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Dispersion-theory techniques, previously used to calculate the two-photon exchange po-
tential V»(R) between two neutral systems, are used to study V»(R) acting between a neu-

tral system A and a charged system B. For the case when A is an atom and 8 an electron,
general results are given for all corrections of order k, /R or of order (ao/R)' relative to the
leading E. term.

I. INTRODUCTION

Detailed calculations of the two-photon potential
(van der Waals interaction) between two neutral
atoms, at an arbitrary separation R greater than a
few atomic radii, have been carried out by a variety
of methods. ' The most general of these calcula-
tions include magnetic effects as well as higher mul-
tipoles. The results can be expressed in terms of the
frequency-dependent electric and magnetic polariza-
bilities of the atoms, in a variety of forms. '

Two-photon exchange also generates potentials
between a neutral and a charged system. Some pro-
gress has been made in computing the potential in
this case, but, as far as we know, a result valid at
all R has not been given. In this paper we calculate
the two-photon exchange potential between a charge
and a neutral spinless atom at all separations greater
than a few atomic radii. The result can again be ex-
pressed in terms of electric and magnetic polariza-
bilities of the systems. In order to put these results
into a form similar to that obtained for neutral sys-
tems, it is again necessary to use an expansion in in-
verse powers of the masses of the two systems. In
the present case, if the charged system is an electron,
this amounts to an expansion in the ratio of the elec-
tron Compton wavelength A,, to the separation R.
This ratio is larger by a factor m„, /m, than the
corresponding ratio in the neutral-neutral case but
still small compared to unity, for R larger than ao,
the Bohr radius. Therefore, the first few terms of
this expansion will provide an accurate representa-
tion of the potential. It is not necessary to expand
in powers of kR, where k is a typical atomic excita-
tion energy.

The potential we obtain could be applied, e.g., to
the scattering of a low-energy electron from an
atom, as long as the impact parameter is greater
than several atomic radii. For an electron in a
bound state with radius larger than the size of the
ionic core, the determination of the two-photon ex-
change potential between the electron and the core is
rather subtle because of the necessity of removing
effects corresponding to iteration of the Coulomb
interactions, which are normally included in the
determination of the bound state wave function,
from the overall two-photon exchange potential.
This latter problem will not be discussed here.

Our method of calculation is the dispersion-
theoretic approach that we have previously used to
calculate the potential between neutral systems. '

With a few minor changes, this method can be
directly applied to the present case. It is only re-
quired to calculate the extra polarizability corre-
sponding to a charged particle. We show in Sec. II
that the main difference between this polarizability
and that of a neutral system is that, for the charged
system, there is a pole at zero energy in the electric
polarizability considered as a function of photon en-
ergy. This pole contributes a characteristic term to
the charge-atom potential whose variation with R is
distinct from the neutral-neutral case, where poles
occur only at complex photon energies. Neverthe-
less, as will be seen, this term can be written in vari-
ous forms analogous to those describing the
neutral-neutral potential. If the charge is a. point
charge, the zero-energy pole term generates the total
potential. If the charge itself has a structure, as for
an ion, there is an additional term identical to that
between two neutral systems. The details of this
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analysis, as well as some comments on the results
are given in Secs. II, III, and IV. Further comments
and a comparison with previous work are given in
the concluding Sec. V.

II. T%0-PHOTON EXCHANGE BET%EEN
A NEUTRAL AND CHARGED PARTICLE

I p„(k,k', Pg )

tttA [TE;pv ~E ( trA ~ t )+ TM;pv FM ( tr A r t )]

Here k and k' denote the four-momenta of the emit-
ted photons and

Although thc dispersion theory approach to long-
range forces has been used primarily to discuss the
potentials arising from multiphoton exchange be-
tween neutral particles A and 8, much of the for-
malism is applicable when one or both of the parti-
cles are charged. %'e first review the relevant defim-
tions and formulas of Ref. 4 which allow one to ex-
press V~&(R) as an integral involving electric and
magnetic spectral functions pE,p~ and pE,p~ asso-
ciated with A and 8, respcxtively. %e then consider
the form of p~ and p~ when 8 is a charged spin-0

or spin- —, particle.

