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The nonlinear evolution of free-electron lasers in the presence of an axial guide field is in-

vestigated numerically. A set of coupled nonlinear differential equations is derived which

governs the self-consistent evolution of the wave fields and particle trajectories in an ampli-

fier configuration. The nonlinear currents which mediate the interaction are computed by

means of an average over particle phases, and the inclusion of fluctuating space-charge

fields in the formulation permits the investigation of both the stimulated Raman and Comp-

ton scattering regimes. The initial conditions are chosen to describe the injection of a cold,

axially propagating electron beam into the interaction region which consists of a uniform

axial guide field and a hehcal wiggler field which increases to a constant level adiabatically

over a distance of ten wiggler periods, After an initial transient phase, the results show a re-

gion of exponential growth of the radiation field which is in excellent agreement with linear

theory. Saturation occurs by means of particle trapping. The efficiency of the interaction

has been studied for a wide range of axial guide fields, and substantial enhancements have

been found relative to the zero-guide-field limit.

I. INTRODUCTION

The use of axial guide magnetic fields in free-
electron-laser (FEL) experiments has generally been

restricted to low-energy (-1 MeV) and high-current
(-1 kA) devices in which the axial field is necessary
in order to confine the electron beam. As a conse-

quence, a great deal of theoretical work has been de-

voted to the calculation of electron orbits, ' spon-
taneous radiation (i.e., noise) spectra, and the linear

growth rate in the presence of an axial guide
field. As shown in these w'orks, a fortuitous conse-

quence of the presence of the guide field is that both
the noise spectrum and the linear growth rate are
enhanced. Such enhancements are due to an in-

crease in the transverse electron velocities and a de-

crease in the natural response frequency of the elec-
trons. In the latter case, the natural frequency can
become comparable to thc frequency of the ponder-
motive force which results from the beating of the
radiation and wiggler fields. When this occurs the
linear gain can become very large, and the interac-
tion is analogous to that of driving an oscillator ai
its natural frequency. In view of the possible
enhancements in the gain, the study of the nonlinear
phase of the interaction assumes an added impor-
tance with a primary focus on possible enhance-
ments in the saturation levels of the instability and
the efficiency of the interaction.

The motivation for the present work is to investi-

gate thc effects of the guide field on the nonlinear
regime of both the stimulated Raman and stimulat-
ed Compton scattering regimes of FBI. operation.
To this end, a set of coupled nonlinear differential
equations is derived which describes the evolution of
both particle orbits and the dectrostatic and elec-
tromagnetic fields. The nonlinear currents which
mediate the interaction are computed from the mi-
croscopic behavior of an ensemble of electrons by
means of an average of the electron phases relative
to the ponderomotive wave. This is equivalent to a
time average over the electron orbits which, in turn,
is equivalent to an ensemble average over the micro-
scopic electron distribution. Thus although the
macroscopic electron distribution docs not explicitly
appear, the formulation is equivalent to a fully ki-
netic treatment of the interaction and is capable of
describing effects such as particle trapping in the
ponderomotive wave. This is in contrast to the non-
linear analysis described recently by Friedland and
Bernstein' which is based on the. cold-Quid model.

These equations are solved numerically for a con-
figuration in which a uniform, monoenergetic elec-
tron beam is injected with purely axial velocities into
the interaction region which consists of a uniform
axial guide field and a helical wiggler field which in-
creases adiabatically from zero in ten wiggler
periods. The analysis is performed in one spatial di-
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mension, although the electron trajectories are in-

tegrated for three dimensions in the velocity. In ad-

dition, since the problem of interest is that of an
FBI. amplifier, only a single electromagnetic and
electrostatic wave is included corresponding to the
choice of the fastest gro~ing mode. Thus the
analysis self-consistently describes the linear and
nonlinear phases of the interaction of a uniform
electron beam with a helical wriggler field in one di-
mension. The results of the simulation show, after
an initial transient phase, a region of exponential
growth of the radiation and space-charge fields
which is in excellent agreement with the linear
theory over the entire range of parameters stud-
ied. The onset of the nonlinear phase of the interac-
tion appears quite suddenly, and saturation occurs
by means of partlclc trapping. Most significantly,
substantial enhancements in the interaction

efficienc-

yy are found to occur.
The organization of the paper is as follows. The

general equations are derived in Sec. II. Since the
actual adiabatic entry of the electron beam into the
wiggler is included in the analysis, we digress in Sec.
III to describe the types of orbit which result in the
absence of a radiation field. The numerical solu-

tions to the complete set of coupled particle-field

equations are given in Sec. IV, and the conditions
under which cHiciency enhancements occur are
described. A summary and discussion is given in
Sec. V.

