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Effect of laser fluctuations on squeezed states in a degenerate parametric amp1ifier
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The effect of phase and amplitude fluctuations of the pump mode on the quantum-
statistical properties of the signal mode is considered. It is shown that these fluctuations in

the laser field tend to decrease the squeezing of the signal field.

I. INTRODUCTION

(~a;)'( 4- (2)

We call a squeezed state a "squeezed coherent state"
if it is a minimum uncertainty state, i.e., in addition
to (2), we obtain

I
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A parametric amplifier is a particularly important
example of the systems that are predicted to exhibit
squeezed states. Unlike many other systems,
squeezed "coherent" states are generated in this non-

One scheme to detect gravitational waves is based
on Michelson interferometry. ' The sensitivity of
this device is limited by quantum fluctuations. It
has been proposed recently that a technique which
uses the so-called squeezed states of the radiation
field could be employed to reduce the photon-
counting fluctuation in the interferometer, thereby
increasing the sensitivity of the device.

A number of nonlinear optical systems have been
considered recently that generate squeezed states.
These include the degenerate parametric amplif-
ier, ' degenerate four-wave mixing, resonance
fluorescence, free-electron lasers, optical bistabili-
ty, Jaynes-Cummings model, and the multiphoton
absorption process. In a squeezed state, the fluc-
tuation of one variable is reduced below its symme-
trical quantum limit at the expense of the conjugate
one so that the uncertainty relation is not violated.
Specifically, let a and a be the creation and the des-
truction operators of a single-mode electromagnetic
field with [a,at]=1. Then the Hermitian amplitude
operators a

&
and a2 which are defined as

a =a &+ia2 satisfy the commutation relation
[a „a2]=i /2. The corresponding uncertainty rela-
tion is

1

dna& ha2) 4 .

A state of the field is squeezed if one of the ampli-
tudes a; (i =1,2) satisfies

linear optical device. This, however, assumes a per-
fectly coherent monochromatic pump with a stabi-
lized intensity. It is well known that this is an ideal
situation and, in practice, the laser pump has a finite
bandwidth which arises due to the phase fluctua-
tions of the field. Moreover, the amplitude fluctua-
tions of the field are also present in many situations
of interest.

Some properties of the signal mode with time-
dependent pump amplitude and phase were studied

by Raiford. ' This, however, did not include the
stochastic character of the pump field.

In this paper we discuss the effect of the phase
and the amplitude fluctuations of the laser pump in
a parametric amplified on the "squeezing" property
of the signal field. In Sec. II we describe the Hamil-
tonian in the parametric approximation and discuss
the amplitude and the phase fluctuations of the laser
field. In Sec. III we solve the Heisenberg equation
for the signal mode operators exactly in the presence
of the amplitude fluctuations in the pump mode. In
Sec. IV, we study the effect of the phase fluctuations
of the pump field on the squeezing in the signal
mode.

II. LASER FLUCTUATIONS IN A
DEGENERATE PARAMETRIC AMPLIFIER

In a degenerate parametric amplifier, a pumping
field of frequency 2' interacts with a nonlinear
medium and gives rise to a field of frequency co.
This process is described, at exact resonance and
with rotating-wave approximation, by the
(interaction-picture) Hamiltonian

[a e'4 —(ati2e '&],lk,

2
(4)

where a (a ) are the annihilation (creation) operators
for the signal field, A. is an appropriate coupling
constant, and P and P are the real amplitude and the
phase of the pump field. We have made the
parametric approximation in which the pump field
is treated classically and the pump depletion is
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APt=Et =C,
where E =XP and C is a constant. The Hamiltonian
(4) can be rewritten as

H= —[a e'~ —(a ) e '~] .
2

(6)

We then obtain the following Heisenberg equations
of motion for the signal mode:

a= —Ee a—ip

at= —Ee'&a .

(7a)

(7b)

From laser theory it is well known that, for a laser
operating far above threshold, we can write

(b ) =Ee '~= [Eo+5E(t)]e

where 5E(t) and P(t) are the random variables
representing the amplitude and the phase fluctua-
tions of the pump field, respectively. The laser
Fokker-Planck equation leads to Gaussian ampli-
tude fluctuations around the coherent part Ep and a
phase diffusion of P."

The Gaussian amplitude fluctuations are
described in good approximation by the Ornstein-
Uhlenbeck stochastic process':

(5E(t)) =0,
(5E(t)5E(t') ) =I„re (9)

where I& measures the variance of amplitude fluc-
tuations, and the bandwidth I is the laser linewidth
due to amplitude fluctuations. Due to the proper
normalization of the correlation function (9), Iz is
also the Rabi frequency of the laser amplitude noise
and in the limit of a flat spectrum, i.e., I —+ ao, we
have (5E(t)5E(t')) =2I„5(t t') which —is charac-
teristic of a Gaussian noise with diffusion I&.

