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%e present and discuss a theory for hydrodynamic effects in forced-Rayleigh-scattering

experiments. The efficiency of phase-conjugate wave-front generation by forced Rayleigh

scattering varies significantly with the nature of the solvent and the scattering angle.

Acoustic effects become important for small scattering angles and times shorter than 0.5 ns

under which conditions the simple thermal-diffusion theory fails. The phase-conjugate re-

Aection efficiency predicted by our theory at short times is much smaller than that predict-

ed by the thermal-diffusion theory, and thus need not obscure other quantum electronic pro-

cesses.

I. INTRODUCTION

%hen mutually coherent laser beams cross in an
absorbing medium, an interference pattern is formed
which is capable of heating the medium nonuni-

formly. One result of this nonuniform heating is a
grating of refractive-index variations that can
Bragg-scatter a third beam. Since the refractive-
index variations in the steady state are proportional
to the temperature fluctuations induced by the
crossing beams, this phenomenon has been termed
"forced Rayleigh scattering" and has been used to
measure thermal conductivities and coefficients of
elasticity in liquid, solid, and liquid-crystal media.

%'hen the third beam has the same wavelength as
the initial two and propagates in a direction opposite
one of them, the scattered beam propagates back in

the direction opposite to the remaining beam. This
scattered wave is termed a "phase-conjugate" replica
of the initial object beam because its wave fronts
match those of the object beam exactly except that
the sign of the time appears reversed. Thus forced
Rayleigh scattering can generate conjugate wave

fronts in a manner analogous to saturation, the Kerr
effect, and the other phenomena of degenerate four-
wave mixing. It has sometimes proved experi-
mentally difficult to separate the effects of forced
Rayleigh scattering from those due to quantum elec-
tronic phenomena of greater physical or chemical in-

terest. 5 Recent experimental results have demon-
strated that high conjugate wave-front generation ef-
ficiencies can be achieved in media where only the
forced Rayleigh mechanism is significant. These
experiments utilize short laser pulses and operate in
a transient time regime incompletely described by

the standard thermal model. %e have performed a
full hydrodynamical calculation including the ef-
fects of sound waves as well as thermal diffusion on
the amplitude of the scattered conjugate wave.
These calculations confirm the validity of the stand-
ard model for time scales longer than 1 or 2 ns.
However, our results indicate that the thermal
model breaks down complete)y for times shorter
than 0.1 ns and that a number of interesting phe-
nomena then occur.

The physical interpretation of the effects revealed

by the hydrodynamic calculation is fairly simple.
The index-of-refraction grating which scatters the
conjugate wave in the steady state results mostly
from variations in the density of the medium. Since
these density variations result from a nonuniform
heating, their presence implies that differential ex-
pansion of the most strongly heated parts of the
medium has taken place. However, in the initial few
picoseconds after the energy has been deposited, the
medium has not yet had time to expand. The densi-

ty is thus constant, and any index change is due to
the intrinsic variation in the index of refraction with
temperature at constant density. Subsequently,
sound waves produced by the nonuniform heating
propagate across the medium and begin the expan-
sion process. The propagation of these pressure-
density waves gives rise to an oscillating refractive-
index variation and an oscillating reflection efficien-
cy. Finally, the sound waves damp out, and the usu-
al thermal-diffusion mode becomes dominant. Qnly
in this final time regime (the onset of which occurs
in roughly 1 ns) is the usual model adequate. Our
results imply that other nonlinear optical phenome-
na can be experimentally separated from forced-
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Rayleigh-scattering effects by performing experi-
ments in the shortest possible time interval.