A. Notation and reviewer of basic formulas

For the case of two spinless particles A and 8,
with masses mz and m&, respectively, the two-
photon exchange potential V2y(R) is given by

The electric and magnetic tensors T~.&„and T~.&,
arc dcfincd by

+k k'PgpPq„—k P~kpP~„

k' P„k—„p„q]

Tst,„„TE„„+——2(k. k'g„„k„k„'—) . (2.41)

The invariant Compton amplitudes FE and F~ ad-
mit spectral representations of the form

I*r"(tJq,t)= —J,dtrq pg(a„',t)'
V (R)=

16m mgmgR

X I dt pqz(t) exp( t 't It ), —(2.1)

1 1+

where the spectral function p2&(t) is proportional to
the discontinuity of F2&(s, t), the two-photon ex-
change contribution to the invariant amplitude
F(s, t) describing the scattering of A and 8. Here

are the usual invariants, with pz,pz the initial mo-
menta and p&,p~ the final momenta. Explicitly,

where d 4 is the volume element in the two-photon
phase space and Iz„ is the tensor amplitude for
two-photon emission by A, with I &„a similarly de-
fined absorption amplitude. The quantity so is the
value of s at the scattering threshold,

so —(m„+m~) .2

and Io~ is a spectral density, determined by the
discontinuity of the analytic function F~ across the
cut on the real axis of the complex oz plane.

Although particle 8 is charged, the analysis given
in Ref. 3 for the Compton amplitude still holds be-
cause 8 is on the mass shell. The tensor amplitude
I &„(—k, —k';P&) for two-photon absorption by 8 is
therefore given in terms of tensors T&.&„and form

factors F~(o.,t) by equations entirely analogous to
(2.5)—(2.9) with the modification that o.z and oz
are replaced by e~+ and o~, respectively. Here

eg ——(pg+k), crg
——(pg+k')

Substitution of the spectral representations for the
Fz 's into (2.3}and reversal of the orders of integra-
tion yields

Thc general form of I p~ as dctcrmincd
Lorentz covariance and current conservation [see
Eq. (2.44) of Ref. 3) is
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—mg ma
pxY(I;) = do'gcEo'a Px(o g, ~)

16m

Xpy(o a, &)

X 4xr(o g, o tt, t) '(2.7)
with

@XY(o~ oa ~)

6 4 TX.'Ty

1
(2.8)

1

oa —oa oa —oa

way of looking at this comes from recognizing that
each power of t in @xY generates an additional fac-
tor of R in V2&(R). Therefore, compared with
the leading term, the terms we are neglecting are

down by two powers of Aa/R, where Aa ——ma is
the Compton wavelength of particle 8. However,
we will keep terms which are down by only one
power of Xa/R.

%ith these approximations we get, using Eqs.
(2.57) of Ref. 4 with gq and gq replaced by unity,

(i) OTAL gXY(~a) —gXY(~~ )
+XY ~'XY-= (2rA rB )

2m' ma ~a +A

(2.9)

A, a A a pp,
'

TX TY = TX pvTY IJ(,
' v' g g

The integration in (2.8) can be carried out exactly
but the result is complicated and unilluminating. A
substantial simplification is obtained by neglecting
the ratios t/mz, t/ma, and t/mama relative to uni-

ty. In our previous work this was a marvelous ap-
proximation because the important values of t are of
order (am, ) or less; with m„and ms both atomic
masses, all these ratios are of order 10 ' . In the
present case, mz is still an atomic mass, but 8 will
be identified with the electron so that I;/ma is at
most of order a -10 . Thus, an approximation
which neglects t/ma is still justifiable. An alternate

where

gsE(r) =erst(r) =2 (2+2 +—r )(tan 'r ')r

(2.10a)

gE~(r)=g~s(r)=r —(2r +r )(tan 'r ')r ',
(2.10b)

and

0' g —t?lg +t /2 o a —ma + t /2

P?lg ]ij2 ~ a
m ]1/2

(2.10 )