The random phase of the laser field performs a
Brownian motion described by the Wiener-Levy sto-
chastic process:

(P(t) ) =0,
((()(t)P(t')) =D(t+t'

~

t t'
~

) . — (10a)

neglected. This approximation is justified in the
limits

A, t ~0,

(bat) = ——,(a +(a ) —aa —a a),2 t2 t (12b)

where the expectation value angle bracket denotes
both the quantum average with the initial vacuum
state and a stochastic average over the random vari-
ables of the driving field (P or 5E). From these for-
mulas it is clear that we need to calculate only two
expectation values, ga ) and (aa +a a ), in order
to obtain the variance of the Hermitian amplitudes
a

&
and a2 of the pumped mode.

III. AMPLITUDE FLUCTUATIONS

Let us first discuss only amplitude fluctuations.
We are going to use the Heisenberg equations of
motion (7) with /=0 and E =Eo+5E(t).

For the discussion of squeezing we need to calcu-
late only (a ) and (a a+aa ) averaged over the
random fluctuations of the Ornstein-Uhlenbeck am-
plitude 5E(t). From the Heisenberg equations of
motion we obtain a closed form of the needed equa-
tions which we shall write in the following compact
matrix form:

iI =Mop+i 5E(t)MQ, (13)

where the operator-valued vector P is given by the
definition

a (t)

P(t) = [a t(t)]'
a (t)a ~(t)+a ~(t)a (t)

(14a)

The matrices Mp and M are as follows:

Mp ——

—Ep

tions leads to a Lorentzian power spectrum of the
laser light with phase-induced bandwidth D, i.e.,

ye ittt(f) —iP(t') i —D
~
f —t'

~

Far above threshold, amplitude fluctuations and
phase fluctuations are independent and they can be
treated as separate independent stochastic processes.

If we assume that the initial state of the pumped
mode at t =0 is vacuum, we obtain the following
simplified formulas for the variances of the Hermi-
tian amplitudes a

&
and a2.

(b,ai) = —,(a +(a ) +aa +a a), (12a)

We assume that the initial phase is zero, i.e.,
P(0)=0. The derivative of this diffusion process
"without friction" is a white noise

—2Ep —2Ep 0

0 0 —1

(14b)

(P(t)P(t') ) =2D5(t t')—(10b) M= —i 0 0 —1

with diffusion D. Such a model of phase fluctua- —2 —2 0
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We note that [MD,M] =0. This important property
allows us to solve and to average the differential
operator equation (13) with a multiplicative non-
white noise 5E(t) exactly. Because Mo and M com-

mute, no time ordering is necessary in the evolution
operator for Eq. (13). We need only to use the fol-
lowing expectation value for the Gaussian stochastic
process 5E (t):

t
exp i f drM5E{r) =exp ——,

'M~ J dpi f dpi(5E(ri)5E(ri))

From this formula we obtain the following exact
equation satisfied by (g(t) ):

(l{)=[M —M f( )](g), (16)

where

In Fig. 1 we have plotted (ha i )i vs Eot for dif-
ferent values of Iq /Eo and I /Eo. It is seen that the
effect of amplitude fluctuation is to decrease the
squeezing.

IV. PHASE FLUCTUATIONS

(a (t)) = ——,e ~'"sinh(2Eot), (19)

(a (t) (at) +(at) (att)) =e t'"cosh{2Eot) . {20)

Inserting these solutions in Eqs. (12a) and (12b) we
obtain the following expressions for the variance of
the Hermitian operators QI and Qq with Gaussian
amplitude fluctuations:

4'
(hQ&) =—exp 4I&t+ (e '—1)—2Eot

I

—r~f(t)=I„t+ (e "'—1),r
and with the initial value at t =0

0
(y(0))= 0 (18)

1

The differential stochastic equation (18) with a rnul-
tiplicative noise (9) gives a nontrivial example of
only few exactly soluble models with a Ornstein-
Uhlenbeck stochastic amplitude fluctuations. We
note that our solution holds for an arbitrary correla-
tion function (5E(t)5E(t')) with the only modifica-
tion coming in the final form of the f function (17)
obtained by a double integration of the correlation
function of the stochastic process 5E(t). We are
now left with a simple 3 X 3 linear differential equa-
tion with time-dependent coefficients. This matrix
equation can be diagonalized in a straightforward
way leading to the following solutions:

Q Q+QQ

a e'~'

(Q f)2~ —ItIt

0 —2ED —2ED

Mo —— —Eo 0 0
—Eo 0 0

0 0 0
M= 01 0

0 0 —1

(23b)

0.2

In this section we discuss the influence of only
phase fluctuations on variance of Hermitian ampli-
tudes Q ~ and Qq. We shall use the Heisenberg equa-
tions of motion (12) with 5E=O and with the
Gaussian random phase P(t) given by Eq. (10a).

