko mc k

A
eB e 5BT

mc 2ko mc 2k
(35)

dp,'/y'=(y /y')(l —v v, /c )dp, =dp, /y,
and Eq. (25) can be expressed as

co =c k +coII,J, [F&(y')+F&(y')],
o

(39)

Moreover, from Eqs. (28), (29), and (32), it is clear
that there are two classes of particles: entrapped par-
ticles for which

y'& (1+b', )'"—=y', ,

and the tmpped particles for which y' lies in the
range

y' (z')—:[1+b (z')]'~ &y'&(1+b+)=y+ .

(37}

When Eq. (37) is satisfied, the particle motion is
periodic in the beat wave potential. When Eq. (36)
is satisfied, the particle motion is also affected by
the beat wave potential, but the direction of motion
does not change, i.e., p,

' does not change sign. For
the trapped particles, the density of particles with
negative and positive momentum in the pondermo-
tive frame must be identical. %e therefore impose

F& (y') =F, (y')—:—,Fr(y'),

for y' (z') gy'gy'+ . (38)

For the untrapped particles with y'g(l+b2+)'~2,
however, F (y ) and F (y) can be specified in-
dependently.

With regard to Eq. (25), which relates wave fre-
quency m, wave number k, the BGK equilibrium
distribution F(y'}, and the normahzed wave ampli-
tude b~ ——eMT/mc k, we first note that the opera-
tor

c 8 /Bt —8 /Bz

is a Lorentz invariant, so that Eq. (25) remains valid
when Eqs. (7) and (g) are transformed to the ponder-
motive frame. Moreover, making use of Eq. (26), it
is found that

vg ——dz'/dt' =(v, —vp)/(1 —tv, /c )

where use has been made of y( —p,
'

) =y'(p,' ). In Eq.
(39), the quantities

~&I, =4mn~e /m
I 2 I

and nb are the plasma frequency-squared and the
beam density, respectively, in the pondermotive
frame. For the untrapped electrons, it is useful to
define the total distribution function

F„(y')=F,(y')+F (y'), «r y')y'+ .

Making use of

dp,'/y'=m c dy'/p, '

=mc dy'/[y' —1 b2(z—')]' i,
and dividing the integral into untrapped- and
trapped-particle contributions, Eq. (39) can be ex-

pressed as

d y'Fp(y')
N'=c'k'+~pbmc,

2 2 1/2r' ~&'~ [y' —1 b(z')]-
dy'F„(y')

+Op bmcI y [y2 1 b2( ~)]1/2
(

where b (z') is defined in Eq. (29), y'+ is defined in
Eq. (36), and y' (z') is defined in Eq. (37).

To summarize, Eq. (41) is the final nonlinear
BGK equilibrium equation that relates wave fre-
quency ~, wave number k, normalized wave ampli-
tude bT ——e5BT/mc k, normalized wiggler ampli-
tude b~=eB~/mc ko, and the trapped and un-
trapped electron distributions Fr(y'} and F„(y').
Equation (41) of course must be supplemented by
the constraint equation (24), which plays the role
of a dispersion equation relating m, k,
b„=eB /mc ko, and the "unperturbed" or "initial"
distribution function Eo in the absence of radiation
field, 53„=0=53~. %'e define the initial distribu-
tion function in the pondermotive frame to be
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Fo(y') =F0, (y')+F0, (y')

where Fo(y') is normalized to unity in the ponder-
motive frame, i.e.,

Fob') =(nb«b)FO[p, (p; )],
(y2 y 2)l/2 J r (P P )l/2

(46)

Making use of Eqs. (42) and (44), and eliminating
(~ —c k )/mob, the consistency condition (45) can
be expressed as

and p, is given in terms of p,
'

by Eq. (26). With this
normalization, since no beam particles are trapped
by the wiggler field in the unperturbed state, Eq.
(24) can be expressed as

y =(1+6 )'

y', =[I+(b.+b&)']'" .