Corresponding to (2.9) we have

I

V2r{R)~Vq'r'(R)= g f dt exp( t' R)—f, f, px(crq, t)pr(o tt, t)4xr,
(4n) R x, r m& m& 77 7T

(2.11)

which exhibits the long-range part of V2r{R) in terms of the various spectral functions px(o, t) associated with
the I'x(o, t), and the structure-independent functions @xY(o.&,o a, t).

8. Spectral functions p~(a, t)
for charged particles (Ref. 8)

For a particle 8 with charge e, the spectral func-
tions px needed in (2.11) may, to an accuracy suffi-
cient for our purposes, be taken to be those given by
the Born approximation to Compton scattering.
The relevant Feynman diagrams, drawn to describe
photon absorption by a spin-0 or spin- —, particle, are
shown in Fig. 1. For the spin-0 case the relevant
tensor amplitude I"&„can be immediately written
down as the sum of the contributions from the dia-
grams (a), (b), and (c) in Fig. 1:

I
&t PB

I
, ), PB

)ft. , V

PB

(a) (b) (c)

FIG. 1. Lowest-order Feynman graphs corresponding
to the amp1itude for two-photon absorption by a charged
spinless particle. For a spin-

2 partic1e, omit graph (c).
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(Ptt+ k)„(Ps —k')q
I ~„——e

(Ps+k')„(Ps —k)q"—g„„, {2.12)
D

use the relation py„= —y p+2p„ together with the
01rac equation to eliminate the m& terms in the
numerators. %'e then use the identity

{2.20)

(2.13)

Using the relations D =Pa k —k'k,
D'=Pg k' —k' k, and t =(k +k') ~2k k' on the
photon mass shell, onc finds that (2.12) may bc
rewritten in the form (2.3), with

e ~(gms + t)

2-,DD 2-,DD

Since ~&+gz+t =2m+ one may ~rite

1 1 1 1+I 2 + 2
m~ -og m~ -cr~

to eliminate the remaining products of three gamma
matrices in the numerators. Finally, we evaluate the
resulting expression, taken between u(p~, ~') and
u (p~, ~), in the limit w =w (no spin flip). Using the
relations

(a'y„u) =(2mP" yP )(u'u)

and (9 1' 1'5Q) =0, valid for 'P =1; one flinds ln this
way that

so that (2.14) takes the form 2M, gLq„e——~, (2ms Ts q„) . .
P~ DD' (2.21b)

Fx=fx{t)

e (gms+t)
fE(t)= fM(t)=

2m' E 2' g

On comparison with the spectral representation for
F~ it follows that

pF„rrfE(t)5(tr s ——ms ), —
(2.18)

pfg rrf~(t)5(rr tt ———ms ) .
For the spin- —, case a little more work is required.

The Feynman amplitude for photon absorption is
given by the sum of Figs. 1(a) and l(b) as

(2.19a)

Because our definition of the potential V2&{R) is
tailored for two spin-0 particles, and the convention-
al kinematical factors in the S matrix are (m /E)'
for a spin- —, particle when uu is normalized to unity
and (2E) for a sp1n-0 partlclc, wc define thc
spin- —, analog of (2.12) by multiplying L„,by 2m&..

