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A solution of the scalar wave equation in a rotationally symmetric focused Gaussian am-
plifying medium is constructed from coupled Gaussian-Laguerre solutions of the free-space
wave equation and is formally exact. The solution allows for the construction of the charac-
teristic eigenmodes of the system and has direct application to Raman lasers, dye lasers, and
the free-electron laser. The eigenvalues corresponding to the eigenmodes are directly related
to mode growth rates and phase velocities. Numerical results for single- and multiple-pass
growth are evaluated and exhibit an unpredicted gain enhancement that can be related to
the phenomenon of “gain focusing” first described for uniform parabolic gain distributions.
The solution for a focused parabolic gain distribution is also presented. Output intensity
distributions are found for initial conditions corresponding to spontaneous emission and to a
specified initial field. The same method of solution can be applied to a medium with a

focused Gaussian refractive index.

I. INTRODUCTION

This paper addresses an important practical prob-
lem of coherent beam propagation in media in
which a spatially nonuniform gain coefficient (gain
function) is produced by a focused Gaussian beam.!
This situation arises in laser amplifiers that are opti-
cally pumped, such as dye lasers and Raman lasers.
It also arises in the free-electron laser, in which the
gain is obtained from a focused electron beam. We
show that for Raman lasers the output intensity dis-
tribution can be significantly different from that of
the lowest-order free-space mode, regardless of the
input field distribution. Also, the growth rate can
be higher than that calculated on the basis of uncou-
pled mode growth. In our analysis, depletion of the
gain function is not considered.

A similar problem of propagation in the presence
of a transverse quadratic gain variation was previ-
ously analyzed by Kogelnik.? Cotter, Hanna, and
Wyatt® applied Kogelnik’s quadratic solution to the
present case by replacing the Gaussian distribution
with a parabolic one. To account for the focused
gain function they used additional approximations.
Other authors have also attempted to solve this
problem.**> They found the self-growth rates for
some of the lower-order free-space modes, but did
not consider the full problem including coupled
mode effects which are necessary to properly
describe propagation in all but the lowest gain limit.
In this paper we show that if the gain function is
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proportional to the magnitude squared of a single
rotationally symmetric Gaussian-Laguerre mode of
free space and, in particular, to a focused Gaussian
distribution, a formally exact solution of the scalar
wave equation can be found.

II. FORMULATION

We begin with the scalar wave equation in the
paraxial approximation. For free space

(V2+k2)E =0; (1

where k =2mv/c is the wave number of the propaga-
ting field. ~We seek solutions of the form
E(x,y,2)=&(x,9,2)e'®™ —%) and neglect 32& com-
pared to 2k 9,&, to obtain the slowly varying en-
velope approximation to Eq. (1):

(V}-2ikd,)& =0, )

where V? =a§+a§. In the presence of a prescribed
gain function at each point in space, G(x,y,z), we
have

(V2—2ikd,)& = —ikG& . (3)

In this expression, the gain function is restricted to
produce growth only over a distance of many wave-
lengths in order to preserve the validity of the slowly
varying envelope approximation. When G has rota-
tional symmetry, it is natural to use cylindrical coor-
dinates. We now expand & in a complete set of
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orthonormal Gaussian-Laguerre functions U;(r,qﬁ,z)
which are solutions of Eq. (2) and are referred to as
modes of free space®;

(r,d,2)= 2 Vo (2)Uy(r,$,2;k,20) , @)

where the complex mode amplitudes V’(z) are func-
tions only of z. The free-space modes U are func-
tions of (r,4,z) and depend on the parameter k [set
equal to the wave number of Eq. (1)] and on z, the
Rayleigh range, which is also half of what is called
the confocal parameter and is left unspecxﬁed at this
point. The explicit form of U is given in Appendix
A. Substitution of Eq. (4) mto Eq. (3), multiplica-
tion by U;:.(r,:p,z), and integration over the trans-
verse coordinates, r and ¢, gives the following set of
ordinary linear coupled differential equations in z
for the mode amplitudes:

dVj(2)
dz

2 Gyp(2)V,(2) , (5)

where

G,ij,—-f "ag [ rarlUy’G

To obtain Eq. (5) e have used the fact that the
mode functions Up are an orthogonal set of solu-
tions of Eq. (2). Since we have taken the gain func-
tion G(r,z) to be rotationally symmetric, the in-
tegration over ¢ in Eq. 6 results in nonzero terms
only for /=1I'. That is, only modes of the same rota-
tional index / are coupled together by the gain. The
mode coupling equation, Eq. (5), can thus be rewrit-
ten as a single sum over index p, namely,

d

R
a7 P=2

rz)U] (6)

Gyp(2)V,(2) . (7)

So far we have considered the gain to have an ar-
bitrary rotationally symmetric shape; we now spe-
cialize to the case of a prescribed focused Gaussian
gain, namely, one that is proportional to the magni-
tude squared of the lowest-order mode function
U o-7 We then have

—2r2/0?
2g0e g
6(r,2)=go| U3(r,2) 2= 25— . ®)
'n'a)g

The Gaussian spot size of the gain function, wg, is
given by

wp =i (0)[14+(2/29)],
where the parameters wﬁ(o)=220 /kg, g0, and k, are
specified by the gain. Since we are free to expand
the field in terms of any complete set of free-space
modes, we choose the value of z in the field expan-

sion of Eq. (4) as equal to the value established by

the gain function of Eq. (8). We have chosen the

two coordinate systems describing the gain function

and the propagating field to have coincident origins

(see Fig. 1). Evaluation of the coupling element
(z) of Eq. (7) then gives (see Appendix A)