Earlier discussions of oscillatory reflection effi-
cienries in four-wave mixing concentrated on effects
unique to absorbing molecular crystals. Our calcu-
lations are based on a model in which only the index
of refraction and hydrodynamics of the transparent
host material matters, The absorbing speries is as-
sumed to deposit the optical energy as heat in the
medium in a time short in comparison to all other
time scales in the process and thereafter to have no
effect upon the scattering. Such an approximation
is valid for many media when the absorption depth
of the medium is many times larger than the grating
spacing. The time evolution of the oscillations
predicted by our model differs markedly from those
reported in molecular crystals. %hile the effects
predicted by our calculations have not yet been
directly observed, the known parameters of a num-
ber of solvent-dye systems imply that they can be
observed and exploited srientifically.

k& ———k(z cos8 —x sin8). The medium has an un-

perturbed index of refraction of no and a constant
absorption constant P. Inside the medium, the ob-
ject and initial pump amplitudes obey the equations

dg'( pcos0 ——8'i ——)x' 8' —~xo8'i,
dz 2

where the parameters

5no( r, t)u
xo(r, t) =

describe the coupling due to the sinusoidal index-
of-refraction variation

n (r, r) = no+ [—, 5ne(r, r)e' q '+c.c.]+5no(r, r)

II. CALCULATIONS

A. Electrodynamics

Conjugate wave-front generation by forced Ray-
leigh scattering can be divided into two stages when
the two pump beams are mutually incoherent. In
the first stage, an object beam Eo(r, t) interferes
with the forward propagating pump beam E&( r, t) to
write a grating of index-of-refraction variations in
the medium. In the second stage, this index grating
scatters the second pump beam [E2(r,t)] into a
beam which propagates as the phase conjugate of
the object beam and which is characterized by the
electric field E,(r, t). ' Since this paper emphasizes
the dynamics of the index grating, we shall simplify
the electrodynamics of grating writing and scatter-
ing as much as consistency allows.

A typical wave-front conjugation geometry is
modeled in Fig. 1. The electric fields have the form

EJ(r, t) = —,8'J(r, t)e ' +c.c. (I)

The object wave propagates in the negative direction
along the z axis with amplitude 8'0(r, t) and wave
vector ko ———(now jc)z = —kz. The forward pump
beam has amplitude 8'&( r, t) and wave vector

Z=a
ik

FIG. 1. Geometry of the four-rvave-mixing experiment
considered in the paper.

with amplitude 5n&( r, t) and grating wave vector q,
and the nonosrillatory change 5no which results in
thermal defocusing. The waves fulfill the boundary
conditions

A, , 0«ter,8', (z =a, r)=
0, otherwise

Ai, Ogt gtp

0, otherwise

at the plane z =a which bounds the nonlinear medi-
um. The laser pulse length is t&.

The two waves form an interference pattern in the
medium. The light intensity varies as

5'( r, r) = ( g'08')e' q
' ' + 8'08'i e ' q ' ' ),

8~

where q = ko —ki is the characteristic wave vector
of the resulting grating and

~ q ~
=q =2k sin(8/2).

The light absorbed by the medi. um is converted to
heat, and the spatially osrillating part of the intensi-

ty gives rise to a spatially oscillating heat production
per unit volume

5Q&(r, t)=p5I&(r, r) .

This heat production produces the index-of-
refraction variation which couples the waves and
scatters the conjugate wave front. A similar term
proportional to the average light intensity leads to
the index change 5no( r, t).
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Because the index of refraction does not instan-
taneously respond to changes in the heat flux, it is
not possible to solve Eqs. (2) and (3) except by nu-

merical methods. For sufficiently weak amplitudes,
one can ignore the coupling between the forward

pump and object beams and set the right-hand side
of Eq. (2) to zero. This assumption facilitates
analytical solution; however, it introduces errors in
the description of wave-front conjugation that be-
comes significant whenever the theoretical efficiency
exceeds a few percent.

The backwards pump beam pro~agates through
the medium with wave vector k2 ———k &. %'ith
the undepleted pump approximation its electric field
amplitude is described by

A,(t)exp, t«t&t~+t~, 8~90'
8'2(r, z) = 2cos8 '

0, otherwise

(9)

where td is the delay of the backwards propagating
pulse. It is convenient to assume that this wave is
incoherent with the object and first pump wave. In
this case, only one grating —the grating with wave
vector q—mediates the wave-front conjugation pro-
cess, and some of the mode-coupling effects that
complicate many other treatments of four-wave
mixing can be ignored. ' ' lt is also assumed that
the interference between the backward pump and
phase-conjugate beam makes no contribution to the
index grating.