On use of (2.3) with A ~8 and of Eq. (2.22) we see
that, for a spin- —, particle,

168 Ply
~E=

PgDD'

in Born approximation. It follows from (2.23) that
in the spin- —, case Fx again has the form (2.16)
where now

1+ Vp Xv
pg +lg —p1g

16e mg
2 3

fE{t)= p fM(t)=0.
(4mg —t)t

Here ~ denotes the usual spin four-vector associated
with the spinor u via the relation I',yy"u =u. The
problem of extracting an appropriately defined
spin-independent part of (2.19) was discussed in Ref.
8. %C first rationalize the denom1nators in A&„and

pE(tr s, t) =n fF(t)5(tre —ms ),
Pm(o as&) =O .
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Upon comparison of (2.24) and (2.17) we see that the
difference between the fx(t) for the spin- —, and

spin-0 cases is of order t/mq. Since, as discussed in
Sec. IIA, we are neglecting terms of order (Az/R)
relative to the leading term in Vqz(R), the results
which we will obtain when 8 has spin —, will also be
valid when 8 has spin 0. It should be noted that we
have treated the spin- —, 8 particle as a purely Dirac
particle, thereby ignoring effects coming from any
anomalous magnetic moment which 8 may have. If
8 is an electron, the anomalous moment is of course
very small.

III. V2q(E. )
FOR THE CHARGED-NEUTRAI. CASE

We now study the form of Vtz(R) for the case of
a neutral spinless particle A and a charged spin- —,

particle 8. We shall often identify 8 with the elec-
tron and then set m~ ——m, .

A. Further approximations

Using Eqs. (2.11) and (2.24) one finds that

V"„'(R)= V' "(R)+V",'(R), (3.l)
where

I

VxE(R)= 4 f dr exp( t'i'—) f, px(a q, t)fE(r)@xE
(4n) R mg 77

(3.2)

and 4~E is evaluated at 0 ~
——m~. In keeping with

the approximations already made in simplifying the
form of 4~&, we will neglect t relative to m~ in
fE(&):

{3.3)

We shall also temporarily make the replacement and the abbreviation

{3.4b)

V2&(R). Inclusion of the t dependence of p, e.g., via
a power-series expansion in t about t =0, generates
the higher multipole contributions, which we discuss
in Sec. IV. We follow a similar approximation
scheme here. On introducing the variable

p",(~', r) px(~', 0) . (3.4a) px«)—=px«~ o (3.4c)
In the neutral-neutral case, this replacement isolates
the dynamic dipole-polarizability contribution to

I

we get, on using (3.3) and (3.4) tn (3.2),

Sm8mA& ~ exp( —t R) dk g (i)
VgE(R) = dt px{k)~'xz .

2k'
~A ~+A

thereby neglecting terms of order t/km', since
k & a m, and the relevant region for t is t &(am, ),
this quantity is of order m, /mz ~10 . Alterna-
tively stated, this approximation corresponds to the
neglect of terms of order (m, /mz)(ao/R) relative
to the leading term in V~E'. Furthermore, because
o.g ——mg in (3.5) we have

(i) t 1/2

7g ~V+
2m'

(3.6b)

With these IeplaceIDents, the denominator in
takes the form

To proceed further, it is essential to simplify the
expression (2.9) for +~E. Note that we can make
the replacement

t''
~'XE~

2 gXE
4m' mgk

2k
gXE

Finally, we shall neglect the quantity (r/4kma )2 rel-
ative to unity. Since each positive power of t in the
integral (3.5) corresponds to an additional factor of

in the potential and k&a m„ the terms we
neglect in this way are of order (ao/R), when
m~ ——m„relative to the leading term in V2 (R).
Thus, they only contribute at the same level as those
coming from the octupole polarizability of the atom.
On making the replacements (3.6a), (3.6b), and

ra rg -+ 4k jr— — (3.7)

in (2.9), we get
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On substituting (3.8) into (3.5)

~xE'(R } UxE(R)+ ~xE(R & (3.9)

on the right-hand side of (3.11), we may use the
Taylor expansion of the g»s(r) about g =0. This
may be obtained from (2.10):

where UxE and 8'xE denote the contribution of the
first and second terms in the square brackets in
(3,8), respectively. In the first term the integration
over k may be carried out by use of the relation

2
dk px(k)

=F»(mq, 0) =4rra», (3.10)
k

where ux is the dipole polarizability. It follows that

gMF(r)= —mr+0(r ) .