Gyrp=pugo/Ta})

X exp[ —2i(p’'—p)tan~(2/29)]1Q}, (1)
9)
The parameter p, introduced here, is defined by
u=k/(k+kg) (10)

and measures the overlap of the gain and field inten-
sity distributions. It is limited to the range
O<pu < 1. The z-independent factor Qp »(1) is a po-
lynomial in p.%

We now make a key substitution of variable for z
in Egs. (7) and (9), namely,

0=tan"Y(z/z,)
to obtain
avl.

1 1
75: %‘,M,,,(G)V,,(e), (11

where
My, (0)=1G,Qpp(p)e ~2P' =00
(—m/2<0<w/2) (12)
and where
G, =8020 /T4 (0) .

We have introduced the quantity G, to replace g, as
a descriptive parameter, since G, corresponds to the
plane-wave field gain coefﬁcrent9 Because of the
form of the gain function’s dependence on z, the

Gain
Function

FIG. 1. Cylindrical coordinate system showing spot
sizes of gain function and propagating field.
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only 6 dependence of Eq. (12) is contained in the ex-
ponential factors e ~%?"~P%  We now cast Eq. (11)
into explicit matrix form, with index p’ labeling the
rows of column vector dV(0)/d6 and of matrix M
and index p labeling the columns of matrix M and
the rows of vector ¥V(6). The rotational index / is a
common superscript with each value labeling an in-
dependent set of equations. This is written as

av' _ e

40 =M(6)V(0) . (13)
To simplify the notation, we drop the common in-
dex /.

III. SOLUTION

We now solve the system of Eq. (13) for a given /.
From the 6 dependence of Eq. (12), we can see that
the matrix M is of the form

M©6)=U" K U®),
where U is a unitary matrix of the form U (0)=e”—w,
with H a constant diagonal (Hermitian) matrix
whose elements are given by H,,, =2m$,,,.'® More-
over, K is a constant, real symmetric matrix with
elements

K;'p =GPQI£'P(#) :

For convenience, we introduce the vector
Y(8)=U(6)V(6). Solving for ¥(6) and then taking
the derivative with respect to 6, we obtain

ve)=Ute)re,

ave) | d 4 +dY 14
a6 ~|ae¥ Yl 4e> :
avie) . o +dY
40 =iHU'Y+U TR

Substituting Eq. (14) into Eq. (13) for dV/d6 we
have, after some manipulation,

dYy ,

— = 0), 15

40 (K+iH)Y(0) (15)
K, H independent of 6. The formal solution for Y is

Y(6)=[exp(K +iH)(6—6,)]Y(6y) , (16)

and the solution for Vis
V(0)=U"(0)exp[(K +iH)(6—6y)]
X U(6,)V(6p) . 17)

In Eq. (16) a power-series representation is always
available for the exponential matrix operator since
the exponential function is analytic everywhere. A
more useful representation of Eq. (16) is in terms of

the eigenvectors of the matrix K +iH. With an arbi-
trary real symmetric matrix K, one may construct
matrices K +iH which cannot be diagonalized by a
similarity transformation, or equivalently, whose
eigenvectors do not span the entire space.!! Howev-
er, the physical situation under consideration here
does not appear to admit such a possibility, and for
all cases we have considered, an explicit solution for
V(6) is available through diagonalization, that is,

S-“K+iH)S=D, (18)

where D is a constant diagonal matrix of the eigen-
values of K+iH, and S is a constant nonsingular
matrix whose columns are the corresponding eigen-
vectors. The solution of Eq. (13) can then be ex-
pressed as

V(0)=4(u,G,;6,60)V(6,) , (19)
where
A(1,G,;6,60)=U"(0)5e™ ™' =116, .

The matrix diagonalization procedure, in addition
to yielding the spatial evolution of an arbitrary input
field, also gives the complete set of eigenmodes of
the electromagnetic system with gain. These are
found by choosing the vector V to be such that the
corresponding vector Y is an eigenvector of the ma-
trix K +iH. In contrast to the free-space modes, the
eigenmodes of a system with gain are obtained from
eigenvectors of a non-Hermitian operator and are
not orthogonal. The amplitude of an eigenmode
field &(r,0) reproduces itself at different values of
the propagation variable 6 in precisely the same
sense as do the free-space modes. That is, it can be
shown that the eigenmode field amplitudes at two
different values of 6 are identical complex functions
of (r /@) when the transverse coordinate is measured
along surfaces whose curvature is equal to that of
the free-space modes. The two fields then differ
only by a normalization factor and the propagation
factor exp[(A+i)(6,—6,)], where A is the corre-
sponding complex eigenvalue. When the gain van-
ishes the eigenvalue A equals 2pi, and the free-space
result is recovered.