The bulk of this paper concerns the time evolu-
tion of the index-of-refraction grating which results
from the deposition of heat in the medium. The
spatially oscillating part of the index of refraction is
assumed to have a negligible imaginary part
(5P «k 5n). The spatial oscillations in the index of
refraction scatter the second pump wave, giving rise
to the phase-conjugate beam which propagates with
wave vector k, = —kp. The electric field amplitude
of the phase-conjugate signal wave obeys

—g +—g = ig (r, g)g2(g ),
Z

where 8', (z =0)=0, and the interaction region is as-
sumed small enough that retardation effects can be
ignored (i.e., a g ct&).

The solution to Eq. (9) which described the ampli-
tude leaving the medium is then

—ip' (cos8)A2$nq(f) s fd Q p Q pp+fd~', (a, t) =
0, otherwise

where p(cos8) =co2e t"~"'s{1 —e +) /P2c z, and
the intensity in the conjugate wave is

I,{a,t)=
~

8', (a, t)
~

4m
(12)

Ap
2

(14)

The Bragg efficiency is the quantity usually mea-
sured in forced-Rayleigh-scattering experiments and
cannot exceed unity. The terms neglected on the
right-hand side of Eq. (2) are proportional to
[7)gt&,0)]'~z. Thus the present analysis is correct
only for gp(t&, 0) && 1.

For simpler discussion, it is convenient to define a
single figure of merit equal to the efficiency for unit
input intensities

rlh(tp, td ) rhp(tp) td )
F(cos8stp std ) p p p pI,I2 IOI,

(15)

where IJ =(nc/4m)AJ. . A related quantity which de-
pends only upon the hydrodynamic parameters of
the solvent is defined in Eq. (24).

B. Refractive-index fluctuation and hydrodynamics

As shown above in Sec. II A, theoretical computa-
tion of the image wave intensity I,(t) and the
phase-conjugate reflectivity F or the conjugation ef-
ficiency g~ requires the knowledge of the
refractive-index fluctuation 5nq(t) at wave vector q.
To obtain 5nq(t), we first express it in terms of the
density and temperature fluctuations in the medium

in cgs units.
Two efficiencies can be defined for this wave-

front conjugation process. The phase-conjugate re-
flection efficiency

I, i
8', (z=a, t)

i
Ch

ny(hh 4)= (13)

I '
i
8', (z =a, t)

i
'Ck

gives the ratio of the conjugate wave intensity to the
object wave intensity. If g~&1, the wave-front
conjugator is said to act as a phase-conjugate mirror
with gain. The Bragg-scattering efficiency relates
the phase-conjugate wave to the backwards pump in-
tensity'

f~+t

J, ~

8', (z =a, t)
~

'dt
gp(t»tg)= z +i

J i
{)',(z =O, t)

i
'dh
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5n»(t) = p»(t)+ T»(t),
Bn Bn

where p»(t) and T»(t) are the amplitudes of small
sinusoidally varying components of density and tem-
perature, respectively. Typically, the fluid medium
used to generate the phase-conjugate wave would
have a solventlike cyclohexane as well as some ab-
sorber, e.g., a-napthyl-phenyl-oxazolc (a-NPO). %e
assume that the only effect the absorbing species has
is to deposit the absorbed laser-beam energy uni-
formly in the medium, Thus we treat the fluid
medium in which the thermal grating is created as
essentially s one-component system insofar as the
evaluation of 5n~(t) is concerned. To obtain p~(t)
and T»(t), we use the equations of linear hydro-
dynamics in which the temperature equation has a
source term at wave vector q as is physically re-
quired for thc phenomena of forced Rayleigh
scattering [see Eq. (8)].' " Such a set of hydro-
dynamic equations is given below for the variables

pk(t), Pk(t), and Tk(t); since only the longitudinal
part of local fluid velocity v enters the equations,
we use the velocity variable P»= iq —v The. equa-
tions are the continuity equation