Using (3.14a) one finds that, with me lam„

cxQE 3
UEE(R) = 1 ——--- +0

2

(3.14a)

(3.14b)

B. Study of U~E and W&E

(3.13)

Let us study the UxE terms first. Since for large
R only small values of t are important in the integral

e coax&
UxE = dt 8 gXE

(4~)3R o m g 2m'

(3.11)
In the second term we reverse the order of the k and
t integrations so that

e' dk px«)
8'»s(R)=, f L»(k, R),

(4m) Rm~

(3.12)

where

L»(kR)= ——, dr re '
g»E

I g1/2g

where

e 2

,X~ =m~
4m

are the fine-structure constant and electron Comp-
ton wavelength, respectively. The leading term in

A
UF@(R) is just —asE /2, where E is the electric
field produced by the electron, as expected on classi-

cal grounds. Similarly, using (3.14b), one gets

QQM
UME(R) = 1+0

R R

(3.16)

Thus UME(R) does not contribute in the order of in-
terest.

Turning now to 8'xE(R), consider first the
simpler function 8'ME(R). On putting t =y in
(3,13) and using (2.10b) for gME(2k/t' ) we get

L~(k,R)= —4k f dye "[ky —(y +2k )tan '(y/2k)] .

On integrating by parts on the arctangent term, we may rewrite (3.17) in the form
r

L~(k, R)= —4k f dye ~ ky ———k k y 4y 4—+ +
R 4k'+y' R R' R'

(3.17)

By writing 4k /(4k +y )=1—y /(4k +y ) one

may separate out the leading term in LM(k, R). On
setting y =2( in the remaining integral we arrive at

10 g e ~ PM((R)
LM(k, R)= 4+ 5 f dg

R R o k

(3.18)

I

(e /4m)o;M
~ME(R) =

m~R'

(e /4') " dk psr(k)+ 216m m~R' o ~ k

where

(3.20)

where the polynomial PM is defined by

PM(g}= —g (g+1) (3.19)

On substituting (3.18) into (3.12}and using (3.10) we
find

g ~ e ~"Psr(JR)
J~(kR) =—f dg . (3.21)

k2+ f2

Finally, we study 8'EE(R). From (2.10a) and
(2.10b) we see that
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gEE(w) =g~E(v}—2~ ' tan

so that

Lg(k, R) =LM(k, R)+K, (3.23a) pM{k)
J~(kR)

I j2 t 1/2
K= d» e -' t'~' tan-'

2k 2k

(3.23b)

Setting t =4( and integrating by parts one finds
that

The dots in (3.30a) denote smaller terms, of order
(X, /R) or higher relative to the leading term in
(3.30) or of order (a0/R) relative to this term.
Equation (3.30) represents the van der Waals poten-
'tial V2y( R ) for any separation R greater than atomic
sizes. Alternative forms for Y2y(R) involving the
polarizability functions FE and F~ at real or ima-
ginary frequencies can easily be obtained from Eq.
(3.30b) by following the methods of Ref. 3.

Q (r1 )=2q'+4r)'+6g'+6q+3 .

On using (3.18), (3.23a), and (3.24) we get

10 g
LE(k,R)= „+ J dgR" R' o k'+g'

where PE(rl) is the sum of PM(r)) and Q (r) ):

PE(g)=q +2' +5g +6q+3 .