Another related configuration of interest arises
through periodic refocusing of the radiation field
into regions with focused Gaussian gain.!>!> We
will now generalize the discussion to treat such
multiple-pass cases. In Appendix B we show that
this configuration leads to the same formal solution
for the vector Y, Eq. (16), as for the single-pass case
if the variable 6, which was defined in the range
—m/2<60<m/2, is extended beyond 7/2 without
limit as the number of refocusings increases.'*
Thus, the eigenmodes and eigenvalues found for the
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single-pass case continue to describe propagation in
the multiple-pass case.

To this point, we have considered only a Gaussian
gain distribution. To treat a system which includes
a nonuniform refractive index with the same func-
tional form as the gain function G, we note that we
may redefine G in Eq. (3) to be complex. That is,
we write

G'(r,z)=G(r,z)+2ikN(r,z), (20)

where N is real, but with the additional requirement
that | N | << 1, in order to maintain the validity of
the paraxial approximation. This effectively re-
quires that the phase perturbation per unit wave-
length produced by the variable refractive index be
small compared with 2. For the case of a focused
Gaussian refractive index and no gain, the character
of the solution changes since energy is conserved.
The matrix K +iH then becomes equal to i/ times a
Hermitian matrix. Thus for a pure refractive index
a unitary transformation can always be found to di-
agonalize K +iH and solutions equivalent in form to
Eq. (19) always exist.

IV. DISCUSSION OF THE RESULTS

We have found a solution for the mode coeffi-
cients V(0) in Eq. (19);

V(0)=A4(u,G,;6,00)V(6y) ,

where O<p <1 and 0<G, < . The solution de-
pends on the wave-number ratio p=k /(k +k;), the
plane-wave gain coefficient G,, initial and final
values of the propagation variable 8, and initial con-
ditions ¥ (6,). The formally exact solution corre-
sponds to the inclusion of an infinite number of
modes. However, we numerically solve Eq. (19) by
truncation of the mode expansion to a finite number
of modes of lowest order. In general, each trunca-
tion gives a different result. We have found, by ex-
amining the eigenvalues of the matrix K +iH for 10,
20, 40, and 80 mode truncation, that truncation to
40 modes gives convergence of the eigenvalues if
p>0.05 and the plane-wave gain coefficient G, is
less than 50, the regime for which we present re-
sults. We confirmed the operation of the numerical
procedure used for diagonalization by evaluating the
largest off-diagonal element in the matrix D. This
element was always < 10~'? of the largest diagonal
element. Also, we will show that for initial condi-
tions corresponding to equal energy in all free-space
modes, or for that matter to all of the initial energy
in the lowest mode, only the lowest 20 modes are
sensibly populated after a quasi-steady-state mode
distribution is established through coupled growth.

It is instructive to consider the solution when the

field expansion is truncated to the single free-space
mode of lowest order, U Equation (11) becomes,
with Q% (u)=1,

davie)
do

The lowest-order mode then grows at a rate given by
uG,, a result that had been obtained previously for
stimulated Raman amplification by ignoring mode
coupling.!>® The effect of including higher-order
free-space modes is to allow for energy flow between
free-space modes of a given rotational index /, as
well as overall growth in the total field energy.

=uG,V(0) . 1)

A. The eigenvalues and eigenmodes

Generalized field “growth rates” of the charac-
teristic eigenmodes may be idenitified as the real
parts of the eigenvalues of the matrix K +iH, while
the imaginary parts of the eigenvalues give correc-
tions to the phase velocities of the corresponding
eigenmodes. Figure 2(a) shows a plot of the real

Normalized Growth Rate (Ra)\)IGp
o
N

1 1 1 1 I
o 2 4 6 8 10

Gp

PHASE COEFFICIENT Imx

FIG. 2. (a) Normalized real parts of eigenvalues vs
plane-wave gain coefficient G, for ©=0.5. (b) Corre-
sponding imaginary parts of eigenvalues.



parts of the first three eigenvalues normalized to the
plane-wave gain coefficient G,, as functions of G,,
and Fig. 2(b) shows the corresponding imaginary
parts of the eigenvalues. In Figs. 2(a) and 2(b) the
value of the overlap parameter is £ =0.5. One can
see from Fig. 2(a) that the real parts of the eigen-
values appear as continuous functions of the plane-
wave gain coefficient G, if their numbering order is
chosen at a particular value of G, and analytically
continued throughout the plot. We have chosen to
number the eigenvalues in Fig. 2(a) at a value of G,
approaching zero. The ordering is done according
to descending size of the real part of the eigenvalues,
or equivalently according to increasing imaginary
part. For vanishing gain this ordering procedure is
identical to that usually adopted to order the free-
space modes. In Fig. 2(a), the first eigenmode al-
ways has a dominant growth rate.