Bpk(t)
+pAk(t)=0.

volume. The solution of these hydrodynamic equa-
tions also involves (i) the specific heat at constant
pressure Cz through the thermodynamic identity

2

Bp ()p
Cp ——C„+ po

p P y

and (ii) the adiabatic sound speed eo
=[y(Bp/Bp)r]'/, where y=C»/C„. In writing the
right-hand side (rhs) of Eq. (17c), we have used Eq.
(8) for the heat production rate from the thermal
grating.

In obtaining the solution to Eq. (17), appropriate
to the phenomena of forced Rayleigh scattering, we
assume that the forcing source term, rhs of Eq. (17c)
is dominant over the initial thermal fluctuations
pk(0), t(t, (0), and Tq(0) and ignore the latter. With
these assumptions, we have exactly solved the hy-
drodynamic equations for p&(t) and T&(t). Using
Eq. (16), we can express the result for the
refractive-index fluctuation 5n&(t) in terms of the
hydrodynamic Green*s function 6(q, t) as

Sn»(t) =P f G(q, t') 8'0(t t') 8', (—t t')dt', —

the Navicr-Stokes equation

k2Tk(t)
BT

and the thermal-diffusion equation

~To(t) eppoC„+To gk(t)+trk 2Tk(t)
Bt

=P 8', (t)$', (t)5(k —q) . (1'7c)
8m

In the above equations, rt, g, lr are the thermal trans-
port coefficients of shear viscosity, bulk viscosity,
snd thermal conductivity, respectively; the equation
of state for pressure p =p(p, T) has to be used to ob-
tain the thermodynamic derivatives (Bp/Bp)z snd
(Bp/BT)& and C„ is the specific heat at constant

2@xi—pai+v ~ g

G(q, t) = 8
(a~ —aq)(a~ —a3)

4x2 —pa2+v ~ g+ 8
(a2 —a~ )(a2 —a3)

24X3—IMa3+ V
+ 8

(a3—a()(a3—a2)

» Eq (19), &=(Bn/BT)», p=(Bn/BT)g„q', and
v=(Bp/Bp)r(Bn/BT)»q' with D„=( , rt+()p ' as-
the kinematic longitudinal viscosity and (Bn/BT)z
=(9n/BT)p +(Bn/Bp)p(dp/BT)p. In the usual ap-
proximate theory of forced Rayleigh scsttering-
which we discuss in Sec. IIC—an assumption of
neglecting (Bn/BT)& (and hence k and p) is made. '
Equation (19) also contains a&, a2, and a3 which are
the complex decay constants of the q-dependent hy-
drodynamic modes and src the solutions of the cubic
dispersion relation

[z +z (D„+yDr)q2+z(ccq +yDrD„q )+(coDrq )]=[(z+a~)(z+a2)—(z+a3)]=0.

Even though we usc thc full solution to the cubic
equation, to obtain ai, a2, a3, it is useful to note that
in the range of wave vectors (q & 5X10 cm ') cn-

i

countered in the forced-Rayleigh-scattering experi-
ments, the small-q solution is quite accurate. For
small q one gets



RASHMI C. DESAI, M. D. LEVENSON, AND J.A. BARKER

a(= —lcoq+I q +O(q ),
a2 ——+icoq+I q +O(q3),

the terms involving e ' and e ' in Eq. (19) lead
to damped oscillatory behavior for the solution.
Since a2 ——a], we introduce the quantities
4~, 4~, Ã3 and rewrite Eq. (19b) as

a3 D—T—q'+ 0 (q'),
where I = —,[D„+Dr(y 1)]—with Dr sl(p——C~).
Thus the pair of complex-conjugate roots a],a2 is
the acoustic modes, and a3 is the thermal-diffusion
mode. Owing to the propagating nature of a],a2,

]

G(q t)a]gfp+a]g ie+a3@3+
(19b')