(~2 —c'k')
t2 r (p I b2)l/2 (42) IV. DETERMINATION OF TRAPPED-PARTICLE

DISTRIBUTION FUNCTION

y =—(1+b')'»'

Solutions to Eqs. (41) and (42) will be examined in
detail in Sec. IV, where it is shown that a specifica-
tion of the unperturbed distribution function Fo(y)
and the untrapped-particle distribution F„(y') in the
presence of the wave field is sufficient information
to reconstruct the detailed form of the trapped-
particle distribution FT(y'). For future reference, it
is convenient to rewrite Eq. (41) in the equivalent
form

~+ dr'FT(y'}
rnc f, , 2,/2

——6[y' (z')], (43)&'-"' [y' —y"(z')1'"

where

y' (z )=[I+b'(z')]'"

= [I+br+b~ 2bTb~cos(k'z'—)]'

A. Solution to integral equation

Assuming that the untrapped distribution func-
tion F„(y ) is specified subject to the consistency
condition (46), the integral equation (43) can be in-
verted to determine the trapped-particle distribution
function FT(y') in terms of the known quantity G.
Paralleling the electrostatic case, we find'

'+ - r'
ltlCFT(y ) dy 2 2 ]/2

dy

which can be verified by direct substitution of Eq.
(47) into Eq. (43). Substituting Eq. (44) for G(y")
into Eq. (47) and interchanging the order of integra-
tion, we find that the distribution of trapped elec-
trons is given by

and 6 is defined by

(m —ck}
G [y'-(z')] =

NIb

dr'F„(r')—mc
"

(44)
r', [y' Y'(z )]

Equation (43) is an inhomogeneous integral equation
for the trapped-particle distribution Fr(y'). The
quantity G [y' (z')] is determined by specifying
F„(y') subject to the consistency condition [see Eq.
(43)]

(4S)

oo IF.(y') = f dy—"F„(y")-
(yi2 i2)

(y' 2 yi2) i/2

X i 2)]/2

where y+=[I+(b„+br) ],and F„(y") is related
to the unperturbed distribution function Fo(y) by
the consistency condition (46).

In Sec. V, we consider a specific example in which
the functional form of the untrapped distribution
F„(y") is specified and Eq. (48) is solved to deter-
mine the corresponding distribution of trapped elec-
trons FT(y') that is consistent with Eq. (48) and the
monochromatic, circularly polarized wave form as-
sumed in Eqs. (10}and (11).
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$. Conservation relations

The BGK analysis in Secs. III and IV A is "stand-
ard" in the sense that no attempt has been made to
connect the initial (unperturbed) state and the final
(saturated) BGK state. That is, the formalism con-
tains no information on the detailed time develop-
ment of the system or accessibility of the final BGK
equilibrium state. In this section, for future refer-

ence, we make use of the fact that the fully non-

linear Vlasov-Maxwell equations (5)—(7) possess
three exact global conservation relations, corre-
sponding to conservation of (average) particle densi-

ty, total axial momentum, and total energy. These
conservation relations constitute additional con-
straint equations that connect the initial unperturbed

state characterized by the distribution function
I

dz
nb f — dpgF(z, p~, t) =const;

L I„—m
(49)

total average momentum,

0
Fo(p, ) and wiggler magnetic field B (x) in Eq. (1) to
the final BGK state characterized by the distribu-
tion function in Eq. (32) and the combined equilibri-
um wiggler field and circularly polarized wave field
in Eqs. (1) and (10). These additional constraint
equations of course have the effect of further speci-

fying the details of the final state, i.e., imposing fur-
ther restrictions on co, k, 5Br, F„(y'), and Fr(y').

From the fully nonlinear Vlasov-Maxwell equa-
tions (5)—(8), it can be shown that the following
quantities are exactly conserved (independent of
time t as the system evolves): average density,

6fZ 00

dp,p,I'(s,p„t)+ (5ETXB +5ET X5BT), =const;

total average energy

f —nb f dp, [rn'c'+c2p, '+e'(A„'+5A„)'+e'(A,'+5A )']'~'F(z,p„t)

+ [(5Er) +(B„+5Br)] =const.
8vr

In Eqs. (49)—(51), 5BT——V' &5A and

5ET ———(1/c)(B/Bt)5A .

Moreover, F(z,p„t), 5A„(z,t), and 5Ar(z, t) evolve
according to Eqs. (5)—(8), and f dz/L constitutes a
spatial average over some basic periodicity length I..