Figure 3(a) is a plot of the normalized real parts
of the first nine eigenvalues which were similarly
chosen at G,— 0 but for £ =0.05. In contrast to
the previous case of 1 =0.5, no single eigenmode is

0.2,

NORMALIZED GROWTH RATES (Re\VGp

e
8

(b)

Phase Coefficient Im \
.
'S

Gp

FIG. 3. (a) Normalized real parts of eigenvalues vs
plane-wave gain coefficient G, for ©=0.05. (b) Corre-
sponding imaginary parts of eigenvalues.
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everywhere dominant. Instead, as the plane-wave
gain is increased from zero, the real parts of the
first, second, and successive eigenvalues are dom-
inant in turn until at a value of G, =22 the sixth
eigenmode becomes dominant, and remains so as G,
is further increased. With inclusion of nine modes
at G,— 0, the eigenmodes having the three highest
growth rates have been retained for the values of
G, <30 shown in Fig. 3(a). In Fig. 3(b), the ima-
ginary parts of the eigenvalues of the first nine
modes are shown as functions of G, for u=0.05.
For values of the plane-wave gain coefficient
G, >22, large perturbations are introduced into the
phase coefficients of the sixth and seventh modes, in
the gain regime where the sixth eigenmode achieves
final dominance of the growth rates. The eigen-
modes having the largest growth rates will become
exponentially dominant in size as the field propaga-
tion variable 6 is increased [see Eq. (16)]. For the
remainder of this paper we will therefore reorder the
eigenvalues at fixed values of the parameters y and
G, so that their real parts appear in descending size.
The highest growth rate, which we will refer to as
G max»> then corresponds to the first eigenmode of the
system. For values of u, G,, and 6—6, such that
the first eigenmode has dominant gain, the output
fields can be described in terms of the first eigen-
mode, making the output radiation independent of
the input spatial field distribution in that regime.
The output fields can then be written as

ReDgy(0—6;) 2i,

| Vi(0)| — [Siole

3 56;'V;(6)e
J

(22)
In Fig. 4 we have plotted the dominant growth
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FIG. 4. Normalized dominant growth rates for rota-
tionally symmetric eigenmodes.
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rate, normalized to the plane-wave gain coefficient
Gy, as a function of G,, with u as a parameter for
/=0. For values of pn=0.3, 0.2, 0.1, and 0.05, the
plotted curves are, in fact, envelopes of families of
curves of the type shown in Fig. 3(a), and are there-
fore not analytic. A similar plot for the group of
modes of the next higher rotational order, namely,
those with rotational index / equal to 1, is shown in
Fig. 5.

We have evaluated and plotted in Figs. 6(a) and
6(b) and 7(a) and 7(b) the eigenmode fields for two
specific cases. The figures show the magnitudes and
phase distributions of the first three eigenmode
fields ordered according to decreasing size of the
real parts of their eigenvalues. They are shown as
functions of the normalized radial coordinate r/w
for the parameter values u=0.5, G,=10, and for
1 =0.05, G,=30. In Figs. 6(a) and 7(a) each eigen-
mode field magnitude has been scaled so that its
maximum value is unity for clarity of presentation.
The quadratic phase factor e~**/2R common to all
free-space modes has been suppressed in Figs. 6(b)
and 7(b) so that the phase variation plotted against
the radial coordinate represents the deviation from
the free-space mode curvature. The corresponding
eigenvalues can be found in Figs. 2 and 3 at the
values of G, =10 and 30, respectively.

Having obtained the eigenmodes, one also has the
solution for the gain-filled resonator problem where
the resonator mirrors match the phase curvature of
the free-space modes. We note that when un-
matched reflectors are used to construct a resonator,
and a single eigenmode is dominant, the effective

P
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Gmax =1

e
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&

NORMALIZED DOMINANT GROWTH RATE Gmax/G
o
o
IS

0.01 L
1.0 20 5.0 10 20 50 100

PLANE WAVE GAIN COEFFICIENT Gp

FIG. 5. Normalized dominant growth rates for higher
rotational order (/=1) eigenmodes. Solid curves were ob-
tained numerically and the dashed curves indicate qualita-
tive behavior at higher gain.
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FIG. 6. (a) Magnitudes of eigenmode fields vs normal-
ized radial coordinate. (b) Eigenmode phase deviations
from free-space mode curvature vs normalized radial
coordinate.

losses of the resonator can be large. With un-
matched reflectors, upon reflection from a mirror,
only a fraction of the field remains in the first eigen-
mode and continues to grow at a rapid rate. The
solution for more general resonators that contain
empty regions as well as regions of focused Gauss-
ian gain may be found analogously by calculating
the eigenmodes of the composite structure. This
technique will be particularly useful in optimizing
the output mode distribution from devices such as
laser-pumped dye lasers and free-electron lasers.

B. Gain focusing

The rapid increase in the normalized growth rate
of the sixth eigenmode of Fig. 3(a), or for that
matter, the similar behavior of G,,, as a function of
G, in Figs. 4 and 5 may at first sight appear surpris-
ing. Moreover, as the normalized growth rate G,
increases, the normalized growth rates of the other
eigenmodes must decrease. The latter effect is a
consequence of the invariance of the trace of the
matrix K +iH under the similarity transformation S
used to accomplish diagonalization and is also ap-
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FIG. 7. (a) Magnitudes of eigenmode fields vs normal-
ized radial coordinate. (b) Eigenmode phase deviations
from free-space mode curvature vs normalized radial
coordinate.

parent in Figs. 2(a) and 3(a). The rapid increase in
G max occurs when G, ~1, and is an indication of
the onset of a regime where the gain dominates dif-
fraction. The effect is more highly pronounced for
small values of p. In the limit of an infinitely large
plane-wave gain coefficient, the eigenmode distribu-
tion approaches a delta function since the on-axis
gain exponentially dominates. As the gain coeffi-
cient is increased towards that limit, the dominant
eigenmode distribution narrows and becomes sensi-
tive only to the spatial peak of the Gaussian gain
distribution. As a consequence, the dominant
growth rate approaches the plane-wave gain coeffi-
cient as indicated in Figs. 4 and 5. When the gain
coefficient has become sufficiently large to confine
the eigenmode field to an axial region narrower than
the waist of the Gaussian gain function, the radial
dependence of the gain function itself can be ap-
proximated by a parabolic distribution. In this ap-
proximation the results exhibit the phenomenon of
gain focusing first described by Kogelnik? for a uni-
form parabolic distribution.