From Eqs. (19a},(19b'), and (6) we obtain the result
for the refractive-index Auctuation 5n~(t) as

5nq(t)= '

Pnc ~a~i —CX]t —a3t[2Re[C&(1—e ')]+@,(I —e ')], if r gt~8~ poC

nc ~
sr poC„

This solution can be substituted in Eq. (11}for scattered field 8', (a, t), and then the use of Eq. (13) would lead
to the result for the phase-conjugate reflection efficiency q~. For arbitrary values of td and t&, the result is
quite complex. The quantity g& is proportional to I]Io, the product of incident pump and object wave identi-
ties (I; =net; /4n). It is also proportional to the angle-dependent quantity p(cos8) ddined in Eq. (11). The
hydrodynamic aspects enter q& through 5n&(t), and to highlight these we define a new figure of merit
F~(cos8, tz, td) and write the figure of merit of Eq. (15) as

F(cos8, t~, td ) =p (cos8)Fq(cos8, t~, tq) .

The parameter F~ isolates the purely hydrodynamic part in the figure of merit. In Sec. III, we show typical re-
sults for Fh for the case with no delay between two pump beams: td ——0. Even in this limit, the expression for
Fj, ls involved,

2 (1 e 3P) (1 e 3P)
Fh(cos8, tp, tg ——0)= 4'0 —2@04'3 +4'3 +24]4 )

(poC„)' a3tp 2a3tp {a]+a

2 (1—e '~) (1—e '~)
+2Re ) —20@,

2a)tp a]lp

(
—[a)+0.'3 }tp

)+24)@3
(ai+a3)tp

where a] a2=ai a3 arc defined in Eq, (20)
are defined in Eqs. (19b},(19b'), and

3pl

0

approximate limits of this expression in order to
understand the importance of different terms in Eq.
(25) at various times. There we also discuss the ef-
fects of nonzero delay td between beams 1 and 2.

The angle dependence of F~ results from the depen-
dence of a&, az, and a3 upon q. Equation (25) is the
central result of this paper. Even though it is a
closed algebraic expression, it appears quite complex
due to the inclusion of all the three hydrodynamic
modes exactly. In Sec. II C, we first look at various

C. Limiting behavior and various approximations

Irl this subsection, wc shall consider various limit-
ing behavior and approximate forms of the hydro-
dynamic Green's function G(q, t), Eq. (19), and the
figure of merit F, Eq. (24).
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1. Long-time behavior

For most fluids, it is appropriate to ignore the
acoustic modes ui and a2 at long times. This is be-
cause for q-10 cm ', typical of optical scattering
experiments, coq&DTq2 [see Eq. (21)]. Also, the
variation of refractive index with temperature and
density in typical fluid media is such that (Bn /BT)&
is small compared to (Bn/Bp)T or (Bn/Bp)&. Thus
often it is appropriate to ignore (Bn /dT)& and set A,

and )u to zero [see defining equation after Eq. (19)].
These two approximations simplify Eqs. (19) and
(25) considerably. The long-time approximation, so
constructed, leads to the usual result which takes
into account only the thermal-diffusion (TD) mode:
One gets

(goq) 8T Cp

Fq Tn(cos8, t~ )

1 Bn

Kq

X 1+ (2e "——,e "——,), (27)
0,'3'

where a3-DTq =«q /(pC&). This result agrees
with the earlier simple theories of thermal grating
effects in four-wave-mixing experiments for phase-
conjugate reflected-wave generation. '

The limiting behavior for large tz is of the form
(A +8/t&+ . ). By co~paring the formal expan-
sion of exact [Eq. (25)] and approximate [Eq. (27)]
expressions for the figure of merit, one can show
that Eq. (27) reproduces the constant A correctly,
but acoustic modes do make a contribution to the
coefficient 8. From the numerical computations
discussed in Sec. III, we find, however, that this is
not significant and the thermal-diffusion approxi-
mation is usually quite adequate when tz is greater
than a few nanoseconds.

