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A nonadjustable-model potential is proposed for electron scattering that includes both
electron exchange and correlation effects in a hybridization of local electron-gas theory and
the long-range polarization. The model potential energy function consists of the sum of the
energy-dependent electron-gas exchange potential (Hara version) and the energy-
independent electron-gas correlation potential smoothly joined onto the long-range polariza-
tion interaction. Illustrative calculations of elastic scattering phase shifts and cross sections
are described for the rare-gas atoms, where reasonable agreement with accurate calculations
suggests usefulness of the model for more complex systems.

I. INTRODUCTION

The theoretical complexity of the electronic struc-
ture or electron-scattering dynamics of atoms -and
molecules is due to electron exchange and correla-
tion effects.'? Electron-exchange effects are due to
the Pauli exclusion principle and the consequence
that the total wave function of the system must be
antisymmetric with respect to the interchange of the
coordinates (spatial and spin) of any two electrons.
Viewed another way, the requirement is that the
probability that two electrons of like spin occupy the
same location in space is zero, i.e., each electron is
surrounded by a “Fermi hole.” Thus the repulsive
interaction between electrons of like spins is
suppressed relative to that between electrons of un-
like spins in any determination of the bound-state
energy or electron-scattering properties of an atomic
or molecular system. This “exchange” aspect of the
problem is fully accounted for in the Hartree-Fock
formalism, often referred to as “static-exchange”
theory in the case of electron scattering. While the
static-exchange method is straightforward in princi-
ple, it nevertheless requires the handling of nonlocal
interactions, and application to large systems can be
very tedious. Thus a variety of exchange approxi-
mations has been devised to permit the study of
large molecules, clusters, surfaces, and other forms
of condensed matter.>* The majority of such ap-
proaches is based on the local density approximation
(LDA), where it is assumed that electron-exchange
effects can be adequately represented by an exchange
potential energy function

Vexch(?)=2gx[p(?)] ’ (M

—

which depends on electron coordinates T only
though the local electron density p(T") appearing in

27

the exchange energy density &,[p]. The adequacy
of Eq. (1) is, of course, not guaranteed by the funda-
mental theorem of Hohenberg and Kohn’; however,
the HK theory does establish the particle density as
a fundamentally significant variable on which to
base such an approximation.%’

Electron correlation generally refers to everything
left out of a Hartree-Fock (or static-exchange) calcu-
lation. The physical picture of electron correlation
is straightforward. In the Hartree-Fock approach
each electron is assumed to move in the average
self-consistent field (SCF) of the other electrons,
taking into account only the Coulomb energy and
the Pauli exclusion principle. Correlation is the
correction of this average interaction to allow elec-
trons to avoid one another, not only “on the aver-
age” but in every region of configuration space.
Thus in addition to the “Fermi hole,” each electron
surrounds itself with a “Coulomb hole” from which
other electrons are excluded. When a single electron
is removed sufficiently far from the other electrons,
e.g., one bound or continuum electron outside a
closed shell, correlation takes the form of charge po-
larization of the inner-electron distribution (plus nu-
cleus), resulting in an induced dipole moment. Thus
in the asymptotic limit, a static correlation (polari-
zation) potential energy may be identified of the
form (atomic units will be used throughout)

v X 2
po](r) Y:ao 2}‘4 ’ (2)
where a; is the electric dipole polarizability of the
inner charge distribution (i.e., target atom or mole-
cule in the case of electron scattering). Unfortunate-
ly, Eq. (2) applies only in the asymptotic limit and
its proper form at smaller values of 7 is not simple
and, in general, not known. In bound-state applica-
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tions, correlation effects may be treated using
methods based on perturbation theory or on the
variational principle; still it is a formidable compu-
tational problem to obtain accurate results for com-
plex systems. In continuum applications, the prob-
lem is even more difficult. While a number of im-
pressive theoretical treatments of correlation in
electron-atom and electron-molecule scattering and
photoionization can be classified as ab initio, appli-
cation to electron scattering from large molecules,
clusters, or surfaces is simply out of reach of
present-day computer capability.* Even the
polarized-orbital method of Temkin® is difficult to
apply to large nonspherical systems. The approach
of most workers has been to employ some form of
cut-off polarization potential having the asymptotic
form of Eq. (2), where a few adjustable parameters
control the manner in which the potential is cut off
at small distances.>* In some cases, the parameters
are chosen semiempirically to reproduce an observed
feature in the cross section, e.g., the position of a
shape resonance. In other applications, “reasonable”
choices of the cutoff are made based on the “size” of
the target. Often, qualitatively accurate results are
obtained using these methods; however the approach
is unsatisfactory.