In the limit of high gain the dominant eigenmode
field ¥ for /=0 is given by a Gaussian distribution
of the form

P(r,0)=(1/0,)
X exp[ —r2/wh, —i(kr*/2R +Ar*/o?)] ,
(23)

where w2, =w2,(0)[14(z/2¢)*], A is a constant, and
the parameters k, R, and o are as defined in Eq.
(A1) of Appendix A.

The solution can be verified by substituting the
product of ¢ and the complex propagation factor
expA(6—86,) into the wave equation, Eq. (3), with
the Gaussian gain function G(r,z) replaced by its
expansion to second order in 7, that is,

G(r,z)=(2gy/mw})(1-2r%/0}) . (24)

The substitution gives rise to the following relation-
ships. The spot size w,, is given by
2

4
wi(0)= 0 (02) B
2G, |1—np
| 2 12
X144 |—E 62| -1
u
(25)
and the phase curvature coefficient 4 is
A=[0*(0)/wp(0)—1]"2. (26)

The real part of the complex eigenvalue A is given
by

ReA =G o =G, [ 1 -0} (0) /w}(0)]
27
while the imaginary part of A is given by
ImA =0%0)/wh(0) . (28)

Note that these relationships are valid only in the
limit of high gain for the Gaussian gain function,
but are exact for a focused parabolic gain distribu-
tion."

C. Application to Raman
amplifiers

In Raman amplifiers, gain is produced by focus-
ing high intensity laser radiation into a Raman-
active medium. Amplification can then occur for
Raman-scattered radiation at wavelengths corre-
sponding to excitation of a coherent polarization in
the Raman medium. When the pump radiation is
described by a |UJ|? intensity distribution, the
preceding numerical results can be directly applied.
We identify G, as the plane-wave field gain coeffi-
cient per unit value of the propagation variable 6,
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the parameter k as the wave number of the scattered
radiation, and k, as the wave number of the pump
field. We note that for Stokes amplification the
parameter p defined in Eq. (10) takes on values
0<u<0.5, while for amplification of anti-Stokes
radiation its value is in the range 0.5 <u < 1. For a
single focused pass, the value of the propagation
variable 6 increases by a maximum value of 7. As a
result, the gain per pass of the first (dominant)
eigenmode is e™max and the corresponding power
gain is e ™. Figure 4 which gives normalized
Gmax as a function of p and G, is thus of
paramount interest in understanding growth rates of
Raman amplifiers. In superfluorescent amplifiers,
e.g., single-pass Raman lasers, power gains of ~e*
typically occur in growth from spontaneous emis-
sion levels to detection thresholds. This corresponds
to values of G, ~5. Lines of constant G,, have
beeen plotted in Figs. 4 and 5 for values of G, =1
and 10, and roughly span the range over which
single-pass amplifiers find application. As we have
previously discussed, when the plane-wave gain is
increased above ,qu~1, a larger than linear in-
crease in G_,, occurs. This effect can lead to a
dramatic reduction in threshold of Raman super-
fluorescent amplifiers. The effect is most signifi-
cant for small values of p, which are characteristic
of Raman-Stokes lasers that employ visible pump
lasers and amplify infrared radiation. For example,
Fig. 4 indicates that for ©=0.05 and G,=30 the
dominant growth rate is 3.5 times greater than the
U 8 uncoupled result. At the other extreme, u=0.5,
which is the upper limit of 4 for Raman-Stokes
lasers, the dominant growth rate is 30% larger than
the uncoupled U 3 result for the value of Gpay=5.
The latter is typical of a single-pass visible Raman
laser. Therefore, an overestimate of the pump inten-
sity required to reach threshold in stimulated Ra-
man scattering can occur if the calculation is based
on the uncoupled growth rate. However, for cases
of small plane-wave gain the uncoupled growth rates
provide an adequate description. Such cases are typ-
ical of multiple-pass Raman lasers where the radia-
tion is periodically refocused to enhance the overall
gain.

D. Propagation of higher-order
rotational modes

So far in our discussion we have not included
higher-order rotational modes in the field descrip-
tion. This does not affect the solutions for the most
interesting amplifier case, that of a rotationally sym-
metric input field. Since modes of differing rota-
tional order do not couple, the output cannot possess
rotational character that is different from the input.

When one considers an input generated by spontane-
ous emission, however, all modes have equal initial
excitation and high-order rotational modes cannot
simply be ignored. We have therefore obtained the
dominant growth rates for the cases /=1, u=0.5
and p=0.3 which are plotted in Fig. 5. As the fig-
ure indicates, the gain is of the order of u? times the
plane-wave gain for low values of the plane-wave
gain, and is always smaller than the corresponding
growth rate for the symmetric modes. For example,
in the case of £=0.5 and a growth to threshold of
e for the /=0 dominant eigenmode, a growth of
e'® occurs for the corresponding /=1 mode. This
provides a ratio of at least five orders of magnitude
between the output intensity of the rotationally sym-
metric modes and the next group of higher-order ro-
tational modes. As a result, one can safely ignore
growth in the higher-order rotational modes for su-
perfluorescent Raman-Stokes lasers. Higher-order
rotational modes could play a more significant role
in anti-Stokes lasers for which u~1 and where near-
ly equal growth rates result.