I' (cos8, t~, 0)

=p(cos8) —,
Bn tp

poCv
+0 (t~ ) (28a)

FTD (cose tp 0 ) Jp (cos6 )
an

BT poc

For interfnediate values of 0.1—2 ns, the effect of
acoustic modes is to introduce oscillatory q-
dependent behavior in F(cos0, t&,0). These oscilla-
tions are, of course, not present in the thermal--
diffusion theory, Eq. (27). Experiments done at
smail angle 0 (and hence small q) should show such
effects. In Sec. III, we give some numerical results
illustrating the general discussion given above.

4. Delay between pump beams

The general expression for the figure of merit F
with t~&0 is quite complex even when the pulse
widths of the two pump beams are equal, this being
the assumption throughout this paper. So we con-
sider here simpler situations when td&0. If the
pulse width tz is very small, then one may assume
that 8', (a, t) does not vary significantly during the
time interval td &t &t~+t&. In this case, the result
is

Fq(cos8, td, t~ ) = [2Re(a~@,e '")
poC„

+0(t~) .

If one ignores the acoustic modes, as ln Eq. (28h),
one gets constant pressure thermodynamics, whereas
correct physics on the short-time scale involves con-
stant density (volume) processes. Numerically,
(Bn/BT)& is considerably smaller (often by an order
of magnitude) than (dn/BT)z for most fluids. '

Thus the difference between Eqs. (28a) and (28b)
would clearly show up in experiments with t~ short-
er than 0.1 ns.

3. Intermediate times

2. Short-time behavior

On a time scale shorter than a nanosecond, the
thermal-diffusion theory, Eq. (27), gives qualitative-
ly incorrect results. For such short times acoustic
modes ai and n2 become increasingly more impor-
tant. The difference becomes apparent on examin-
ing the small t& limit of the exact and approximate
expressions in Eqs. (25) and (27), respectively. One
gets for small t~,

+a Y e '"]'
(29)

so that I' is proportional to the square of the pulse
width. This is the regime encountered in many
mode-locked laser experiments. If t~ is of the order
of a nanosecond or larger, we find (see results of Sec.
III) that the thermal-diffusion approximation dis-
cussed above is quite good. %'ithin this approxima-
tion, the effect of nonzero delay t~ leads to the result



RASHMI C. DESAI, M. D. LEVENSON, AND J. A. BARKER

4'3e ' (e ' —1) (e '~ —1)/(2o.3'), if td & tp (30a)

I"~ TD(cos8, td, tz ) = tp

2a3t&

If t~ ——0, Eq. (30b) reduces to Eq. (27), the result of
Chiang-Levenson. ' If t~gt&, then for very small

tz, Eq. (30a) also yields the result that I'~ ~0 as tz,
2

but the coefficient is not correct, and one has to use

Eq. (29). If t~ =tz, both Eqs. (30a) and (30b) lead to

Fz~Ã3e 'I'(e '~ —1) (1—e 'i')/(2a3tq) .

Thus in order to explore experimentally the effect of
delay between the two pump beams on the phase-

conjugation efficiency, the simple expressions above

may be used as a guide. They also indicate that the
maximum efficiency occurs for finite td (i.e.,
0&td &tp).

III. RESULTS AND DISCUSSION

In this section, we shall give results of numerical
comparison between Eqs. (25) and (27) in order to
highlight the acoustic mode effects in forced-
Rayleigh-scattering experiments.

Table I gives various constants that we use in the
computation; we have studied three typical solvents:
water, ethanol, and cyclohexane. 14—16

In Fig. 2, we show the results for water and
ethanol. Also, if (i) we use a-NPO as a typical ab-

sorbing species and use P=0.7 (ii) for a, the cell di-

mension in z direction, take 1 cm and (iii) assume
the wavelength of incident laser beams as
3.55 &( 10 cm, then the electrodynamic factor

p (cos8) becomes 0.8 exp( —0.7/cos0) which has the
effect of strongly decreasing F [Eq. (25)] as one ap-
proaches 8=90'. This is the consequence of the
geometry chosen in Fig. 1. (The results for cy-
clohexane are qualitatively similar to those for
ethanol except for the scale—F~ for cyclohexane is
about 100 times larger. ) The solid lines give the re-
sult of including full hydrodynamics as in Eq. (25),
and dashed lines are the thermal-diffusion approxi-
mation. Various values of t& used are indicated in
the figure. Qualitatively, figure of merit for ethanol
is about 100 times larger than for water. For all sol-
vents, the overall magnitude of F~ appears to in-
crease quadratically with t& in the short-time re-
gime.