(3.25)

(3.27)

IV. HIGHER MULTIPOLE
CONTRIBUTIONS TO V„

In this section we describe the contribution to V2y
arising from the dependence of the spectral func-
tions p~{k,t) on t, which we have thus far neglected
[Eqs. (3.4a)—(3.4c)]. This dependence is related to
the existence for the neutral system A of multipole
moments higher than dipole. ' We assume that
pz(k, t) can be expanded in a power series in t,

It follows from (3.12) and {3.26) that

QQE
WEE(R) =

4~ m~R'
and, correspondingly,

(4.1)

where

+,I Js(kR),a - dk ps.«)
16 msR

(3.28)

Fx(k, r) = g Fx „(k)t" .
n=0

It is shown in Refs. 9 and 10 that, to a good approx-
imation (neglecting terms of relative order Q ), the
coefficients Fz „are related to multipole polarizabil-
ities by

F (k) a, (I )
(2 2)) g 2n+t

We note, in passing, that the polynomials P~(g) and
P~(g) coincide with the polynomials PFF(g) and

P~E{g) defined in Ref. 3.
On combining Eqs. (2.11) and (3.9) with (3.15},

(3.16), (3.20), and (3.28) we get, with mz ——m„

1 QQE 11 QQE A~ 5 QQ~
V2 (R)=

2 R' 4~ R4 R 4~ R4 R

where the a „+&(k) are the frequency-dependent

multipole polarizabilities of order 2"+'."
We substitute the expansion for p& into Eq. {3.2)

and proceed as in Sec. III A, for each term in the ex-
pansion. The result is a contribution to Vzy of the
form

Vzy= Vzy, E+ V2y, ~

where

+ E'»(R)+ ~ ~ ~, (3.30a)
with

1'2r,x= g V2rx,n,
n=0

(4.5)
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The terms Vz~& „arise from the n +1'st term in the
expansion (4.3). We can see from (3.2) that each ad-
ditional power of t can be written as d /dr acting
on the remaining integral defining Vzz.

It follows that Vz~ ~ „can be written in a form en-

tirely similar to (3.30a) and (3.30b) with p~ „replac-
ing what was there called px, and is here called pg p.
There is also an additional factor of d "/dR " act-
ing on the resultant integral. Therefore, we obtain

1 aaE2. + (0) 11 aA,, 2n +3
R +2n 4~ R 5+zn E2"+

aaE, "~( ) )t, d'" - dk p:,.(k) J (kR),
R dR'" 0 ~ kR4

(4.6)

A2n+3 a e d " dk pM, n( ) J (kR)
4~ R 5+2 M, 2" +

3 16 2 R dR 2 P ~ kg 4 (4.7)

The magnitude of the multipole polarizability

~ 2 +~(0) is expected to be given by

a „+)(0) ap ag p(0) . (4.8)

It follows that the leading terms in Vz& ~ „are in the
ratio (ao/R)2" to the leading term in V2r ~0. Note
that for n )2, these terms are similar in magnitude
to the "kinematic" terms previously discussed in the
paragraph following Eq. (3.5) and neglected.

The first term in Vz~& „,which is proportional to
the zero-frequency multipole polarizability, does not
"retard, " that is, it retains the same form at large
and small R. The other terms behave like the fami-
liar Casimir-Polder interaction, in that they develop
an additional inverse power of R at large, as opposed
to small, separations.

V. ANALYSIS OF V2gg)

To conclude, we study the connection of the re-
sults obtained in Secs. III and IV with earlier work.
With regard to the results for the dipole part of
Vzz(R), given by Eqs. (3.30a) and (3.30b), the second
and third terms in (3.30a) coincide with the results
found by Kelsey and Spruch and by Bernabeu and
Tarrach. ' The first term in the electric quadrupole
term, defined by Eq. (4.6) with n =1, has previously
been obtained by Kleinman, Hahn, and Spruch. It
should be noted that the leading term in (4.6) coin-
cides with the result obtained from electrostatics for
all values of n, not just n =0.