We first determine the expectation value of the
operator as QQ +Q Q. From the Heisenberg equa-
tions of motion we obtain the following stochastic
multiplicative equation:

P= [Mo+ig(t)M]f, (22)

with

r

z ~ 4I~ rf(aQ, ) = —„exp 4I, t+ (e- '—1)+2EoI

(21a)

0
0.5 1.0

E t
2.0

FIG. 1. (Aai) vs E0t for no noise; Iq/E0 ——0.5,
I /E0 ——0.5; Ig /E0 ——O. S, I /E0 ——1.0.
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Note that the operator Q Q+QQ is not coupled
directly to Q and (Qt) as is the case for amplitude
fluctuations. In order to calculate the stochastic ex-
pectation value of Q ~a +Q tQ we need to evaluate two
auxiliary qllalltltlcs (a e ~) RIld ((a }e ~). Thc
situation is very similar to the case of laser phase
fluctuations of a driving light coupled to a two-level
atom. ' This known and studied example shows
thai the inversion and the dipole transition operators
couple differently to the phase fluctuations of the
laser. %c shall than usc th.c same tcchniqucs as in
the case of a two-level system in order to obtain an
exact stochastic expectation value of (f) given by
Eq. (22}. For the fluctuating random phase (((I)
given by the %iener-Levy stochastic process it has
been shown that the following exact equation is sa-
tis6ed" ":

p= —,D2+4EO .

Finally, the last operator required for the squeez-
ing amplitudes is the stochastic average of (a ).
Again from the Heisenberg equations of motion
with Auctuating phase we generate a multiplicative
stochastic equation of the form given by Eq. (22)
with

Q

e '~(a a+aat}
e 2ig—(a $}2

and different forms of M, and M,

for arbitrary form of the time-independent matrices
Mo Rlld M. Tllls Illa'trlx cquatloll spcclfllcd for f,
Mo and M given by Eqs. (23a) and (23b) can be
solved exactly using, for example, the Laplace-
transform techniques. For the vacuum initial state
of the signal mode, we obtain

dz e~(z +D)
(Q Q +QQ c 2m'i z+zg) —4EO

Computing the roots of the algebraic equation in the
denominator in Eq. (25) and choosing properly the
contour of integration C we find the explicit time
evolution as follows:

(a a +aa ) = sinh(Pt)+cosh(Pt) e
D
2

0 Eo 0

2Eo 0 2Eo

0 0 0

As in the previous case the stochastic expectation
value of (t() satisfies an exact differential equation
(29} with matrices Mo and Ml given now by expres-
sions (281). With our specific initial condition, the
Laplace-transform solution has the following exact
fonTl:

dz e"Eo(z +4D)
c 2«[z +5Dz +(4D2 4EO}z —8EOD—]

The exact time dependence, accordingly, has the
form

e ' Eo(ih,;+4D)
(A,; —AI)(A, ;—}L,k)

'

f+j +k

whcrc A,; arc the loots of thc following cubic equa-
tion:

A. +5DiL +4(D2 Eo)A, 8EOD =0 . — —

0.
0 O.S 1.0

Eot

These roots can be obtained exactly using the Car- FIG. 2. (Aa)) vs EOt for D/EO ——0.0, 0.01, and 0.10.
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dano formulas. %e can, however, get a reasonable
understanding of the physics solving this cubic
equation in the realistic limit of small phase fluctua-
tions (as compared with the driving Rabi frequency,
i.e., D ggEo). In this limit,

—2D,
3

A,2 2Eo ——,D,

and accordingly

(u2) e
—&Dr

(2Eo —D2/8)

(2EO —3D/2)t (2Eo+ 5D/2)

4(2Eo+D/»
—~2E, +3Dn~t (2Eo —5D/2)

4(2Eo —D/2)
From Eqs. (26) and (33) we obtain the following for-
mulas for the variance of the Hermitian amplitudes
with laser phase fluctuations (with approximated
roots A,;):

izs, -3a/2)i (2Eo+ 5D/2) -izz, y3n/2)t (2Eo —5D/2)

2(2Eo+D/2) 2(2Eo —D/2)
(gu )2 2Dt-

(2E,' —D'/8)

e -D'"D sinh(2Eor)
+ 2,&t +e ~ cosh(2Eor}(D'+ l6E,')'"

I 2i&&
2DEO t2EO 3Di2)i (—2EO+5D/2) (2Eoy3D-it)i (2Eo 5D/2)

(ha 2)2= —— +e
2Eo —D2/8 2(2Eo+D/2) 2(2Eo

D'"D sinh(2E, t) —e ' cosh(2Eot)
(D2+ l6E2)1/2

In Fig. 2 we have plotted (ha i } versus Eot for vari-
ous values of D/Eo. The fluctuations in the ampli-
tude a& increase due to the phase fluctuation of the
laser field. The fluctuations (ha

& ) exhibit a
minimum which decreases.

Equations (34a) and (34b) simplify considerably in
the limit D gg t ' ggEo. %e then obtain

(ha)) = 4e + 4e ( —,Dt),
—2EO t $ 2Eot

(35a)

(ha2) =
4 e (1—Dt) . (35b)

It is clear from Eq. (35a) that if the pump phase is

off by p, then the large uncertainty —, exp(2Eor)
'" t"e amp»fied quadrature (&uq) is mixed into the
uncertainty of the squeezed quadrature (ba

& ) with
phase angle p; Dr is, roughly speaking, the amount
by which P random walks in time t.
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