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A series expansion of the Born propagator allows one to represent successive correcaa

tions to the impulse approximation and exhibits their relative dependence in momentum

transfer k and the Compton (target-structure) parameter q. The proposed treatment pro-

vides a physical interpretation of the observed Compton defects. It is shown here to be in

close agreement with high-energy-electron-impact spectroscopy measurements obtained

for helium atoms.

I. THEORY

Under Born assumptions, the following relationship

N

J(q k)=kf(EE, k)=k a X 5(qk q-(k Va E+E, ) a)—
@=1

has been shown' to represent the Compton profile (CP) obtained by x-ray, y-ray, and the electron-impact

experiments. The N electrons of the target system are in a given initial eigenstate
~

a ) of the Hamiltonian

K, for which K
~

a ) =E,
~
a ). k and LE, respectively, represent the momentum and the energy lost by the

incident particle and hence transferred to the target q =Klk —k/2 (in a.u.) being the well-known Comp-

ton parameter. In this expression, indirect Compton scattering effects are assumed negligible. For large

momentum transfers Eq. (l}becomes independent of k and reduces to the impulse approximation (IA)

J~(q k)=J~(q)=k (a X5(qk+ik Va) a)

a 5 q+i—V& a = a 5 q+i u V& a (2)

where u is the unit vector along the k direction. Equation (2) shows clearly that J (q) depends only on the

physical properties of the scatterer, i.e., its momentum distribution p(p }:

J (q)= fdpp(p)5(u p —q)= I I dpEdpzp(p),

where the integration is performed in a plane perpendicular to u. But it has been found that a Doppler

broadening effect of the Compton peak is not sufficient to explain the observed spectra at all momentum-

transfer values, especially the typical asymmetry found in Compton profiles. Equation (2} represents

only the leading term of a perturbation expansion in inverse powers of momentum transfers

J(q,k)= g k "K„(q) .
a=0

(4)

In such an expansion, all coefficients EC„(q) are characteristic of the target structure. For these terms, some

general properties are derived in the Appendix. A leading contribution to the Compton defect comes from
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the first antisymmetric correction A (k,q) =K&(q)/k, here corresponding to

)q, (q)= f dx(a Xexp[ix(q —D„)]U",(x) a)2H

with
x

U~](x) = i —f dx'exp(ix'D&)(K E, }—exp( ix'—D&)
0

i f—dx'[K(x') E,]-
after use of the translation operator D„=—i u V„. The transformation

x
[K(x')—E, ] ~

a ) =i f dx "exp(ix "D„)[D„,K]exp( ix "—D„)
~ a)

(5)

(6)

gives for Eq. (6}a slightly different expression:

U] (x)= f dx' f dx "exp(ix "D&)[D&,K]exp( ix "D&)—
x
dx "(x—x")exp(ix "D„)[D„,K]exp( ix "D„}.—

0

The commutator [D„,K]=[D„,V] is applied to the total potential V of the target. It includes all electric
fields due to the remaining (electrons and nuclei} particles of the scatterer and acts upon the ejected elec-

trons. Since an exact calculation of Ki(q) using Eqs. (5) and (8) is not easily possible, an approximation is

here proposed. The integral occurring in Eq. (8} is carried out with the three-paints integration method of
Simpson, after some algebra, Ki(q) exactly reduces to

(8)

1 ~ x
)q, (q)= J dx —a +exp[(x(q De)][De,U] a)—

1 d
e a +5(qkiu V„)[—(U Va, p] a)6 dq~

Such a result can be shown to give exact analytical expressions for all finite odd sum rules relative to J(q,k).
It simply assumes a "continuous" behavior of the Hamiltonian K(x) during the scattering process. For the

antisymmetric correction

1A(kq)= — a +5(qk(U V„)[—(U V„,P] a)6k dq2
(10}

explicit calculation requires generally a momentum representation for the ground-state wave function. Clo-
sure properties of plane waves (2II) ~ exp(ip r„}eigenstates of the translation operator D„= i u f„,al-—
low such a representation. Equation (10) represents a successful simplification with respect to earlier stud-
ies' '" established for hydrogenic systems, for which exact first Born calculations are available. ' ' It will
be evaluated here for the helium atom without any further approximation and compared with the effective
hydrogenic theory of Mendelsohn and Bloch' and some precise measurements' performed for several
values of momentum transfer. A similar treatment can be developed to estimate the second-order (sym-
metric) correction S(q,k) =K2(q)/k . It is found to generalize the results already established' for the
specific case of hydrogenic systems.