For future reference, it is convenient to introduce
the wave frequency and wave number, & and k, in
the pondermotive frame, i.e.,

co =yp(co —kup ),

where yq
——(1—U~/c ) '~, and Uq

——co/(k+ko) is
the beat wave velocity. We also define the form
function o(8') that occurs in the spatial average of
the final BGK state,

2bTb~
o((9')= (1+cos8'),

[l+(b.+b. )']

~here b.=ea. /mc'k, and b, =e5a„/mc'k. After
some straightforward but tedious algebra (Appendix
8), the three conservation equations (49)—(51) can be
used to derive simple relations connecting the unper-
turbed state and the final BGK state. The algebraic
manipulation of Eqs. (49)—(51) involves transforma-
tion of the integrands to the pondermotive frame,
and spatial average over the basic periodicity wave-

length I. =k'=2m/k', where

k'=«+&0)/yp .

Making use of the normalization condition for the
unperturbed state,

dy yI'o(y)
l= f dp,'Fo(p,')=ntc fr p l bz)&It

~0(y) =+0~ (y)+~0~ (y),
we find (Appendix B) the following.

Conservation of average density:
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e~ dg rncF„(y') 2~ dg cos 0
nb n—b dy, 2, y —y'+er(8 )(y' —y'+')'r' o 2~ [ y'/y'++ [I—o(8')cos 8]'r j

Conservation of axial momentum:

ce (&&T)' uk
nbmc dyyme[FO {y)—F„(y)] n—,'me f dy'y'mc[F„(y') F„—(y')]=

Fttt

(55)

(56)

Conservation of energy:

y meFo(y) 2~ dg' ~ dy'mcF„(y'), z (58r)2 (ar2+c&k2)

In Eqs. (55)—(57), 8'=k'z',

y'y =—[1+(b +br) ]'

y =—(1+b )' '

Moreover, F„& (F„&) refers to that portion of the
untrapped distribution function with p,

' g0 (p,
' &0)

[Eq. (32)]. The quantity nb, the beam density in the
pondermotive frame, can be expressed in terms of
the laboratory frame beam density (nb) and the ini-
tial laboratory distribution function Fo(p, ) as

ni =nb f dp' Fob*(p*')]

where p, is expressed in terms of p, according to
Eq. (26).

Of course, Eqs. (55)—(57) must be supplemented
by the constraint equation (46) and Eq. (42). The
main point is the following. The three conservation
equations (55)—(57) have the effect of further speci-
fying the details of the final BGK state, i.e., irnpos-
ing additional restrictions on ~, k, 5Hz, F„(y ), and
FT(y') that self-consistently relate the final and ini-
tial states.

Fo(y)
r y(p p )1/2

and ~,T and co&~ are defined by

e 58T
kb

(62)

and

The quantities co and k can be eliminated from Eqs.
(59)—(61) to give

(he)b ———1 (9'+k2c2) ~,T

Ncoke cT

c k GJpb

and the constraint equation (42) can be expressed as

(61

where a is the dimensionless factor defined by

C. Reduction of constraint
and conservation equations

In this scctlon wc rcducc thc conscrvatlon equa-
tions (55)—(58) together with the constraint equation
(46) and the dispersion relation (42) to a single equa-
tion by eliminating the wave frequency & and wave
number k.

Denoting the left-hand side of Eq. (57) by
nbmc2(he)b and the left-hand side of Eq. (56) by
n~me(hp)b, where (Le)b and (hp)b are dimension-
less quantities, we first note that the conservation
equations for energy [Eq. (57)] and momentum [Eq.
(56)] can be expressed as

2

[(~e)b]'-[(~P)b]'=-
~2k2

%'e now introduce the renormalized untrapped
distribution function F„(y') defined by

F„(y')= F„(y) .
a

For notational simplicity the integral operator
I
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is introduced, where g—=k'z' and b—:y'/y'+. The
constraint equations (46) and (42) then become

K[iI =1. (68)

Making use of Eqs. (67) and (68), the combined con-
I

straint equation (65}can now be expressed as
4

1 e &&T 1
[(&C)b]'—[(4f)b]'= — . . . (69)

4 y+mc c4k4 '

where (he)b and (Ap)b are defined by

1
(be)b =

y+Q

'2

P—K b ——0
2

(gp)b = f dj2,
' ', Fo —f f db b[F„(by'+) F„(—by'+)],

y+a -- 'mc2y'+ 0 2~ I

and the factor (y'+a) ' is given by the particle number conservation equation [Eq. (55)]

cos 0

y mcF0(y) ~ mcF0(y)
dy dy

1T/2

=g ~ g —0 — d6I
m' o 5+(1—ocos 8)'

and a is related to the initial distribution function by Eq. (62). In Eq. (70), the quantity p is defined by

(72)

and I'o, the initial distribution function in the pondermotive frame is normalized to unity, i.e.,

ymcFo (y)
r y(P P )li2

Note that if Fo(y) is a (1 function in energy, i.e., Fo(y) =[(y —y )' /(ymc)]5(y —y), then p= 1 follows from
Eq. (72).