II. GENERAL EQUATIONS

The physical configuration we employ is one di-
mensional in that spatial variations are restricted to
the z direction. The static magnetic field is taken to
be of the form

B(z)=Bee, +8„(z)[e„cos(k z)+e~sin(k„z)],

where 80 and 8~ are the amplitudes of the axial
guide field and the wiggler field, respectively, k
(—=2m/A, ~, where A,~ is the wiggler period) denotes
the wiggler wave vector, Rnd it is assumed that
d lnB /dz ggk . Thus we allow the wiggler ampli-
tude to vary slowly in z while holding the period
constant. In practice, we shall allo~ B (z) to vary
only over Ogz g 10k, , after which it shall be held
constant, so that dlnB /dz=O. Ik . The variable
amplitudes and periods of the radiation and space-
charge fields are included by means of the vector
and scalar potentials

z z

Q(z, t)=$g(z) e„cos f dz k+(z ) Cut —8&sin— dz k+(z ) tut—
0

54(z, t) =54(z)cos f dz'k(z') —tut

where ~ is the wave frequency, 5A (z) and 54(z) are
the amplitudes of the vector and scalar potentials,
and k+(z) and k(z) are the wave vectors. Note that
by the choice of parameters (i.e., primarily the pump
strength, beam density, and axial field) the ampli-
tudes and wave vectors will be slowly varying func-
tions of z; however, no such assumption is made
0 PflOI'l, .

The microscopic current density can be written as
the following sum over individual particle trajec-
tories:

5(t r( zt;,))—
5J (z, t) = enb g—v;(z, t;u)

NT .
&

' '
( ut; z)u

w'here NT is the total number of electrons within the
interaction region of length I., nb is the average elec-
tron density, v;(z, t; 0) is the velocity of the ith elec-

tron at position z which entered the interaction re-
gion (i.e., crossed the z =0 plane) at time t; 0, and

dZ
~;(z, t;0)

—=t;0+ 0 VzI(z ~&I'0)

2
COb Vg0

2

u
& cosP —uzsing

(6)
V3

2 4

2k~ —(k+ 5a)=- ct)g uge u)sing+ u2cosp

dZ C2 V3

The system is assumed to be quasistatic (i.e., in a
temporal steady state) so that particles which enter
the interaction region at times tp separated by in-
tegral multiples of a wave period will execute identi-
cal orbits. " As a result v;(z, t;0) = vj(z tjp) where
t; 0 ——tj0+2m%/co for integer X.

Substitution of the microscopic fields and current
density into Maxwell's equation yields
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cos cosgl
2

—k 5/=2 uo
dz g U3

2

2k'"—(k'"5y) = —2,' u„
dz c2 U3

sing'

$0= cot&& is —the initial phase, and (u', u2, u3) are the
components of the electron velocity in the wiggler
frame defined by the basis vectors e

&

=e„cos(k z)+eysin(k z), e2 = —8„sin(k~z)
+e cos(k z), e3 ——e . Qbserve that it has been im-
plicitly assumed that the electron beam is monoener-
getic and that all electrons have the same initial axi-
al velocity. In addition,

where an average over a wave period has been per-
formed. In Eqs. (6)—(9), cos =4~e'nb/m, u, o is the

initial axial velocity of the electrons, 5a —=e 5A /mc,
5P =e 54/me,

$0+ —f dz'(k++k —co/u3),

l"(=—$0+ f dz'(k —co/u3),

&~)—=

represents a phase average where N denotes the
number of electrons in a single wave period. Thus
following Sprangle et el. " the quasistatic assump-
tion has permitted the reduction of the problem to
the consideration of the initial beam segments for
which steady-state orbits of the beam electrons are
described by particles which enter the wiggler region
within a wave period. The actual length of these
segments is 2m'U, p/a so that Ã„=2mXTU, p/mL. For
sufficiently large X, the discrete nature of the
phase average ( 12) can be replaced by an integral
over the initial phases Po as follows:

(a)= f dP~ .

In this form the field equations are identical to those
derived by Sprangle et al. "

In order to complete the formulation, the electron
orbit equations in the presence of the static and fluc-
tuating fields must be specified. These equations are
of the form

~p az 6P—k u3
—+me ——k+ 5asing+cosP —5a
U3 U3 dz

~o —kNU3 —IA~ +rnc
U3

6)——k+ 5a cosg —sing —5a
U3 dz

wherep& 2
=—ymu&2, Qu =—~eBu /me ~, y=—(I u'/ez)—

d ~w "2 e 5a U3—u3 —— —+— k+ —co—
2

(u&sinP+u2cosg)
dZ p U3 U3

C C—5a (u
&
cosf —u2sing)—

dz yyzu3
k 5$ sin/I cosgl 5$— —d

and y, =(l —u3/e ) '. Both the linear and non-
linear evolution of the FEI. amplifier, therefore, are
included in Eqs. (6)—(9) for the field quantities and
(14)—(16) for the orbits of an ensemble of electrons
having initial phases vr ( P&& & m.. —