The purpose of this paper is to report on a simple
model that does not involve semiempirical adjust-
ment of parameters or guesswork. The approach
represents nothing more than a hybridization of
free-electron-gas (FEG) theory and the long-range
polarization interaction, somewhat along the lines of
Cohen and Pack’ in their modification of the
Gordon-Kim theory!® of atom-atom interactions to
include the long-range van der Waals contribution.
Our approach is to adopt Hara’s modification!! of
the free-electron exchange potential and to include
correlation effects by smoothly joining the local
FEG correlation energy'? onto the long-range polar-
ization energy of Eq. (2) where the two cross. Thus
one requires only the electron density and polariza-
bility of the target. We report here applications to
elastic scattering from the rare gases He, Ne, Ar,
Kr, and Xe since these atoms provide a range of
electron densities and corresponding electron-gas
characteristics. This sequence seemed the best
choice to use in testing a model that we hope will be
useful in describing more complex systems. More-
over, theoretical and experimental results are avail-
able for comparison. The approach described in this
paper is similar, at least in spirit, to that used by
Armstrong et al.'®> in their recent studies of
exchange-correlation potentials in multichannel
atomic quantum-defect calculations. However, the
choice of exchange and correlation potentials is
quite different. Ritchie et al.'* and Migdalek and

Baylis'® have recently employed local exchange
models in e-ion scattering and photoionization stud-
ies.

The organization of the paper is as follows. In
Sec. II, the forms of the exchange and correlation
potentials are described. In Sec. III the application
to elastic electron scattering from rare-gas atoms is
discussed and comparisons given with other theory
as well as with experimental measurements.

II. EXCHANGE AND CORRELATION
APPROXIMATIONS

The simplest and perhaps most widely used ex-
change potential employed in bound-state applica-
tions is the so-called “Xa potential”

Vo T)=—(3a/2m)[37%(T)]'/?, 3)

where the parameter a (not to be confused with the
polarizability) is chosen in a variety of ways.'s
Slater’s original derivation of Eq. (2), based on treat-
ing the electrons as a free-electron gas and averaging
the exchange energy over the Fermi sphere, gave
a=1. Gaspar,!” Kohn and Sham,*’ and Cowan
et al.'® found that the smaller value a=+ was con-
sistent with the variational principle. In applica-
tions to atoms where «a is chosen so as to yield a to-
tal ground-state energy in closest agreement with
Hartree-Fock calculations, values in the range
0.7 <a < 1.0 have been obtained,'® where a=0.7 ap-
plies to most atoms in the periodic table. Analytical
expressions have been derived for a in terms of the
number of electrons in the atom of a given spin®’;
the agreement with Hartree-Fock energies and atom-
ic orbitals is reasonably good.?! Efforts have been
made to extend these studies to correlation as well.??

In the case of elastic electron scattering from
atoms or molecules, the Xa exchange potential of
Eq. (3) is less appropriate.>? The continuum elec-
tron is not simply a representative electron in the
Fermi sea and the characteristics of its wave func-
tion are quite different, especially at large r, from
those of the bound electrons. Two approaches have
been fairly successful: The semiclassical exchange
(SCE) approximation of Riley and Truhlar®® and the
Hara free-electron-gas exchange (HFEG) approxi-
mation.!! The SCE approach has the advantage
that it generalizes in a natural way to open-shell tar-
gets and to spin coupling interactions that occur in
spin-forbidden inelastic scattering. The modified
FEG potential of Hara is based on the FEG ex-
change potential®*

Vepo(F)= — %KFF[n( ], @)

where
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2
F["q]=i+L:y—ln m‘ (5)
27 4 -7 |
with
n(T)=K(T)/Kp(T) (6)

defined in terms of the “local momentum” K(T) of
the electron under consideration and the “local Fer-
mi momentum”’

Kp(T)=[37%p(1)]'* . @)