It is informative to explicitly substitute the particle number conservation equation (71) into the expression
for the normalized particle energy loss (he)b given by Eq. (70). After some straightforward algebraic manipu-
lation, we obtain

(&&)b =[P(K[bj )'—KIb'I] —PKI b IK
2b

o(b' 1) 2 f ~i2d—
8

cos 8
0 [b+(1—o cos 8)'i']'

.—E
2

m/'2 cos8 1 2 cos 8—p KIbjK cr f— d—8, K o—b d8- —
[b+(1 crcos 8)'i2) — b Ir b+(1—o cos 8)' 2

(74)

From Eq. (69), for physically acceptable solutions,
(he)b must be positive. By use of the Schwartz in-
equality, however, it can be shown that the expres-
sions within the large parentheses in Eq. (74) are
positive. Thus, for physically acceptable solutions
to exist, it is necessary for the first term in curly
brackets on the right-hand side of Eq. (74) to be pos-
itive. This leads to the somewhat surprising con-
clusion that the quantity P defined in Eq. (72) must
be larger than unity. That is, an initially cold beam
equilibrium will not lead to acceptable final BGK

I

states with MT+0.
Blr CXalllllllllg thC CXpfCssloll for p II1 Eq. (72), lt

is clear that P will exceed unity for initial distribu-
tion functions with sufficiently broad energy spread
hyo. Moreover, it is observed experimentally that
the energy spread hyf in the final distribution func-
tion exceeds that in the initial distribution function.
In Sec. V, we will consider a model distribution
function with finite initial energy width and ob-
tain an estimate for the amplitude 58T of the sa-
turated radiation field.
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D. General properties
of trapped-particle BGK solutions

In this subsection, we discuss the general proper-
ties of the trapped-particle BGK solutions given in
Eq. (48) and consider a specific example in which a
shifted Gaussian is chosen for the untrapped-

particle distribution function. In Eq. (48), the
trapped-particle distribution function FT(y ) is ex-

pressed in terms of an integral over the untrapped
distribution function E„(y ). In analyzing the prop-
erties of ET(y'), it is convenient to change variables

of integration in Eq. (48). Defining

(y~2 y 2)1/2

~~2)1/2

Eq. (48) can be expressed as

y' dx'F„[y'+[1+(a'x')i]'~ j
Fr(y') =-

& y' o [1+(a'x')']'~ (1+x')

Since the integrand in Eq. (76) is positive definite,
bounded, and vanishes as x'~ 00, we conclude that
the trapped distribution function is also positive and
bounded for untrapped distribution functions which

are normalizable. At the boundary between the

trapped and untrapped particles, the trapped distri-
bution function FT(y') joins continuously to the un-

trapped distribution function F„(y'). This follows
directly by setting y'=y'+ and a'=0 in Eq. (76),
which yields

FT(y'+) =+„(y'+) .

If we differentiate Eq. (48) with respect to y', in-

tegrate by parts, and simplify the integrand, we ob-

tain an expression for the derivative of FT(y') in

terms of an integral over the derivative of the
untrapped-particle distribution function, i.e.,

z
dp(y", y')'—" ~ r', dy" (y"—y')

If dF„(y")/dy" is everywhere negative and bounded, the integral is finite, but the factor —(y'+ —y'2) '~ will

force the derivative of FT(y') to be positive and infinite as y'~y'+. Thus the derivative of Fz (y') is not neces-

sarily continuous with the derivative of F„(y') at the boundary between trapped and untrapped particles. Of
course, the continuity of the derivative of the distribution function across this boundary could be imposed as

an additional constraint on the functional form of the untrapped distribution function.
As a concrete example, we consider the case ~here the untrapped distribution function is a shifted Gaussian,

F;(y') =~ exp[ —l(y' —1+')'"—y;]'«+] .