III. SINGLE-PARTICLE ORBITS

Since an adiabatic entry region into the wiggler is
included in the analysis, it is useful to consider the
form which the single-particle orbits take as they
emerge into the constant-8 region as a function of
Bp. It should be remarked here that the radially

homogeneous wiggler under consideration is neither
curl nor divergence free and is a reasonable approxi-
mation for a realizable wiggler field only as long as
k r && 1 and d lnB~(z)/dz ~~k, where r measures
the radial displacement of the electron trajectories
from the axis of symmetry. The question we exam-
ine in this section, therefore, is the effect of the adia-
batic increase in 8 (z) on the trajectories of elec-
trons which enter the wiggler with purely axial
motion.

The appropriate equations of motion follow im-
mediately from (14)—(16) in the absence of fluctuat-
ing fields,
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Oo up—k~u3

u
dz

2

u
dz

3

o ui ~u—k~u3
r u3 y

Q~ u2

u3

where y is now a constant of the motion, and 0 is
a function of z. The steady-state (or helical) orbits'
are obtained by requiring the derivatives to vanish in
the constant-8 region and results in solutions
ui ——u~—:Q~u~j /(0O —yk~uit ), u2

——0, and u3
——u~i,

where u~I is a constant determined by conservation
of energy, i.e., u~+u~~ =(1—y )c . This equation
is quartic in u~~ and describes at most four distinct
classes of trajectory, of which one is characterized
by motion antiparallel to Bo and will be ignored. Of
the remaining three classes of trajectory, one is un-

stable. It is, therefore, difficult to propagate a
coherent beam on these orbits, and it is of interest to
determine whether, by adiabatic tapering of 8,
these orbits can be avoided. The three types of orbit
propagating paralld to Bo are shown in Fig. 1, in
which we plot u~I vs n, /yk. c (i.e., the axial field
strength) for y=3.5 and 0 /yk„c =0.05. Observe
that of the two classes of stable orbits, one is charac-
terized by high axial velocities (denoted by group I)
for low 8O and decreases monotonically with the ax-
ial field up to a critical 8O (Oo/yk c -0.76 for the

'l,0 l
5TAS1E - GROUP l

y =3.5
I ykwc 0.05

V3

c

FIG. 2. Plot of the single-particle trajectories vs axial
position of Qo/yk c =0.0, 0 /yk c =0.05, and y=3.5.

case illustrated) at which point there is a transition
to the unstable orbits. The second class of stable
trajectory (denoted by group II) is characterized by a
monotonically increasing axial velocity with 8O.

In the integration of the orbit equations it shall be
assumed that

—,8 [I—COB(k z/2O)j, O&z& 1OA,„
( )

2

8„, z ~ 10K, (20)

which provides for a smooth, adiabatic transition to
the constant-8~ region over ten wiggler periods.
The results of the integration of the orbits with
8 (z) characterized by (20) are shown in Figs. 2 and
3, where we plot the components of the velocity
versus k z for y=3. 5 and 0 /yk~c =0.05. Note
that the initial conditions on the velocity were
chosen to be ui ——u2

——0 and u3 ——(1—y )'~ c. Fig-
ure 2 corresponds to parameters consistent with
group-I steady-state orbits, and we find that the tra-
jectories in the constant-8 region differ only slight-
ly from the steady-state case. As is evident in the
figures, the bulk values for the magnitude of u& in-
crease with the adiabatic rise in 8, after which
small oscillations about mean values corresponding

vclc

CONSTANT Bw RBGlON

y =3.0
gw l ykwc 005

Oel yLwc 1.6

OOIykwc

FIG. 1. Graph of the axial velocities corresponding to
the steady-state trajectories as a function of the axial
guide field.

Zllw

FIG. 3. Plot of the single-particle trajectories vs axial
position for Qo/yk c = 1.0, 0 /yk c =0.05, and y= 3.5.



NONLINEAR ANALYSIS OF FREE-ELECTRON-LASER AMPLIFIERS. . .

to the group-I trajectories are found in the constant-
8 region. Note that yk~u3 & Qp for these orbits
and, hence, u I &0. In addition, u2 ——0 for the
steady-state orbits, and the electron trajectories in
the constant-8 region exhibit small oscillations
about this value. The behavior of u3, while not
shown explicitly, also exhibits small oscillations (of
less than 1% of the mean value) about the appropri-
ate value for the group-I orbit. Thus we conclude
that it is possible to adiabatically inject electrons
into the interaction region on near-steady-state or-
bits. However, it should be observed that as
Qp/yk~c increases from 0 to 0.76 (corresponding to
an increase in 8p), the magnitude of the fluctuation
relative to the steady-state bulk value increases.
This trend is characteristic of group-I-type injection
and is indicative of the fact that it becomes increas-

ingly difficult to obtain near-steady-state trajectories
as the transition to orbital instability is approached,
at which point (Qp/yk c=0.76) the orbits differ
widely from the steady-state trajectories and exhibit
large fluctuations in the velocity. As a result, it be-

comes impossible to either inject or propagate a
coherent beam through the system.