The assumptions made in applying Eq. (4) to an
atom or molecule are primarily that one can ap-
propriately partition the electron configuration
space into small cells, each large enough so that the
bound electrons can be represented as an electron
gas obeying Fermi-Dirac statistics, yet small enough
so that the electrons can be considered free inside a
cell, i.e., a local momentum K(r) and Fermi
momentum Kz(T) can be defined. The FEG poten-
tial of Eq. (4) is a starting point in Slater’s deriva-
tion'® of the Xa potential in Eq. (3). This form can
be derived by replacing the continuum orbitals in
the ordinary two-electron exchange integral by ap-
propriately normalized plane waves. If the func-
tional F[7] is averaged over the Fermi sphere, one
obtains Eq. (3) with Slater’s value of a=1. Simply
evaluating F[7] at the Fermi surface K =K yields
F[l]=% and azé in Eq. (3). Hara’s modification
!

(HFEG)!! of the FEG potential consists of shifting
the zero of the energy, and hence local momentum
K (T) of the projectile electron so that it is consistent
with that of the Fermi energy; thus Hara defines the
local momentum K (1) by

K(PP=Kp(T)+2I +k?, (8)

where I is the ionization potential of the target atom
or molecule and k2/2 is the incident kinetic energy
of the projectile electron. In applications of the
HFEG method to electron-molecule scatter-
ing>*2%26 it has been found that the resulting con-
tinuum orbitals often are nearly orthogonal to the
occupied bound-state molecular orbitals used in the
calculation of the electron density. In all cases, the
results were found to be improved by enforcing
orthogonality via Lagrange multipliers during the
calculation of the scattering wave function.’® The
HFEG approximation to exchange has also been
found to work well in calculations of energies of
valence states'> of atoms and photoionization.!*?’
In the present study the HFEG exchange approxi-
mation is adopted.

The correlation problem in the free-electron gas
has been a formidable challenge to the theory. The
results of detailed calculations of correlation energy
density for different ranges of electron-gas density

can be represented by the relatively simple analytic
fit12,9, 10

0.0622 Inr;, —0.096 +0.018#Inr; —0.02r,, r;<0.7

28, [p]= | —0.1231+0.03796 Inr,, 0.7 <r, <10

—0.876r, ' +2.65,7%%—2.8r,72—0.8r,7%%, 10<r,

where
re=(3/4mp)\"? . (10)

Thus assuming that the FEG correlation energy of
Eq. (9) can be interpreted as a local correlation po-
tential energy for the electron-target interaction, we
define a short-range correlation potential?®

VSR(F)=2& . [p(D)] . (11

This approximation to correlation clearly fails when
the electron is beyond the outer edge of the atom or
molecule since the electron-gas approximation
makes no allowance for polarization of the target by
the projectile electron. Thus a long-range correla-
tion potential is simply defined as the polarization
energy

LR, =\ __ (27]
Ve (r)=Vpo](r) —?,

(12)

where a, is the electric dipole polarizability of the
target atom or molecule. The full correlation poten-
tial, then, is obtained by continuously joining the
short- and long-range forms at the point r, where
the two cross thus obtaining

VIR(T), r<r.

. 13
V:‘R(f'), r>r, (13)

V(F)=

This is the simplest prescription for joining the
electron-gas and polarization potentials and though
ad hoc, it is unambiguous and free of adjustable
parameters. It should be noted that for Ar and the
other rare-gas atoms studied by us, there actually are
found to be two points where VSR and VIR cross.
For Ar, the crossings occur at 2.87 and 15.99 a,. In
all cases we have chosen the inner crossing for 7, in
Eq. (13). It is our contention that polarization of
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the target atom becomes important well inside the
outer crossing; the applications tend to bear this out.
We know of no fundamental reason why the curves
must cross, and there is no reason to choose the
crossing as being particularly significant. We sim-
ply have found that the calculated phase shifts agree
best with experiment and theory if VSR and VIR are
joined near the inner crossing. The values of 7. (in
ay) obtained for the rare gases are 1.67 (He), 1.95
(Ne), 2.87 (Ar), 3.23 (Kr), and 3.67 (Xe); the respec-
tive polarizabilities used in these calculations® are
1.39, 2.66, 11.0, 16.7, and 27.2 aé. It is interesting
to note that the correlation potentials V2X of the
rare-gas atoms at the respective crossings are all
within 10% of the argon value of —0.08 a.u. (The
values for He, Ne, Kr, and Xe are —0.089, —0.092,
—0.077, and —0.075, respectively.) If this observa-
tion is found to hold for a wider range of atoms and
molecules, then one might suspect that the ad hoc
prescription given here has some physical basis. We
have examined the question for CO, by expanding
VcSR in Legendre polynomials* and finding the cross-
ings between the A=0 and A=2 contributions and
the respective long-range forms (a,/2)r~* and
(ay/2)r—*, where a, and a, are the corresponding
molecular polarizabilities. We find the crossings for
A=0 and 2 to occur at 3.14 and 3.20 a, respective-
ly, where the respective contributions of V:-X have
the values —0.09 and —0.04 a.u. (We understand
from Norcross, who is studying the applicability of
the present method to a series of molecules, that the
trend observed here seems to hold for a wider
variety of molecules, including polars.)