Here, F+(y') [F„(y')] is the untrapped distribution function for positive (negative) velocities in the pondermo-

tive frame, and y, and y, are the respective shifts for the two distribution functions. The constant A is deter-

mined by the consistency condition (46) in terms of the initial distribution function Eo(y). Substituting Eq.
(79) into Eq. (76) gives

[exp[ —(a'x' —P,+) /b, +]+exp[ —(a'x' —y, ) /5 ]]
FT (y') =, — dx'

y+ [1+('x )2]'"(1+x')

where u':—[1—(y'/y+) ]', p, =y, /y'+, and 6+=6+/y'+. (Here, 3 =1 for convenience. ) The numerical
evaluation of the integral in Eq. (80) is straightforward except in the boundary region as y ~y'+, where the ex-
ponential decays on a length scale of order 5/a' &&1, and where the factor (1+x' )

' decays on a length scale
of order 1. By exploiting these separate length scales we can, however, obtain an asymptotic expression for the
integral in Eq. (80). It can be shown that the functional form for the trapped distribution function Fr(y ) near
the boundary of the trapped and untrapped particles (y'=y+) is given by

pT(y' —+@+) const —— 2 2 + 2 0 lnQ +const+02 y yS yS g p g (81)
m' y'+

For purpose of illustration, the shape of distribution function is shown in Fig. 1 assuming that P, =0.1 and

b+ ——0.05.
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where bT e5——8T/mc k and b = e8~/mc'k o [Eq.
(53)].

We fii st impose the particle conservation coIl-
straint [Eq. (71)] in order to determine a relation be-

tween the characteristic energy widths of the initial
and final distribution functions. To lowest order in

&, Eq. (71) gives

FIG. 1. Numerical plot of trapped- [Eq. (80)] and

untrapped-particle [Eq. (79)] distribution functions

for p,
'

&0, j), =P, =0.1, 5+ ——8, =0.05, br =0 01, .
b~=1.0, and y;„/y+=[1+(b„br) ]—'~ ly+=0.99.

V. EXAMPLE OF SATURATED
BGK EQUILIBRIUM STATE

A. Constraint equations
for a model distribution function

& 1=EjbI — E—
2 b+1

where b =y'/y'+, and u is defined in Eq. (62). Sub-
stituting Eq. (82) into Eq. (62) and Eq. (83) into the
operator expression (67) for E, and assuming that
Ao, h'gal, we evaluate the integrals in Eq. (84) to
first ordeI' in 6O and 6 . This gives the approximate
result

In order to illustrate the nature of the constraints
imposed by the conservation equations, we consider
a simple model for the initial distribution function
and the final untrapped distribution function. As an
example, the initial distribution function in the pon-
derrnotive frame is assumed to be given by

F'(y')=~[89; )8(f ~+y. r')-
+8(—p,

' )8(~,+y —y')], (82)

~o1+—
p+, i

3 FN

1=1+—
3 . y+

or to lowest order in bT,

&0 g 3 brb

ys, y'+ 2 [1+(b +br) ]

——,&, (85)

where y~ =(1+b~)'», and an energy skew propor-
tional to h~ —A,L =—5 is allowed in Eq. (82). More-
oveI', the constant A is determined from the normali"
zation condition in Eq. (73). For simplicity, it is as-
sumed that the skew is small with

(a } InitlaI State

5&((ha+51 )/2=dc . yw+ ~L

P &Q=I

yw+~R
I=P2&Q

Similarly, it is assumed that the renormalized un-
trapped distribution function in the final BGK state
is given by

( b) So t ur() ted State

Fu~(y ) Fu&(y )
1

F„(y')=88(r3,'+y'+ y')[8(p,' )+8(——p,
' )], (83)

where

y'+ =[I+(b +br)']'"
the quantity F„(y') is taken to be symmetric about

p,
' =0 in the pondermotive frame, and the constant

8 is determined by imposing the consistency condi-
tion in Eq. (68). Finally, it is assumed that the am-
plitude of the radiation field is small, specifically,

I
I
I

+
P&«Q =I

+
I= PZ. 'Q

FIG. 2, Schematics of (a) initial distribution function
[Eq. (82)], and (h) final saturated state [Eqs. (83) and (97)],
for the model BGK equilibrium discussed in Sec. V.
Here, y ={I+b )'~, y+ ——[1+(b +br) ]'~, and
y;„=[1+(b br)~]' where—b &0 and br&0 are as-
sumed.
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and

y'+ =[I+(bT+b-)']'"

&=2bTb„/[I+(b +br) ].