E. Output intensity and decomposition
into free-space modes

We have evaluated and plotted the output intensi-
ties and energy distribution in the free-space modes
for several different values of the parameters u and
G, that correspond to experimental configurations
commonly used in stimulated Raman scattering.
These plots correspond to the points 4, B, C, and D
in Fig. 4 which is the plot of the dominant growth
rates for various values of u. A description of the
mathematical evaluation of the output intensities for
both coherent and incoherent (spontaneous emission)
input fields is found in Appendix C.

Figure 8 illustrates the output distribution of a
single-pass amplifier for two different inputs; the
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FIG. 8. Output intensity distributions for a single-pass
amplifier.
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output evolving from spontaneous emission is shown
by the solid line and the output generated by a single
mode U} input is shown by the dashed line. The
values of u and G, correspond to point 4 in Fig. 4
and yield a value of G,, =1. For this case, we have
shown that the first eigenmode is not dominant [see
Fig. 3(a)]. As a result, the output intensity depends
on the input field. Figures 9 and 10 show the out-
put energy distribution in the free-space modes for
the two inputs. It is interesting to note that al-
though the intensity pattern evolving from the UJ
field input has a local minimum on axis, the output
intensity contains more than two-thirds of its total
power in the U) mode. In contrast, the amplified
spontaneous emission intensity peaks on axis but has
only about one percent of its total output in the U S
mode. This case corresponds to a single-pass am-
plifier that has approximately 27 dB of gain, but
realistically would not be used to amplify spontane-
ous emission.

In Figs. 11 and 12 the output intensity and mode
distribution for point B in Fig. 4 are shown. This
case corresponds to the same value of y as in the
previous figure but with a plane-wave gain that is
about 60% greater than the gain in the previous
case. With this relatively small increase in gain, the
first eigenmode becomes dominant. As a result, the
output is independent of the input, and input fields
of either spontaneous emission or U produce the
same output field. For reference, the U 8 intensity is
plotted as a dashed curve. Referring to Fig. 12, we
note that about 20 free-space modes have significant
power, with the peak of the distribution occurring at
the seventh free-space mode.

Figures 13 and 14 correspond to the point C in
Fig. 4 and show the intensity and the mode distribu-
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FIG. 9. Output power distribution in free-space modes
for a single-pass amplifier.
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FIG. 10. Output power distribution in free-space
modes for a single-pass amplifier.

tion that evolve from an arbitrary input field. This
intensity pattern is in fact the square of the magni-
tude of the first eigenmode field distribution which
was shown in Fig. 6. In contrast to previous cases,
the spatial profile of the first eigenmode field mag-
nitude is narrower than the gain function and may
be fit with reasonable accuracy to a Gaussian distri-
bution with a waist smaller than that of the U
mode. This phenomenon is related to the gain
focusing effect that we have discussed. If the
asymptotic result of Eq. (23) is applied to this case,
one finds that the waists for the parabolic and
Gaussian gain distribution differ by 18%; however,
the growth rates (Gp,,,) differ by less than one per-
cent. We have found that the two gain distributions
produce nearly equal growth rates even for cases far
from the asymptotic limit where the eigenmode field
cannot be reasonably approximated by a Gaussian
distribution.

\, = Input: arbitrary

\ —===US reference

QUTPUT INTENSITY
o
o
T

0.2

2 25

FIG. 11. Output intensity distribution for a single-pass
amplifier and U 6 reference intensity.



1998 B. N. PERRY, P. RABINOWITZ, AND M. NEWSTEIN 27

p=
G
o m

Input: arbitrary

FRACTIONAL POWER
o
o
a
T

10 15
MODE INDEX p

FIG. 12. Output power distribution in free-space
modes for a single-pass amplifier.

Finally, Figs. 15 and 16 show the results for point
D in Fig. 4. In these figures the values of u, G, and
0 correspond to the multiple-pass generation of 16-
pm radiation from a 10.6-um pump laser in H, by
rotational Raman scattering.!”> Under these condi-
tions, the deviation of the output from the U 8 mode
is negligible and agrees closely with experiment.'®
These results also agree to within the numerical ac-
curacy of a direct numerical integration of the wave
equation which was used as an independent check of
the validity of the formal solution.

V. CONCLUSION

While statements of the coupled mode field prop-
agation problem in regions of focused Gaussian gain
equivalent to Eq. (7) have been given previously,!”18
and are implicit in the work of others,'” to our
knowledge this paper presents the first formally ex-
act solution. The solution also yields the charac-
teristic eigenmodes of the system with gain. Over
most of the parameter space describing the spot size
and strength of the focused gain, an eigenmode hav-
ing a highly dominant growth rate can be found,
and expressed as a linear combination of a relatively
few free-space modes. Thus the expression is of
practical utility for the rapid numerical solution of a
large class of problems, among them the analysis of
Raman lasers, dye lasers, and free-electron lasers, as
we have shown. In this paper we have obtained re-
sults only for the case of a real gain function exclud-
ing the effects of dispersion. These results are
representative of steady-state Raman or dye-laser
amplification at the peak of an isolated gain reso-
nance. However, to treat off-resonance propagation
or more complicated dispersive media such as the
free-electron laser, the full complex gain function
must be employed. We are presently working to ob-
tain solutions for those cases, as well as for that of
pure refractive index media, and will present those
results in a forthcoming paper.