Injection corresponding to near-steady-state orbits
of the group-II type is iHustratcd in Fig. 3 for
Qp/yk c =1.0. Observe that yk u3 &Qp for these
orbits and uI y0 in this regime. Although orbital
instability does not occur for group-II trajectories in
one dimension, the orbits are characterized by low
axial velocities for sufficiently small Bp. As a
consequence, it is possible for axially injected elec-
trons with relativistic energies to be characterized by
initial axial velocities much greater than that of the
steady-state orbit. This is the case which corre-
sponds to the orbit shown in Fig. 3, which is charac-
teristic of the resulting trajectories for Qp/yk~c & 1.
The orbits in this regime may still be described as a
perturbation about the steady-state orbits, but the
perturbations are large. It is only when 8p has in-
creased along with the steady-state axial velocity
that the perturbations about the helical orbits again
become small (i.e., Qp/yk c ~ 1.3). As in the case
of injection into near-group-I type of orbits in the
vicinity of the orbital stability transition, large fluc-
tuations in the equilibrium electron velocity results
in a degradation of the FEL interaction.

In view of the preceding results regarding the adi-
abatic injection of relativistic electron beams into a
combined axial guide field and helical wiggler field,
we conclude that large-scale fluctuations in the elec-
tron velocity may be expected whenever
0,76&Op/yk c &1.0 for y=3.5 and 0 /yk~c
=0.5. VA'thin this range, the transverse components
of the electron velocity may become sufficiently
large that the radial excursions of the electron beam

make it difficult for the beam to propagate. In ad-
dition, the fluctuations in the axial velocity can
cause a breakdown in the FBI. wave particle reso-
nance condition which, even if beam propagation is
possible, will result in a substantial decrease in the
gain.

The sei of coupled differential equations derived
in Sec. II is solved numerically for an amplifier con-
figuration in which a wave (cu, k+) of arbitrary arn-

plitude is injected into the system in concert with a
monoenergetic electron beam. The initial conditions
(at z =0) imposed on the electron beam are chosen
such that the particles are uniformly distributed in
phase for —m. (Qo & a in order to model the case of
a continuous beam (i.e., the beam is not pre-
bunched). Difficulties which arise from the in-
clusion of a necessarily finite number of electrons in
the phase averages (12) were found to be overcome
by the use of a Simpson's rule integrator for 61 par-
ticles per wave period. The use of larger numbers of
electrons was found to result in discrepancies of
considerably less than 1%. As in the integration of
single-particle orbits in Sec. III, the wiggler field is
assumed to increase adiabatically to a constant level
over ten wiggler periods (20). The electromagnetic
mode was chosen to correspond to the wave charac-
terized by the highest linear growth rate. Thus if
the equilibrium orbits are characterized by the
steady-state trajectories described in Sec. III in the
constant-8~ region, then the frequency and wave
vector are determined by the intersection of the elec-
trostatic beam mode

and thc transvcrsc clcctroInagnetic rnodc

~b'~ —k+ "ii '2

6) —k+c — =0,
y(ru —Qp/y —k+ v~~ )

where

k =k++k~, ]a=—a)g4'~ /y'~ you)I,

OPw Hi

(1+p )Qo —yk U()

dP. =..y ~~. F uy, h ll ioffi
tions in the space-charge field is assumed to be zero.

Insofar as the electron orbits approximate the
steady-state trajectories, it can be expected that the
radiation flicld will cxpcricncc a period of exponcn-
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tial growth (at a rate consistent with the linear
theory) prior to saturation. As a consequence, a
brief discussion of the linear dispersion equation is

of interest. The linear dispersion equation can be re-
duced to the following quartic equation in k+ (&0)
(Ref. 9):

[( —k )() — ))](k —k —lt+ )(k —k E—)

=—,P g k & [coy, 4(co —Qu/y —k+u~~) —Q„(co—ku~~)/y],

' 1/2

+—(~)'+2( k'
2 /AU]

t

(25)

and hE=—K —{m—Qo/y)/u~~. If the beam strength
parameter is sufficiently small that g « y,
X (8„/Bu) i' and y(8 /8u) i'4'i', then (24)
reduces still further to a more familiar cubic disper-
sion equation

5k(5k+2m)(5k —hk)= — g~k„P~( 'C

(26)

where 5k= k —co/u~~ ——s, P~~=u~~/c, and 5k=—k„
+K —m/uI~ —~ is the frequency mismatch parame-
ter.