Substituting the explicit expressions for Fp(y) and
F„(y') into the integral operators K and Ep, expand-

ing in powers of ho and 5', and neglecting terms
proportional to 5 yields the approximate result

%e now make use of Eq. (74) to evaluate (he)b,
which is proportional to the energy lost by the parti-
cles to the radiation field. The first term in Eq. (70)
can be rewritten using the definition of P [Eq. (72)],
the normalization condition on Fo(y) [Eq. (73)] and

the definition of the integral operator K in Eq. (67).
This gives

4 ~o

45 y y'

~o
+

yUJ y+

(89)

PK[b j K[b j-
Kojb j(KIbj) —K[b j(Ko[bj)

(Ko[b j)
Making use of Eq. (86), it follows that Eq. (89) can
be expressed as

where

t

Ko[A(b)j= f, db

P(K[bj) —K[b j=

brbx, . (90)
[1+(b~+b )']

—1

~ dbF()(byp)
X

(g2 1)1/2
(88) The largest remaining term in Eq. (74) is the final

term, which can be approximated by

('— )

[b+(1—o cos 8)' ] 'Y+

The second term in large parentheses in Eq. (74) is
proportional to &6' and the third term in large
parentheses is proportional to & h. %e therefore
neglect these terms to lowest order. Combining Eq.
(90) and Eq. (91) then gives the approxiinate result

bTb

y [1+(b +br)']

where

y. =(1+b.')'",
bT ——e 58T/mc k,

and 6~ =e8~/mc kp.
An alternate expression can be obtained for (b,e)~

directly from Eqs. (57) and (59) assuming that

o) =yp(a) —ku~ )

are known quantities. Equation (59) can be ex-
pressed in the equivalent form

(~2+ 2k')
(~e)b = (93)

2ay+ kmc

where

y'+ [1+(b ——+b~)']'",

cop ——4mnbe /m,
2/ 2)—1/2

and a is defined in Eq. (62). In the limit of a tenu-

ous beam, we now approximate ~=kc so that

co =yz(1 —
Uz /c)kc

Combining Eqs. (92) and (93) then gives
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o cop k
5BT—— ~ B~,

y c'k2 ko

which reduces to

58r= » y~(1+u~/c)'&, (94)
10y y~c'ko k

where y =(1+6 )
'~~ and use has been made of

P=y~(1 u~/c)—k

=k /[y~(1+up/c) ]

and y =(1—u~/c~) '~2. In the tenuous beam limit,
if we further assume that the simultaneous reso-

nance conditions

~—kVb ——ko Vb

to supply momentum to the radiation field is much
smaller than ho or 5'. The skew 5 therefore does
not enter into thc energy conservation equations that
we have used to estimate the amplitude 5BT of thc
radiation field.

Keeping in mind the simple rectangular models
for the initial [Eq. (82)] and final untrapped [Eq.
(83)] distribution functions, and the assumption of a
tenuous bealn with m=kc, the expression for the
field amplitude 5BT in Eq. (95}provides a very im-
portant estimate of the saturated level of FEI. radia-
tion expressed in terms of initial beam parameters
(dkL, nb, and Vb-uz) and properties of the wig-
gler field (B~ and ko).

To conclude this section, it is of considerable
practical interest to make use of Eq. (95) to estimate
the efficiency g of conversion of beam energy to ra-
diation energy. Defining g as the ratio of average
electromagnetic field energy in the saturated state to
beam kinetic energy, we find

and u=kc are satisfied, where (&&r)' (5Er)'' +
Sm' Sw

[Fnb(y, 1)mc—']

Vb-co/(k+ko) =U

is the axial velocity of the electron beam, then the
wave number k of the radiation field is given ap-
proximately by

k =ko/(I uz/c) =y~—(1+up/c)ko .

Using this value of k in Eq. (94) then gives as the es-
timate for 5BT,

2
GPp Up

5BT——

10(1+b~)' c ko csin 22 '+

where

ALmc =(Dome )/y~

51 (1+Uz/c) co& 8~
10(1+6 )'i c ko 4m.Fnb(yz —1)mc

In Eq. (96), we have introduced a phenomenological
geometric filling factor F which is related to the ra-
tio of electron beam cross-sectional area to the effec-
tive cross-sectional area of the radiation field
(I' =Rb/E. for the simple model assumed in the
previous paragraph).