II. COMPTON DEFECT FOR THE HELIUM ATOM

A preliminary investigation using Eq. (10) is reported here where the simple
~

1SlS
~

determinant has
been used to represent the helium-atom ground-state wave function. In a first step, a Slater orbital (screen-
ing parameter g= —„)has been used to represent the 1S atomic orbital. Using various analytic Hartree-Fock
atomic orbitals' ' changed the results typically 10%, and hence will not be discussed here.

The A (q, k) antisymmetric correction is thus given by an analytic expression containing various contribu-
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tions. Their relative importance will be discussed. Since V represents the total potential energy of the target
atom, the commutator

[ i—u V„,V]=
ao

Z
u V"' rI'

u V„,
1

~p, PV

involves electric field contributions from the nucleus and the remaining electrons (ao ——1, Bohr radius in

a.u.). The nuclear contribution to the odd correction will be labeled Az, with Z=2 for the case of heliuin.

Its explicit calculation, with the dimensionless parameter Q =q/g, results in

—32Z arctanQ —3Q/4
3II((kao) (1+Q }

and an exact AE result now corresponds to the total potential V:

(12}

AE(Q, k) = 2, (arctanQ —3Q/4)
—32 1

3II (ka, (1+Q')'

/3) 3Q +73Q +361Q +675Q
2916[1+(Q /3 )~]

(13)

~~(Q) 16 1

311( ( 1+Q')'

In fact, this first antisymmetric correction is universely proportional to k, +ith a multiplicative function

Ki (q) given in Eq. (10}and mainly characteristic of the scattering system via its ground-state wave function

/a ).

(14)

which exhibits in its first term, the contribution A i due to a single proton (Z = 1).
This odd AE correction is represented in Fig. 1 for a number of ka 0 values together with the impulse pro-

file given here by

FIG. 1. A.ntisymmetric corrections for various momentum transfers k compared with the helium impulse profile
JIA(q)
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III. OTHER CORRECTIONS

The first even correction S(k,q) =K2(q)/k to J (q) is estimated here with the following expression:

16Z 1 11 1 1 3

311$(ka ) [1+g ] 4 4Q 4{? g

15 " 2 "n i(n —I)& Q+
8 „,(2n+1)!(2n —1)! I+Qt

established previously' for 1s hydrogenic orbitals.
Indirect Compton scattering effects' are known to contribute to the inelastic scattering factor at small

momentum transfers. Within the impulse assumptions, their calculation

p"~(q, k)= a x exp(ir r„„)5(q+iU v„) a)~v

gives explicitly, with the diinensionless variables Q =q/g and « =k/g,

16 1 1 1 21 1+Q'+6
lips' (1+//4)' 1+g' I+Q'+a ~ 1+g'

(15)

(16)

=J'" (h,a)= 16 1

11ga' (1+2/4)'
~ 2+

]c S1+
2 2K

J

1+ -"+'
2 2K

2
. 2

——ln

'2

1+ -"+'
2 2/c

'2

2 2K

(17)

FIG. 2. Rough estimate of the indirect Compton scattering effect J~(q) for various momentum transfers k, com-
pared with the helium impulse profile.
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FIG. 3. Abscissas in q =~/k —k/2 (q-Compton
parameter); A i,A2, Az. antisymmetric corrections
(respectively, for Z=1, Z=2, and exact potential V, ap-
proximately fitted by Z=1.48); $&,S2,S,: symmetric
corrections Z=1, Z=2, Z=1.48; M =AE+S, estimat-

ed "defect", + experimental results; 6, Mendelsohn's

calculation; J'"d(q) =rough estimate of indirect
Compton-scattering effects.

++1 g&
+

+ f
+

FIG. 5. See Fig. 3.

IV. THEORETICAL COMPTON DEFECT
VERSUS EXPERIMENTAL RESULTS

6=2~i( =2aQ+» .