The "strong-pump" (or Compton scattering) re-
gime is obtained when

~

5k
~

yy
~

2ir
~

. In this limit,
(26) can be approximated as

where g—:&os/y'~ k c is the beam strength parame-
ter, E =—(a) —mg/y)/e,

1
K+ ———E+

2

I

Therefore the Raman regime is found when

1s &p —,P yP~lk

It should be observed that the criterion defining
the Raman and Compton scattering regimes is
dependent upon 80 as well as on the beam and

pump strengths. As a result, it is possible to make a
transition from one to the other regime as a function
solely of axial guide field. Since the principal objec-
tive of this paper is to examine the efficiency
enhancement of an FEL amplifier in the presence of
an axial guide field, the results of the simulation will
be compared with the more complete form of the
dispersion given by Eq. (24), and not by the idealized
Raman and Compton regime approximations. It
will be shown at a later stage of the discussion that
the agreement between the linear theory as
represented by Eq. (24) and the numerical simula-
tion is excellent.

An example of the simulation results is shown in
Fig. 4 in which the radiation-field amplitude 5a(z)
and the growth rate I (z) (—=d ln5a/dz) are plotted
as functions of axial position for Qo/yk~c =0.0

and peak growth occurs when 5k=0 at which point

(5k),„=—,(1 ii/3)( , P~P P)j—'4)'~k~ . (28)

As a consequence, the requirement for Compton
scattering to be valid becomes

SD-~-

&0-1

z)k

2 2
IC « i6 p~y~pllk

The opposite (Raman scattering) regime occurs
and g6) can be represented in

the form

D.D'lD

I
0.000

kw
0.006

co l ckw = 21.0

(5k) b,k 5k + y, Pi is—k„=O .
4

g (30) z I kw

i
100

Peak growth is again found for 6k=0, where

(5k),„=, iP y, k (P((ir/k„)'~—

FIG. 4. Graphs of (a) the radiation-field strength and
(1) growth rate, vs axial position for 00/yk~c =0.0,
0„/yk„o =O.OS, y=3. 5, and /=0. 1.
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(i.e., no axial guide field), QN/yk„c =0.05, y=3.5,
and 5a (z =0)= lo '. As such, the illustrated calcu-
lation corresponds to the orbit calculation shown in
Fig. 2. It is evident from the figure that, after an in-
itial transient phase (z/A, &29.1), an extended re-
gion of linear (or exponential) growth occurs as evi-
denced by the constancy of the growth rate. During
this phase of the interaction, the growth rate as
computed by the simulation is I"/k 0.0146,
which is in good agreement with the linear theory
(24) which predicts a growth rate of
I &;„/k =0.0145. Note that this corresponds to
peak grow'th at a frequency co/@k~=21.6.

Fluctuations in the growth rate found in the
simulation are AI /k~=+0. 0002, which is to be ex-
pected on the basis of the orbit calculation (Fig. 2)
due to the relatively small fluctuation about the
steady-state trajectory. Saturation begins to occur at
z/A, ~ 114.1, after which the growth rate rapidly
decreases to zero at z/A, 127.3. At saturation, the
radiation-field amplitude is (5a )„,=2.56X 10
which corresponds to an efficiency of 3.65%. Sa-
turation occurs by means of particle trapping, and
this will be discussed in detail later in this section.

As shown in Sec. II, increases in the axial guide
fidd initially result in increasing fluctuations in the
dectron orbits about the steady-state trajectories. In
addition, it has been shown that the linear growth
rate also increases with Bo for the group-I class of
orbits. ' Therefore in order to determine the non-
linear effects the axial guide field and the adiabatic
increase in the wiggler field, a series of calculations
has been performed over a wide range of 8o. The
results of the simulation for Qo/yk c =0.5 show
the average growth rate during the linear phase of
the interaction to be I /k =0.030 with a Auctua-
tion of EI /k =+0.003, which remains in good
agreement with the linear-theory result (24) of
I ~;„/k 0.029. The increased growth rate leads to
a decrease in the distance to saturation, which now
occurs at z sat /A'w —67"5 at a field level of.

() t 3 30X 10 . The wave frequency for this
case (at peak growth) was c0/ck„=19.4, and the ef-
ficiency at saturation has increased to 4.92%. The
decrease in frequency for this case resulted from a
decrease in the axial velocity of the beam (see Fig.
1).