APPENDIX A: EVALUATION OF
COUPLING ELEMENTS

The orthonormal Gaussian-Laguerre solutions of Eq. (4) are written explicitly in cylindrical coordinates as®

172 !
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FIG. 13. Output intensity distribution for a single-pass
amplifier and U S reference intensity.
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FIG. 14. Output power distribution in free-space
modes for a single-pass amplifier.
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FIG. 15. Output intensity distribution for a multiple-
pass amplifier (ten passes) and U§ reference intensity.

where p and / are the radial and rotational indices, »
is conventionally called the spot size and is defined
by 0?=(2z¢/k)[1+(z/2¢)*], k is the wave number,
2z, is the confocal parameter, L; are the associated
Laguerre polynomials, and R is the phase front ra-

|
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FIG. 16. Output power distribution in free-space
modes for a multiple-pass amplifier.

1999

dius given by R =z([(z/2zy)+4(z¢/z)]. Each value
of the parameter z produces a complete set of func-
tions each of which is a solution of Eq. (2).

The gain function which is proportional to the
squared magnitude of a single mode function
(U;‘ U;) can be written as
1

o1mgs [ L | |22 |[2
4 wz w(l+p) a)é
2 52

x L2 | exp [ =2 |, (A2)
% g

where g is a constant and w, is the spot size of the
gain function.

The gain coupling elements Gy, of Eq. (7) are
given by

27 ©
Gig=5 [, d¢ [ rdr(Ui"G,up) .

The element Gj, is implicitly a function of the in-
dices p and / which specify the gain function. In-
serting explicit representations for U,f‘, G;, and Uj
from Egs. (A1) and (A2), we obtain

(A3)

1 5
2r?

(02

2r2
2
g

2
1
L L

(A4)

x=2r"[(1/w})+(1/w?)]
and
ux =2r*/w?,
where
p=k/(k+kg).
Equation (A4) can now be written as
Giy=(Bp/4w})
X fow dx e X(ux)[(1—p)x]
X [Ly((1—p)x ) JPL3 (ux )L (ux )
(A6)

(AS5)

or
Giy=(Bu/40})I .

Since the integral I appearing in Eq. (A6) is a func-
tion only of the parameter u and the indices /, p, s,
and h, the value of Gj, can be written in a form
similar to Eq. (9), with the z dependence made expli-
cit:
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s gopt  exp[2i(g—h)tan~Y(z/z,)]
M rok(o) 1+(z2/2,)
X Ok, 1p) (A7)
where
| gl 172
s (u1p)= p! Iq!
Qhal:1P)= T s T q s 1)

With the change of variables O=tan~ !z /z,), Eq.
(A7) becomes

8okt exp[2i(qg—h)6]
704 (0) sec’0

Gy = Ohg(1s1,p)

(A8)

where the dependence of Gj, upon / and p explicitly
appears in the polynomials Qj,. This completes the
evaluation of the coupling elements Gj,. Let us now
recall that the indices 4 and g label the coupled
free-space field modes of a given rotational index s,
while the indices / and p denote the spatial character
of the gain function. The continuous parameter u is
determined by the specified wave number k, of the

g
pump function and the field wave number through

|

172
hlg!

= |1 +5)g+s)!

m=

Eq. (AS5). This result can be extended to treat a
larger class of gain functions, each of which is ex-
pressed as a sum of magnitudes squared of single
mode functions. The extension is straightforward
since the dependence of the coupling elements G,fq
upon 6 is then identical to that of Eq. (A8).

We now evaluate the polynomial Qp,(u,l,p) for
the case /=p=0 in order to derive a convenient
closed-form expression. From Egs. (A6) and (A7)
we have
172
L
(h+s)Mg+s)

Qhqe(1,0,0)=

X fow dx(ux)e Ly (ux)Lg(ux) .

(A9)

We can expand Lj(ux) in a power series®® of
L, _(x), namely,

9 [q-+s
Lolux)= 3 (m )“q_m“"”)'"Li—mu%

@ S, —X &L (9+s —-m my s
fo dx(px)e 20 m A=)y (x)

m=0
(A10)
Substituting into Eq. (A9) we get
h+s i
n T =p) "Ly (x) . (A11)

We now use the orthogonality relations of the Lq‘ —m(x) to set g—m =h —n, and take h >q. Evaluation of the

integral then gives

hlg!

O =1 | G g o)

"1 0L

m=

+h—q

_ !
>(_4_L"ﬂy2<q—m’(1-y)z'"+"“' » h>q.

(g—m)!
(A12)

The results given in the text of this paper were obtained through explicit numerical evaluation of polynomials

of the form Eq. (A12).

APPENDIX B: EXTENSION TO
MULTIPLE-PASS AMPLIFICATION

In this appendix, we find the amplified field pro-
duced by periodic refocusing of radiation into
focused Gaussian gain regions. We consider only
cases symmetrical in z, mode-matched,® and with ro-
tationally symmetric fields, although the most gen-
eral case can also be treated in a similar fashion.