The function Yzz(R) defined by (3.30b) represents
an analogue of the generalized Casimir-Polder po-
tential. ' To find the behavior of Yzz(R) for
R »ao, we put (=u /2R in (3.21) and (3.29) to get

Yzy(R) —CR (5.3)

To estimate the magnitude of C we substitute (5.2)
into (3.30b) and replace (k )

'
by the inverse of a

mean-square excitation momentum kz in the in-

tegral involving p~(k) ~ This yields

ak 23aE 7aMC= (5.4)
4~ kE kM

It is interesting to compare Yzy(R) with Vzy(R),
the long-range potential between A and another neu-
tral atom B: For large R, we have

VAB(R) -DR -',
where

(5.5a)

D — [23(a~a~+ala~)B A B
4m.

7(agaM +aMaE )]A B A B (5.5b)

For simplicity assume that aM ——aM ——0. Then

a~e 23 A B 23C~ ~ aE, D~ —aE aE, (56)
4m

'
4m

so that the counterpart of aE is —aX, /kE. For
kE &aap and aE-ap, we then get

—1 B 3

C/D -a 'ke/ap ——1 . (5.7)

For large R we can neglect u in the denominator of
(5.1). Doing this yields

JE(kR)-46/kzR, JM(kR)- —14/k Rz (5.2)

It follows that

e "Pg (u /2)
J~(kR)=16 f du

p 4kzR2+u2
(5.1)

Thus, when B is a unit point charge, for large R the
part Yz~(R) of the two-photon exchange potential

Vzy between B and the neutral atom A is comparable
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J (kR)
g P~ f(2kR)
R k

(5.8)

where the Pxy are obtained from the polynomials
Pz(g), by replacing g" by ( —R /2)"B~.

I'F'. ———„R Bg ——,R Bg+ —,R Bg —3RB +3,

in magnitude to the generalized Casimir-Polder (CP)
potential between two neutral atoms. If 8 is an ion,
not fully stripped of its electrons, there will actually
be an additional term in V2& arising jointly from the
structure of A and 8 which has the same form and is
similar in magnitude to this generalized CP poten-
tial.

The expressions (3.30a) and (3.30b) are valid for R
of the order of a few times ao or larger. It is in-
structive to examine the behavior of these formulas
for R 0 00.

Proceeding as in Ref. 3, we write Jx(kR) in the
form

PsJ' = ——„R Btt ~ —,R t)tt —, R—tltt,

and the function f(2kR) is defined by

f(2kR) ( ~ e
Jo g2+k2

= f d

For small values of R, i,e., kR &&1, one finds

tP,Pf(2kR)

(5.10)

(5.11a)

R 'Pg f-(2kR) = '+ -k—R+—0(k R )
k 4+2

(5.11b)

It is easy to see that the constant terms in Eqs.
(5.11a) and (5.11b) cancel the explicit R terms in
V2&(R). Hence we find, for R & ao,

CERE 3 CXA,q co PE (k ) &A,q ao ~g oo

Vgr(R)~ —4—+ 6 f dk
2 + ~ f dk ps(k)+ f dk pttt(k)+0(R 3) .k' 4mR

The second term in (5.12) is smaller than the first by
a factor of order (ao/R) . This term has been
known for a long time. The third and fourth terms
will normally be smaller by a factor a and a,
respectively, than the first term. These latter terms
relate to the corresponding terms in Eq. (3.30), pro-
portional to A,„in a way very similar to what hap-
pens in the neutral-neutral case. That is, the small
R terms have one less power of R ' than the large
R terms. However, the leading R term does not
change at all between large and small R. The same
is true for its higher multipole equivalents in Eq.
(4.6). These terms all arise from the classical in-
teractions of the Coulomb field of the charge with a
polarizable atom. Their dependence on distance
would indeed change if we examined it for R of or-
der A.,=aao, a distance scale characteristic of the
electron rather than of the atom. It would be in-
teresting to have a simple physical explanation for

l

this difference in the retardation features of the in-
teraction of a neutral and a charged system when
compared to the interaction of two neutral systems.
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