B. Characteristics of the trapped-particle equilibrium
for xnodel distribution function

It is informative to examine the characteristics of
the trapped-particle equilibrium assuming the un-
trapped distribution function given in Eq. (S3).
Making use of Eq. (4S), we obtain

is the half-width energy spread in thc laboratory
frame, ~~ =4~nbe /m is the nonrelativistic plasma
frequency-squared, and b =eB /mc2ko is the nor-
malized wiggler amplitude.

In obtaining the estimate for 5BT in Eq. (95},it is
important to note that we have chosen to specify an
approximate value for m (=kc) in the tenuous beam
limit rather than directly impose the momentum
conservation constraint in Eqs. (56) and (60).
Within the context of the assumptions that &, 4o,
b, 'gal, it can be shown from the momentum con-
servation equation that the skew 5 which is required

I

+r(y') =8—arcsin
. y'+

V

+ arcsin
. y'+

Note that

FT(y+ )=B=F„(y'+ )

y+
y'+(y'++ ~' y')—
+ y+ y

y'+(y'++ ~' y')—
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for y'=y'+. From Eq. (78), the derivative of Fr(y'+)
is given by

dFT

(y 2 y2)l/2

(y'++ ~')[(/++ ~')' —Y+ ]'"X—
[(y++~ }'-y']'"

Evidently, as y'~y+,

(
~ 2 y2)l/2 ~ y+

nonlinear equilibrium solutions, and allow estimates
to be made of the saturated field amplitude (for ex-
ample) in terms of initial properties of the beam-
wiggler system.

As a simple example that is analytically tractable,
in Sec. V we considered the case where the initial
beam distribution Fp(y) [Eq. (82)] and the final un-

trapped equilibrium F„(y') [Eq. (83)] are prescribed
by rectangular distribution functions centered
around U, =~/(k+ko), assuming brb~&&1 and
small fractional energy spread in the beam electrons.
For a tenuous beam with u=kc and

k=(1+uz lc}y~kp,

and Fr(y') has an infinite slope at the boundary be-
tween the trapped and untrapped particles. As be-
fore, we find that the derivative of the trapped-
particle distribution function is discontinuous at the
boundary for the choice of F„(y'}in Eq. (83).

VI. CONCLUSIONS

it is found that the saturated amplitude of the radia-
tion field is given approximately by [Eq. (95)]

2
Sp Up

MT —— 1+—B~,y2 )1/2 2k 2

In the present article, we have investigated the
class of large-amplitude traveling-wave solutions to
the nonlinear Vlasov-Maxwell equations in which
the wave pattern is stationary in a frame of refer-
ence moving with the pondermotive phase velocity

Uz
——co/(k+ko& .

Here, +=2nlkp is the wavelength of the helical
wiggler field and (~,k) are the frequency and wave
number of the saturated radiation field. That is, in
the final saturated state, the electron beam, helical
wiggler field, and radiation field coexist in a
quasisteady equilibrium, and the corresponding solu-
tions to the Vlasov-Maxwell equations have been
determined self-consistently (Secs. II—IV). A very
important feature of the present analysis is that the
conservation of (average) density, momentum, and
energy are incorporated as additional exact con-
straint equations that connect the final (saturated)
and initial states of the combined electron-
beam —radiation-field —wiggler-field system. These
constraint equations reduce the generality of the

where b =eB„/mc ko, EL mc is the characteristic
half-width energy spread in the laboratory frame,
and co~=4~nbe /m is the nonrelativistic plasma
frequency-squared. Moreover, making use of Eq.
(4S), the trapped-particle distribution function
Fr(y') is given by Eq. (97) for the choice of distribu-
tion function in Eq. (83). Equation (95) can be used
to estimate the efficiency q of radiation generation
[Eq. (96)] for the model choice of distribution func-
tlolls ill Eqs. (82) slid (83).
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APPENDIX A: DERIVATION
OF CONSTRAINT EQUATIONS (24} AND (25)

The two equations in Eq. (23) can be combined to give the single complex equation

B~
exp( —ikoz)

ko

Bm 5BT
exp( ikpz)+ —exp[i (kz cot)] =Dp-

ko k
(A1)
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where g=(k+k0)z c—ot, and D(g) and D0 are de-

fined by

Assuming that D(() is continuous, Eq. (A4) implies
that D(g)=0 [Eq. (25)]. The real part of Eq. (A3)
then gives Da ——0 [Eq. (24)].