The full electron-atom potential energy, including
the static potential V;(T) and the approximate ex-
change and correlation potentials described above, is

V(T)=V(T)+ Vg (T)+ V. (T), (14)

where the static, exchange, and correlation contribu-
tions are shown for argon (k=0.1) in Fig. 1; Hara’s
modification'! of the FEG exchange potential
(HFEG) has been adopted for all calculations report-
ed in this paper.

Finally, it must be emphasized that our use of
electron-gas theory in the present model is not fully
consistent in that the exchange potential Vggg is
taken to be energy dependent, while the correlation
potential is not. In other words, in describing ex-
change we have taken great pains to avoid treating
the projectile electron as an average electron in the
Fermi sea; however, no such effort is made in our
description of short-range correlation VSR, While
this inconsistency in the model is unsatisfactory, it
may prove to be relatively unimportant. The most
significant correlation effect at low energies is the
long-range polarization interaction. In closer, where

T

10.0

T

sl

T

0.l

o1 aaaul 41

T Ty

(-Ix) MODEL POTENTIALS (rydbergs)

0.0l

r (Qo)

FIG. 1. Model electron-argon interaction potentials
(multiplied by —1): static (S), HFEG exchange (H),
correlation (C); — — —, FEG correlation outside the
crossing.

the local momentum can become quite large, the
static and exchange potentials dominate. Thus the
principal role of the short-range correlation
potential ¥} in our model is to establish a cutoff
radius for the polarization contribution. While the
cutoff should in general depend on the energy, we
expect the dependence to be weak for energies in the
range treated here. The importance of including
nonadiabatic corrections to the polarization poten-
tial for electron scattering has been discussed recent-
ly by Thirumalai and Truhlar,*® who test various ap-
proximations applied to elastic electron-neon
scattering.

III. APPLICATION TO ELASTIC
SCATTERING FROM RARE-GAS ATOMS

We have chosen to illustrate the method by calcu-
lating phase shifts and cross sections for the elastic
scattering of electrons by the rare-gas atoms He, Ne,
Ar, Kr, and Xe since this sequence of closed-shell
targets provides a range of electron densities and,
therefore, should allow us to identify any density-
dependent sources of systematic error in the approx-
imation procedure being described and tested. For
the spherically symmetric atomic targets, the radial
partial-wave functions satisfy equations'-?

d2
dr?

where V is given by Eq. (14) and the “static”
Coulomb potential is simply given by

+k2__1_(_1_'_;'_2__2V(r) u(r)=0, (15
r

Vs(r)=—%[Z o] (16)
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in terms of the Coulomb repulsion term for an N-
electron target atom

N r
yoln=3 fo PXr)dr'

i=1
+r [TRH /Y. D

The bound atomic orbital functions P;(r) are taken
to be the analytic Hartree-Fock functions of
Clementi.’! The radial electron density is given in
terms of these orbitals by

LS piy) (18)
41Tr2 i=1 ! ’

plr)=

The radial equations (15) were solved using
Numerov’s algorithm with a modified Hermann-
Skillman radial mesh (step size ranging from
0.00125 to 0.04 a,).>* The asymptotic boundary
conditions'?

u(r) ~ aulji(kr) —tanm Ay (kr)] , (19)
r— o

RADIANS

FIG. 2. Electron-argon elastic s, p, and d phase shifts:
, model HC; — — —, model H (no correlation); A,
static exchange (Ref. 39); O, many-body perturbation
theory (Ref. 39); O, experimental fits (Ref. 35).