'When t~ is larger than about 1 ns, thermal-
diffusion theory becomes quite accurate at large

(a) Water

I 6-
I0

tp

2ns

|n 80 {b) Water

I

L 60-

40

tp
2 ns

0.05
0
0 20 40 60 80 100

Scattering Angle (deg)

f'
20- 1.0

0.5 ~

Q ~ i a

Q 20 40 60 80
Scattering Angle (deg)

100-

80 (d) Ethanolc 80-

'E 60-
2ns

o 40

20-

(c} Ethanol

en

20- 1.0
0.1

0: 0.05
0 20 40 60 80 100

Scattering Angle (deg)

0.5
0 ~ I

0 20 40 60 80

Scattering Angle (deg)

FIG. 2. Hydrodynamic figure of merit I'~. variation
with scattering angle and pump beam pulse width t~.
Solid lines, full hydrodynamics [Eq. {25)]; dashed lines,
thermal-diffusion approximation [Eq. (27}].

scattering angles. For shorter times or small angles,
the full hydrodynamic theory predicts a phase-
conjugate amplitude far below that predicted by the
usual thermal-diffusion model. This falloff reflects
the difference between constant pressure and con-
stant density processes illustrated in Eq. (28). The
time required for the transition between constant
density and constant pressure hydrodynamics de-

pends on the wave vector q and hence upon angle.
Since dn/r)T ~&&0, the correct figure of merit Fs
does not fall to zero at very short times. Still, the
effects of forced Rayleigh scattering can be
suppressed by choosing to work at the correct angle
and time scale. Because Bn/BT ~z is relatively
small for water, the suppression of F~ at small times
is less dramatic in comparison to the peak value
than for ethanol and other solvents.

By about 5 ns (results not shown in the figure) the
thermal-diffusion approximation becomes quantita-
tively correct all the way down to scattering angle
8-3. For t& &0.5 ns, thermal-diffusion approxi-
mation is unreliable even qualitatively at all angles.
For t&-1 ns, and small scattering angles (8&30'),
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TABLE I. Constants used in numerical computations.

Quantity'

&p

[(K)-']

[(K) ']

p&&(g/cm')

C~ [erg/(g K)]
C„[erg/(g K)]
«[erg/sec cm K)]
q(poise)
g(poise)
cp{cm/sec)

'See text for notations.

Water

1.33

0.998
4. 18F10'
4. 14X 10
6.04' 10'
0.98 y 10-'
2.75' 10
1.483' 10'

Ethanol

1.361

—4y 10-4

—3X10-'

0.789
2.45X10'
2. 11X10'
1.82' 10'
1.72' 10-'
1.72' 10-'
1.162' 10

Cyclohexane

1.331

—4y. 10-'

0.779
1.82y10'
1.37' 10'
1.37@104
0.96y, 10-'
1.5 &&10-'

1.28X 10'

one sees interesting oscillatory behavior in E~ (and
also ln F) from Eq. (25) which arises due to the
acoustic interference in the thermal grating which is
formed by object and pump waves. Experiments
done in this region of 8 and t~ should observe these
effects. The thermal-diffusion approximation [Eq.
(27) and dashed lines in Fig. 2] of course does not
have these effects in it. Even though we have not
numerically shown effects of varying td, the results
in Sec. II C are simple enough that they may be use-
ful in experimental analysis.