Increases in the axial guide field above this level
(but still corresponding to group-I orbits) lead to
larger fluctuations in both the orbits and the growth
rate in the linear regime which culminates in a
chaotic interaction at the transition to orbital insta-
bility at Qo/yk~c 0.76. A transitional case is illus-
trated in Fig. 5 for which Qo/yk~c =0.7 and a fre-
quency corresponding to peak growth of
m/k e=14.2, in which the magnitude of the fluc-

10-z

10

10-a-

(a)

10-7
15 20

z I iw

l

kw
0.04- ckw = 11.2

tuations in the growth rate is apparent. It should be
noted, though, that for 20&z/k, &30 the growth
rate is relatively constant and has an average value
of I /k~ 0.063, which is comparable to the result
of the linear theory of I &;„/k =0.060. The increase
in the growth rate results in a still further decline in
the distance to saturation which now occurs at
zg t/A, ~=32.6; however, while (5a)„t-4 09X10
represents a continuing increase in the radiation
field, the efficiency at saturation has decreased to
4.02%. The decline in the efficiency is attributable
to the decrease in the wave frequency.

da

10-a—

10-a—

10

(a)
(2o I ykw&

Qw I ykwc

1

20

z I kw

0.15—
(b)

0.10—

I"

0
kw

0.05—

0.10—

0.15—
20

zIkw

FIG. 6. Graphs of (a) the radiation-field strength and
(b) growth rate, vs axial position for Qo/yk c =1.1,
0 /yk c =0.05, y=3. 5, and /=0. 1.

z I 1w

FIG. 5. Graphs of (a) the radiation-field strength and
(b) growth rate, vs axial position for 00/yk c=0.7,
0 /yk„c =0.05, y=3.5, and (=0.1.
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For levels of Bo such that Qo/yk c~0.76 the
electron trajectories correspond to perturbations
about group-II-type orbits. However, as seen in Fig.
3, large divergences from the steady-state orbits
occur for Qo/yk c =1.0 and are characteristic of
the low-bulk axial velocities in this regime. The im-

plication of such orbit behavior is that since (1) the
growth rate must also exhibit large-scale osrillations
and (2) the resonant frequency is relatively low, the
interaction efficiency can be expected to be small.
Such an expectation is borne out by the simulation
results as shown in Fig. 6 for Qo/yk„c=1. 1 and a
frequency at peak growth of ~/ck =11.4. The sys-
tem evidently shows the expected large-scale fluc-
tuations in the gromth rate {AI /k„=+0.036) about
a mean value of I /k~=0. 072 after the transients
have decayed (z/A, ~ &20). Note that the linear
theory predicts a growth rate of I ~;„/k~=0.056 on
the basis of the steady-state orbits, which is well

within this range. Saturation occurs at
z», /A, N 41.1 for (5a)„, 4.91g 10; however,
while the field amplitude is relativdy high, the low

frequency of the mode results in an efficiency of
3.88% which is comparable to the zero-axial-field
limit. It should be remarked here that the case in
which Qo/yk c =1.0 (corresponding to Fig. 3) is
not shown here since it represents a still more ex-
treme example of the results of the large oscillations
in the single-particle orbits and has a still lo~er effi-
ciency.

Further increases in the axial guide field corre-
spond with increases in the resonant frequency and
decreases in the departure from the steady-state
single-particIe trajectories. As a consequence, the
evolution of the radiation fields becomes more regu-
lar as mell. For Qo/yk~c =1.5 and a frequency at
peak growth of e/ck„=20. 3, the simulation gives
I /k =0.021 with a variation in the growth rate of
less than 1%. It should be noted here that we also
recover a gi owth 1ate of I (q~/kN ~0.021 fi om
the linear theory (24). Saturation occurs at
z t /k~ =93.1 for a field level of (5a )»,
=3.19&10 and an efficiency of 5.02%.

A summary of the frequenries and growth rates
for the various simulations is given in Fig. 7 in
which me plot ~/ck~ and I /k vs Qo/yk c. The
curves for the frequency represent the variation in
the resonant frequency at peak growth found from
the intersection of the dispersion relations in Eqs.
(21) and (22) for the appropriate value of UI( from
the steady-state trajectory. These values represent
the frequencies used in the simulations. The solid
line in the plot of I /k„represents the results of the
linear theory (24), again, for the appropriate steady-
state trajectory while circles are used to denote the
results found from the simulation in the linear re-
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FIG. 7. Plots of (a} the peak growth rate and (b) the

corresponding resonant frequency, vs axial field strength.
Circles indicate the growth rates obtained from the nu-

merical simulation.

gime. As seen in the figure, the agreement between
the simulation and the linear theory is excellent.
For the cases shown, it is only when Qo/yk c =1.1

that the growth rates differ by more than about 2%,
and this is due to the relatively large divergence of
the single-particle orbits from the steady state.
However, this problem no longer appears for
Qo/ykNc = 1.2, and we conclude that (for the
parameters under study) difficulties resulting from
nonsteady-state single-particle orbits are important
only for 0.76&Qo/yk c &1.1, where both the fre-
quency and efficiency are low. Consequently, this
regime will be ignored in the discussion of the
overall radiation efficiency and satulation mecha-
nism.