TABLE 1. Helium elastic electron-scattering phase shifts. Integral multiples of  have been removed.

k H HO SE? HC HCO EXPT.b POL. ORB.®
s wave
0.0 (1.86)° (1.63) (1.48) (1.37) (1.26) (1.11)
0.1 —0.186 —0.163 —0.148 —0.144 —0.134 —0.1213
0.2 —0.366 —-0.323 —0.294 —0.275
0.4 —0.694 —0.626 —0.574 —0.585 —0.555 —0.529 —0.5193
0.6 —0.970 —0.898 —0.830 —0.842 —0.810 —0.810 —0.7697
0.8 —1.193 —1.132 —1.056 —1.060 —1.032 —1.044 —0.9937
1.0 —1.374 —1.327 —1.252 —1.240 —1.218 —1.1886
2.0 1.236 1.243 1.279 1.347 1.351 1.3321
p wave
0.2 0.0013 0.003 0.0123 0.0128
0.4 0.013 0.024 0.0537 0.060 0.0594
0.6 0.037 0.067 0.120 0.127 0.1302
0.8 0.073 0.110 0.198 0.196 0.2081
1.0 0.116 0.183 0.269 0.2749
2.0 0.274 0.326 0.398 0.3941
d wave
0.4 0.0003 0.007 0.0056 0.0073
0.6 0.0013 0.0020 0.016 0.0132 0.0167
0.8 0.0045 0.0063 0.031 0.0251 0.0298
1.0 0.0104 0.0136 0.051 0.0458
2.0 0.0647 0.0735 0.156 0.1256

*Duxler, Poe, and LaBahn (Ref. 36).
*Williams (Ref. 35).
“Scattering length in a,.
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TABLE II. Neon elastic electron-scattering phase shifts. Integral multiples of 7 have been removed.

k H HO SE? HC HCO EXPT.} SEPna® POL ORB.©
§ wave
0.0 (0.25)¢ (0.24) (0.347) (0.172)
0.1 —0.120 —0.118 —0.050 —0.050 —0.0533 —0.040
0.2 —0.240 —0.237 —0.211 —0.133 —0.131 —0.132 —0.112
0.4 —0.478 —0.472 —0.426 —0.333 —0.330 —0.310 —0.328 —0.302
0.6 —0.708 —0.700 —0.551 —0.546 —0.523 —0.548 —0.516
0.8 —0.927 —0.918 —0.767 —0.762 —0.745 —0.771 —0.735
1.0 —1.133 —1.124 —1.064 —0.975 —0.970 —0.986 —0.946
2.0 1.195 1.199 1.314 1.316 1.326
p wave
0.1 —0.001 0.000 0.005 0.005 0.002 0.004
0.2 —0.018 —0.011 0.005 0.007 0.002 0.002 0.009
0.4 —0.105 —0.075 —0.031 —0.022 —0.019 —0.033 —0.008
0.6 —0.229 —0.185 —0.114 —0.098 —0.087 —0.111 —0.074
0.8 —0.356 —0.311 —0.269 —0.216 —0.199 —0.187 —0.210 —0.173
1.0 —0.472 —0.436 —0.391 —0.319 —0.306 —0.318 —0.285
2.0 —0.885 —0.882 —0.748 —0.747 —0.770
d wave
0.4 0.002 0.015 0.011 0.014
0.6 0.007 0.036 0.027 0.036
0.8 0.018 0.071 0.063 0.075
1.0 0.041 0.065 0.123 0.110 0.132
2.0 0.308 0.459 0.527

2Thirumalai and Truhlar (Ref. 30).
*Williams (Ref. 35).

“Thompson (Ref. 38).

9Scattering length in ay.

where j;( kr) and #;(kr) are the Riccati-Bessel func-
tions, 7, is the phase shift, and k?>=2E is the in-
cident electron’s energy, were matched at r=250 a,,
having determined that the results were unchanged
by matching at larger distances.