CO

D(g) =k' — +, f F(g,p, ),
C C

(A2) APPENDIX B: EVALUATION
OI' CONSERVATION EQUATIONS
IN THE PONDERMOTIVE FRAME

CO

Da= k — —+, f F0(p, ) .
c c yo

D(g)

The real (imaginary) parts of Eq. (Al) give the x (y)
components of Eq. (23). Multiplying Eq. (A.l) by
exp(ikaz) gives

8~ 58z-
exp[i (k+k0)z a)t—

0

The three conservation equations, Eqs. (49)—(51),
are most easily evaluated in the pondermotive
frame. In this frame, the conservation of average
density can be expressed as

I
~ dz +~

"t =nb f &, f dp,
' [F„(y')+Fr(y')],

= —Do . (A4)
ko

Since D(() is real, the imaginary part of Eq. (A3)
gives

Mg
D(g) sing=0 .

k

where A, '=2m/k' is the periodicity length in the
pondermotive frame. Substituting the expression for
the trapped distribution function given by Eq. (48)
into the right-hand side of Eq. (Bl), changing vari-
ables from p,

' to y' [Eq. (28)], and interchanging the
order of integration gives

r

z' ~ mcF„(y")
)lb =)lb d

p gt y
'

(
tie t 2)]/2+ y y+

y2(y 2 ~2)1/2

t2 I 2 1/2 tt2 t2[y' y'(z-)]'"(y" y')-
1/2

y y++y'
yt/2 yt 2( t

)

The first term in the large square brackets can be rewritten with the use of the change of variables as

sin8=
yl2 y~ ( t2)z

?+—?' (z')

The second term in the large square brackets can be expressed as an integral and combined with the first term
with the use of the identity

& 2y" —y'+

where 8'=k'z', and

m'/2 1=(y" —y+ )— d8
[y" y'++y'+c—r(8')cos 8]

y",—y"(')
0.(9') —=

y+

2bgb
(1+cos8') .

[ I +(b&+b„)']
(85)

Rearranging the terms in the resulting expression gives Eq. (55).
The equation for conservation of energy can be written in the pondermotive frame as
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~g 2 ~l
x' dz y' mcF&&(y') E„+B

o g~ y (y2 1 b&)1/2 8n
+

2=nb inc
0

+J. "
dz' r+ y' mcFT(y') y' mcF„(y')' f' '~. -".)"
(E +5E') (B +5B')

8m
+

8m
(B6)

&2E/

~ r '2
1 BAo 1 85A'
c Bt' c Bt'

I aA, aaA'
c Bt' Bt' (B7)

Note that the particle and electromagnetic energies
have been redefined to have their usual form in the
pondermotive frame. The first two terms on the
right-hand side of Eq. (B6) represent the particle en-

ergy in the final saturated state. Following similar
steps as in the reduction of Eq. (B1), these terms can
be simplified and combined to give the second term
in Eq. (57).

In order to reduce the electromagnetic energy den-
sity terms, we express the electric and magnetic
fields in terms of the vector potential

A'(z', t') =Ap(z' t')+5A'(z', t')

obtained by Lorentz transforming the laboratory
vector potentials, Eq. (3) and Eq. (11),to the ponder-
motive frame using Eq. (26). For illustration, con-
sider the contribution to the energy density from the
electric field

I

The first term is associated with the wiggler electric
field energy and cancels from both sides of Eq. (B6).
The second term in Eq. (B7) reduces to

1 asA'
c rlt'

A2

(58 )
k2c2

(B8)

The sinusoidal dependences in the third term of Eq.
(B7) beat together to give a term proportional to
cosk'z' which vanishes in the subsequent average
over z'. The magnetic contribution to the total field
energy can be evaluated in a similar fashion.

The conservation of axial momentum, Eq. (56),
involves integrals over only the untrapped particle
distribution function since in the pondermotive
frame the trapped particles carry no net momentum.
The reduction of the electromagnetic momentum is
similar to the evaluation of the electromagnetic en-
ergy outlined above and leads directly to the right-
hand side of Eq. (56).
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