The energy-conversion efficiency and the distance
to saturation are shown in Fig. 8 as functions of the
axial magnetic field. The effiriency is defined to be
the ratio of the total energy lost by the electrons
through the interaction to the initial energy and may
be shown by computation of the Poynting Aux to be
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&w t ykwc ~ 0.06
y = 3.5

O.l

l

Qo ( ykwc

0- (b)
FIG. 10. Graph of the phase-space distribution for

Qo/yk c =0.5 and z/A, =67.5 at saturation.

~0) ykwc

FIG. 8. Graphs of (a) the distance to saturation and (b)

saturation efficiency, vs axial field strength.

It is evident from the figure that substantial
enhancements of the efficiency are possible over that
found in the absence of an axial guide field. For
parameters corresponding to the group-I orbits, the
peak efficiency is approximately 5% and occurs at
Qo/yk c=0.5 for the chosen parameters snd consti-
tutes a 37% enhancement over the efficiency found

O.M—

0.01

I

FIG. 9. Plot of the phase-space distribution for
Qo/yk e =0.5 and z/A. =47.7 in the linear regime.

when no guide field is present. Note also that sa-
turation oeeurs over a much shorter interaction
length. However, the greatest enhancements in the
efficiency are found for the group-II class of trajec-
tories, for which s peak efficiency of approximately
8.09% is found for Ao/yk c=1.2 and corresponds
to an efficiency enhancement of 122% relative to
the SO~0 limit. It is important to bear in mind,
however, that these enhancements in the efficiency
occur at the expense of decreases in the resonant fre-
quency of the interaction (see Fig. 7). Finally, the
low efficiency found for Qo/yk~c=1. 25 corre-
sponds to parameters for which

~

4
~

&& I. In this
regime (which is discussed in detail in Refs. 3 snd 9)
the ponderomotive potential and, hence, the linear
growth rate vanish (Fig. 7).

As mentioned previously, saturation occurs by
means of particle trapping in the ponderomotive po-
tential which results from the beating of the wiggler
and radiation fields. An example of this is shown in
Figs. 9 snd 10 in which the positions of the particles
(represented by the dots) in phase space (g,dgldz)
are plotted for 00/yk c=0.5 (i.e., group-I type of
orbits) and z/A, ~ =47.7 and 67.5, respectively. The
solid lines in the figures represent the separatrix
which encloses trapped (i.e., bounded) phase-space
trajectories. It should be noted, however, that while
the positions of the particles represent the results of
the simulation, the separatrix represents an approxi-
mation as it is derived from s perturbation about the
exact steady-state orbits described in Sec. II. As
such the separatrix is strictly valid only insofar as
the particle velocities are close to those for the heli-
cal trajectories, for which'

c'(k+k ) u2~™45a sing . (34)
dz y geo
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The separatrix, therefore, is given by

c(k+k ) vf—=+2 45a
dz y, co yc

1/2

sin
2

when vN&yO, and

c(k+k ) v—|t =+2 45a
dz p~N pc

1/2

cos
2

(35)
D -0.10
I

when v 4g0. Because of this, the phase-space evo-

lution of the particle distribution is dependent upon
the signs of both v and 4. For the group-I class of
orbits (which includes the zero-guide-field limit)

v„&0 and 4 & 0 and the separatrix is determined by
Eq. (36). However, the situation is more complicat-
ed for the group-II class of trajectories. In this case,
while v gO for all the trajectories, 4 is less than
zero for Qo/yk c & 1.25 (for the parameters
chosen), and greater than zero for axial field
strengths above this critical value. Thus one must
distinguish between these two regimes in the
analysis of the phase-space structure of the interac-
tion. Since the single-particle trajectories are seen to
be close to the steady-state orbits, it is expected that
the separatrix shown in the figures [given by Eq.
(36)] is a reasonable approximation.

The initial phase-space electron distribution (at
z=O) is uniform in that d1(/dz=k+k —co/U, o
over —m &f&ir for all the particles. Figure 9
represents the phase-space distribution at a relatively
late point in the linear phase of the interaction. It is
evident, therefore, that the phase-space bunching of
the particles has begun but that the trapping of the
electrons has not yet occurred as the trajectories

-0.04

3.
'D

-0.08—

-0,15-
5n

FIG. 11. Plot of the phase-space distribution for
Qo/yk c =1.1 and z/A, =31.8 in the linear regime.