The forced-Rayleigh-scattering experiments per-
formed to date mostly employ Q-switched laser
pulses long enough and angles large enough that the
thermal-diffusion model applies rigorously. Many
transient grating experiments, however, employ
pulses short enough that acoustic propagation ef-
fects can dominate the time profile. In the experi-
ments of Salcedo et ah. and of Nelson and Fayer, the
acoustic waves acted primarily to modify the ab-
sorption constant of the medium, whereas the
present model describes effects resulting from the
variation of the real part of the index of refraction.
The resulting scattered amplitude is 90' out of phase
with the amplitude scattered by absorption gratings,
and the variation of the amplitude is qualitatively
different from that in Eqs. (11) and (19). The

suppression of forced Rayleigh scattering at small
angles and for short time may form a "window"
useful for investigation of other nonlinear effects.
Alternatively, the deviations of the exact hydro-
dynamic response from that predicted by the
thermal-diffusion model can be experimentally
detected and used to refine measurements of solvent
parameters.

In near-degenerate four-wave-mixing experiments
where independent pump and object beam lasers are
employed to probe the dynamics of excited-state
populations, anomahes due to forced Rayleigh
scattering also may appear. * In these experi-
ments the mutual coherence time of the two pulsed
lasers employed is shorter than the pulse length, and
thus the average amplitude of the thermal grating is
zero (5ns)=0. Still, some scattered intensity can
result since I, ~ ((5ne ))&0. The theory developed
here indicates that the forced-Rayleigh-scattering
anomalies on these experiments can be suppressed
by the ratio of Eqs. (28a) and (28b) if the mutual
coherence time of the lasers (which plays the role of
tz in this case) is short enough and if the angle be-
tween object and pump is small enough. This is
contrary to the present experimental practice but
may be useful in the future.

'Permanent affiliation: Department of Physics, Universi-

ty of Toronto, Toronto, Ontario, Canada M5S 1A7.
ID. W. Pohl, IBM J. Res. Dev. 23, 604 (1979), and refer-

ences therein.
2A. Yariv, IEEE J. Quantum Electron. QE-14, 650

(1978);OE-15, 524 (1979),and references therein.
36. Martin and R. W. Hellmarth, Appl. Phys. Lett. 34,

371 (1979).

4R. L. Abrams and R. C. Lind, Opt. Lett. 2, 94 (1978).
5W. Smith, W. J. Tomlinson, D. J. Eilenberger, and P. T.

Moloney, Opt. Lett. 6, 581 (1981).
6R. G. Caro and M. C. Gower, Appl. Phys. Lett. 39, 855

(1981),and references therein.
7J. R. Salcedo and A. E. Siegman, IEEE J. Quantum

Electron. QE-15, 250 (1979); K. A. Nelson and M.
Fayer, J. Chem. Phys. 72, 5202 (1980).



RASHMI C. DESAI, M. D. LEVENSON, AND J.A. BARKER

sB. Fischer, M. Cronin-oolomb, J. O. %hite, and A.
Yariv, Opt. Lett. 6, 519 (1981).

9H. Kogelnick, Bell Syst. Tech. J. 48, 2909 (1969}.
' R. D. Mountain, Rev. Mod. Phys. 38, 205 (1966}.
"L. Landau and E. Lifshitz, Fluid Mechanics (Addison-

%'esley, Reading, Mass. , 1959).
~2R. C. Desai and R. Kapral, Phys. Rev. A 6, 2377

(1972).
~3K. Chiang and M. D. Levenson, Appl. Phys. B 2+, 23

(1982).
t4I. L. Fabelittskii, Molecular Scattering ofLight (Plenum,

New York, 1968), p. 33ff.
~5Landolt Bornstein, Numerica/ Data and Functional Re-

lationships in Science and Technology, Group II
(Springer, Berlin, 1962), Vol. 8, pp. 5—573ff.

I6K. F. Herzfeld and T. A. Litovitz, Absorption and
Dispersion of Ultrasonic Waves (Academic, New York,
1959).

~7J. J. Song, J. H. Lee, and M. D. Levenson, Phys. Rev. A
17, 1439 (1978).

ISS. Saikan (private communication).