Such a function generally satisfies

J&nd(+, K)=Jlnd( g, K

and behaves symmetrically with respect to the elas-

tic peak. As shown in Fig. 2, significant values are
found only for small momentum transfers. Physi-
cally speaking, the impulse approximation does not
represent a correct approach for the description of
indirect Compton scattering but rather gives a
rough estimate of the validity conditions for the
binary-encounter approximation.

—8 297 —8

311((kao) 729 311((kao)
(19}

and corresponds to an effective Z~= 1.407.
A better agreement is found for Z~=1.48 when

Az is used to fit Eq. (13). In fact, Fig. 3 shows
clearly both (nuclear and electronic) electric field

For kao ——7.12 a.u. all the different contributions
discussed above are shown in Fig. 3. The exact AE
calculation [Eq. (13)] may thus be compared with
A i (complete screening of the nucleus) and Ai (to-
tal unscreening, Z=2) given by Eq. (12). Ai and
A i constitute approximate upper and lower bounds
for AE. The AE slope at the origin (Q =0) is given

by

-0.04

k =10.69a.u.

FIG. 4. See Fig. 3. FIG. 6. See Fig. 3.
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FIG. 8. See Fig. 3.

FIG. 7. See Fig. 3.

effects occurring in odd Compton profile correc-

tions. The even correction has been approximated

by Eq. (15). Use of Z=2, 2= 1, and Z~= 1.48,

respectively, gives Sz, S&, and S„with correspond-

ing curves shown in Fig. 3.
Figures 4 through 7 summarize the previous cal-

culations for AE, S„and their sum M =AE+S„
given here in reference to a number of experimen-

tal results obtained for kao ——10.69, 7.12, 5.36, and

4.47, respectively. The crosses correspond to a

complete set of independent measurements' from

which an exact impulse Compton profile calculated

by Benesch' has been subtracted. An excellent

agreement is observed with Mendelsohn's theory

and all experimental results, especially for cases

where J'" is weak.
For kao ——2.25 (Fig. 8), the peak has its max-

imum near the ionization threshold and indirect

Compton scattering effects are comparable to AE

and S„hence non-negligible differences with ex-

perimental results would be expected. However,

the Compton defect remains negative, i.e., the shift
of the maximum is expected to be towards smaller

energy losses, and at low momentum transfers
there is no theoretical evidence for a positive defect
in the energy-loss spectra of helium. As a con-

clusion, refinements in the experimental measure-

ments may make it possible to obtain separately
the even and the odd contributions to the total
Compton profile, these contributions independently

being characteristic of the target structures.
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APPENDIX

In a time-dependent representation (or simply after a Fourier transform of the Dirac 5 function), Eq. (1)

can be rewritten as

k K —E~
J(q, k)= f dt a +exp itk q+iyV„,

oo K —E~f dx a +exp ix q+iu V„.
Ig

)

f dx (a gexp[ix(q+ie p„)]qqe(x, k) a).

&&
———i u. V& being the translation operator along the u direction, the unitary operator 4 &(x,k) has the fol-

lowing expressions:
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K —E,
qt„(x,k) =exp(ixD„)exp ix—D„+

k

x= 1 ——f exp(ix'D„)(K —E, )exp( ix'—D„)U„(x',k)dx'

= g P „(x,k)= g U„"(x) .
n=p n=p k

Since U~p(x)=1 and
x

U„"+i(x)= i —exp(ix'D&)(K —Ee)exp( ix'D—&)U„"(x')dx' for n &0,

all successive terms no longer depend on the momentum transfer k. Hence,

J(q,k)= g f dx(a
~
gexp[ix(q+iu V&)]U„"(x)

n=p

„Ka(q) .
p

k" (Al)

From the previous definitions, the properties

U„"{x)=(—1)"U„"(—x),

K„(q)= ( —1)"K„(—q),

(A2)

Ktt(q)=J (q)=(a +5(q+tu e„I a) .

are derived easily. Kp(q) simply represents the im-
pulse Compton profile:

The first-order correction A (k,q) Ki(q)/k is thus
found to exhibit an odd behavior, the second-order
correction S(k,q) =Ki(q)/k being an even func-
tion of the Compton parameter q.

Of course, a truncated expansion of {Al) will not
be sufficient to reproduce discrete excitations being
observed. However, the first three terms are
shown to be sufficient to reproduce exactly the
four finite sum rules for J{q,k) or, alternatively,
for the corresponding generalized oscillator
strengths. '9
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