FIG. 12. Graph of the phase-space distribution for

Qo/yk c =1.1 and z/A, =39.8 at saturation.

remain unbounded. In contrast, Fig. 10 represents
the phase-space distribution at saturation, and it is
clear that while two particles remain on unbounded
orbits outside the separatrix, the bulk of the elec-
trons has been trapped. The results shown here are
in agreement with those found by Sprangle et al. "

It was pointed out previously that the phase-space
behavior of the electron beam is somewhat different
when 4~0. This discrepancy arises from the fact
that the electron velocity is greater than the phase
velocity of the ponderomotive wave [equal to
cu/(k++k )] at peak growth (dl(/dz &0) when

4&0, but less than the phase velocity of the pon-
deromotive wave when 4 gO. This can be illustrat-
ed by consideration of the small-signal gain in the
single-particle regime, *'

16P', d8 8

where 8= —, I.dittldz. T—herefore when 4 & 0 peak

gain occurs for 8=—1.3 and d1(/dz &0. However,
in the opposite case when 4&0, the peak gain
occurs at 8=1.3 and d1(/dz &0. This type of
phase-space behavior is, indeed, found in the simula-
tion and is evident in Figs. 11 and 12 in which we

plot the phase-space distributions for Qo/yk c =1.1

and z/A, =31.8 (in the linear regime) and
z/A, ~=39.8 (at saturation). The separatrix in these
figures was calculated from Eq. (36). Note that
while the bulk of the particles is trapped on bounded
phase-space trajectories at saturation (and that ex-
treme phase bunching has occurred), a greater pro-
portion of the particles appears to be outside the
separatrix on unbounded orbits than in the other
cases shown. However, this observation must be
made in view of the fact that the single-particle or-
bits resemble those shown in Fig. 3, and the orbits
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are widely divergent from the steady-state case.
Thus the separatrix is difficult to determine precise-

ly, and may differ greatly from that shown.

V. SUMMARY AND DISCUSSION

The principal objective of the study described in

this paper is to examine the effect of an axial guide
field on the nonlinear stage of the FEL interaction.
Previous studies of the linear regime have re-

vealed that large enhancements in the growth rate
are possible, and the primary focus of this work is
directed toward the question of whether enhance-

ments in the nonlinear efficiency are possible as
well. To this end, a self-consistent set of field and
particle orbit equations is derived for a FEL ampli-
fier which describes the evolution of both the wave
amplitudes and trajectories for an ensemble of parti-
cles. It is important to observe that although no
particle distribution function is explicitly included
in the analysis, the source currents used in
Maxwell's equations constitute time averages over
the microscopic electron currents, and the level of
the formulation is kinetic. The equations are then
integrated numerically as functions of axial position
subject to initial conditions which describe the in-
teraction of a uniform electron beam with the guide
and wiggler system. In fact, entry of the beam into
the interaction region is effected by means of an adi-
abatically increasing wiggler amplitude which
reaches a constant level after ten wiggler periods.
Finally, inclusion of fluctuating space-charge fields
in the formulation permits analysis of both the
single-particle (Compton) and collective (Raman) re-
gimes of operation.

The effect of the initial adiabatic increase of the
wiggler field on the single-particle orbits was con-
sidered by numerical integration of the orbit equa-
tions in the absence of electromagnetic and electro-
static fields. The purpose of this phase of the
analysis is the determination of the types of orbit
which result; in particular, whether the electron or-
bits resemble the steady-state (helical) trajectories
upon which the linear theories of the interaction are
based. As such, the question of the relevance of the
linear theories to both the simulation and to actual
experiments is addressed. On the basis of this

work it was concluded that, for the configuration
used, the electron orbits deviate only slightly from
the helical trajectories except when Qo-yk c, where
the orbits are seen to execute large-scale oscillations
about the steady-state trajectories. As a result, the
linear theories are expected to be relevant over a
wide range of parameters.

In fact, the numerical integration of the coupled
particle-field equations bears out this conjecture.
The results shown in Figs. 4—6 show that (except
when Qo-yk„c), after an initial transient phase, an
extended region of linear (i.e., exponential) growth
occurs with growth rates which are in excellent
agreement with the linear theory (see Fig. 7). Even
in cases where substantial deviations from the
steady-state trajectories occur, the growth rate is
seen to oscillate about the predicted linear result

(Fig. 6). Saturation is found to occur by means of
particle trapping in the ponderomotive potential,
and substantial enhancements of more than 100%
are observed over the efficiency in the absence of an
axial guide field. The greatest enhancements occur
for parameters consistent with the group-II type of
orbit and relatively large axial guide fields
(00-1.2yk~c) which is consistent with the results
found in the experiment at the Naval Research Lab-
oratory using the VEBA accelerator. ' It should be
noted, however, that such enhancements in the effi-
ciency correspond to decreases in the axial velocity
of the electrons (and to increases in the transverse
velocity) due to the presence of the axial guide field
and, therefore, also correspond to decreases in the
resonant frequency of the interaction.

Finally, it should also be remarked that these re-
sults have been obtained for a monoenergetic elec-
tron beam. Introduction of a finite energy spread
can have important consequences on the growth
rates and saturation levels. In fact, recent results'
using a full-scale particle simulation indicate that
decreases in the efficiency are to be expected when a
finite energy spread occurs.
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