-

We assume that the gain function is itself produced
by a copropagating field (e.g., Raman pump) which
is transformed by the optical system in the same
manner as the propagating field.

Consider the system of Fig. 17. A field is intro-
duced at 6= —6, and propagated to =6, through
a Gaussian gain medium in region 1 of the figure.
The field is then passed through a positive lens,
which changes the sign of its phase front curvature.
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FIG. 17. Configuration and coordinate system for
multiple-pass amplifier.

The field is then propagated through region 2,
which has the same gain distribution as region 1.
The propagation distance in region 2 is measured by
coordinate z’ (or 6'), and propagation is from
6= —61 to 9'=61.

The field at 6=6, is expressed in the unprimed
coordinate system as

)

—ik(r2/2R,) i(2p+1)6
g(f;21)=2Vp(91)€ Ve lfp(Zl,r),
P

where R is evaluated at z=z;, and where the func-
tion f, is given by

folz,r)=(2/m)" A1 /@)e ="V’ LIA2r /e?).

The function f, depends on z implicitly through
w(z), and is an even function of z. We recall that
the mode coefficients ¥,(6=6,) at the output of re-
gion 1 are related to the input mode coefficients
V,(6=—6,) through the fundamental solution in
Eq. (19). At a location just after the positive lens we
have

2 .
$(r,z, )= z Vp(ol)exkr /2R1el(2P+1)91fp(zl,r) ,
4

which is a function only of r. We now take this
field as the imput to region 2, and identify the input
mode coefficients for this region. We use the ortho-
gonality relations of the functions f), to obtain

. i202p+1)8
Vi(=—0)=e"""y,

(8y) .
In our matrix notation this reads
V(—6)=e"1U%6,)V(6,) .

Applying Eq. (19) twice to accomplish the field
propagation in both regions, we obtain

2(9'+9x)§—162i91g(_91)

xUx0,)Ut(6)se 2 -1u(—0,)

V(e)=U"0)Se

XV(0=-86,) .

Since U( —81)=QT(91) and U is unitary,
S-'U(—-6,)UX6,)U"0,)S=I

where I is the identity matrix, and
D& +36) S

V'(0)=U'(0")Se
X V(0= —6))e

This equation is precisely of the form for a single
focused pass, where the argument of the exponential
operator e~ is now increased by 26,D. The general-
ization to n completed passes is then

D[&+(2n+1)8,]

-1y(6,)
2i6,

v'(e)=U"6)Se
X V(0= —6,)e

S-'u6))

2ni6,

Thus the eigenmodes and eigenvalues found for the
single-pass case continue to describe propagation in
the multiple-pass case.

For the case in which the gain function is not
matched to the multiple-pass structure, the problem
can be solved in a piecemeal manner. The propaga-
ting field is found after the first pass as previously
through Eq. (19). The Gaussian beam relationships®
are then used to calculate the transformed field
parameters after transmission through the lens, in
particular, the new values of the confocal parameter,
the propagation variable 6, and the radius of curva-
ture. The process is then repeated with the propaga-
ting field always expanded in a set of modes having
the confocal parameter of the gain function.

APPENDIX C: EVALUATION OF FIELDS
AND INTENSITIES

For convenience, we now reexpress the scalar elec-
tric field of Eq. (4) in equivalent matrix form as

Er,0)=WT(r,0)V(0), (C1)

where W7 is a row vector of mode functions of the
form WT=[U(I),U11,...,U;] and V(0) is a column
vector with elements V,f( 6). The intensity at each
point is then obtained using Eq. (19), and is given by

Ir,0)=&(r,0)&*(r,0) (C2)
or,

I(r,0)=WT(r,0)4(6,60)V(6,)V'(6,)

x 476,00 W*(r,0),

where, from Eq. (19), V(6)=A4(6,6,)V(6,). Al-
though one can solve for the fields and intensities
which evolve from any initial conditions, we will re-
strict ourselves to two cases, first to amplification of

the lowest-order mode UJ, and second to amplifica-
tion of spontaneous emission.
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For the first case we can write the initial condi-
tion for the mode amplitudes as V;(6y)=9;,. The
output mode coefficients V(6,6,) are then given by
the first column of the matrix 4(6,6,). Both the
fields and the intensities can be obtained directly
from Egs. (C1) and (C2), respectively.

For the second case, that of amplification of
spontaneous emission we find the total output inten-
sity in each mode |¥,(60)|? in terms of the initial
conditions, and then average over an ensemble with
initial condition given by equal excitation in each
mode, and no correlation between field amplitudes
of the modes. In matrix notation, we use Eq. (19) to
write

(V)T (0))=(4(6,60)V(0,)V'(6,)47(6,6,)) ,

where the brackets denote an ensemble average.
Since the propagation matrix 4(6,6,) is independent
of the ensemble member, and since

(V)Y (60)) ;=8

describes the initial ensemble, we obtain
(V(OV'(0))=4(6,004"(6,60) ,

whose diagonal elements are the mode energies.

Similarly, the ensemble averaged intensity at each
spatial point is obtained from Eq. (C2) to give

(I(r,0)) =WT(r,0)4(6,0,)4(6,60)W*(r,0) .
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