The scattering orbitals uy,(r) that satisfy Eq. (15)
are not guaranteed to be orthogonal to the bound or-
bitals P;(r) of like symmetry; however in most cases
studied they are nearly so. We also carried out cal-
culations in which this orthogonality was forced by
the method of Lagrange multipliers in order to
determine the importance of this additional con-
straint. The procedure?®>? is to introduce Lagrange
multipliers A,, thus expressing the scattering orbital
for particular &,/ as

u(PN=u(N+ 3 Aud(r), (20)

a=1

where ug(r) is the solution to the homogeneous ra-
dial equation (15), and where each ufj(r) is a solu-
tion to the inhomogeneous equation obtained by set-

ting the right-hand side of Eq. (15) equal to one of
the bound atomic radial orbitals P,(r), where
a=1,...,v labels a particular orbital of given sym-
metry, e.g., a=1 (1s), a=2 (2s), etc. The values of
the A, in Eq. (20) are obtained by solving the linear
equations

f(;m ug(r)Py(r)dr =0, a=1,...,v. (21)

It actually makes sense to enforce this orthogonality
only in the ‘“static-exchange” approximation, i.e.,
when the correlation potential ¥, is dropped in Eq.
(14). However, since the most important contribu-
tion to the correlation potential is the long-range po-
larization energy, and since the orthogonality con-
straint changes the scattering orbitals only at rela-
tively small distances, it is reasonable to assume that
enforcing orthogonality with both exchange and
correlation included will “improve” the treatment of
exchange without contaminating the correlation.
With the thought that these results might prove to
be interesting we have calculated both exchange and
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TABLE III. Argon elastic electron-scattering phase shifts. Integral multiples of 7 have been removed.
k H HO SE? HC HCO EXPT.> POL. ORB® POL. ORB. MBPT¢

s wave

0.0 (—1.37)¢ (—1.35) (—1.60) (—1.416)

0.089 —0.157 —0.155 0.0280 0.0288

0.1 —0.17 -0.174 —-0.151 0.0221 0.0230 0.049 0.034

0.2 —0.351 —-0.348 —0.304 —0.0805 —0.0790 —0.057 —0.039 —0.061

0.4 —0.697 —-0.692 —0.618 —0.395 —0.393 —0.346 —0.348 —0.374

0.6 —1.030 —1.023 —0.940 —0.737 —0.735 —0.672 —0.696 —0.722

0.8 —1.342 —1.336 —1.255 —1.069 —1.067 —1.011 —1.034 —1.063

1.0 1.512 1.516 —1.552 —1.379 —1.378 —1.348 —1.382 —1.314

2.0 0.407 0.408 0.439¢ 0.563 0.564 0.548 0.613
p wave

0.1 —0.007 —-0.004 —0.004 0.015 0.016 0.015 0.015

0.2 —0.053 —-0.039 —-0.032 0.020 0.023 —0.006 0.026 0.027

0.4 —0.253 —-0.209 —-0.178 —0.078 —0.067 —0.083 —0.055 —0.051

0.6 —0.501 —-0.449 —-0401 —0.273 —0.259 —0.252 —0.248 —0.245

0.8 —0.739 —0.697 —0.643 —0.493 —0.481 —0.464 —0.473 —0.479

1.0 —0.952 —0.926 —0.874 —0.706 —0.698 —0.694 —-0.714 —0.670

20 1.401 1.402 1.406¢ 1.571 1.571 1.520 1.588
d wave

0.4 0.009 0.016 0.071 0.092 0.080 0.075

0.6 0.055 0.102 0.228 0.303 0.312 0.274

0.8 0.199 0.364 0.597 0.770 0.921 0.770

1.0 0.533 0.854 1.157 1.546 1.360 1.098

2.0 1.872 1.837¢ 2.092 1.975 1.998

“Thompson (Ref. 37).
*Williams (Ref. 35).
“Thompson (Ref. 38).
9Pindzola and Kelly (Ref. 39).
“Scattering length in a,.

exchange-correlation scattering results with and
without the orthogonality constraint.

The calculated s-, p-, and d-wave phase shifts
(HFEG and HFEG plus correlation, denoted H and
HC, respectively) for Ar are compared in Fig. 2 with
other theoretical static-exchange and correlation re-
sults and with fits to experimental data in order to
illustrate the general nature of the results. Numeri-
cal values for scattering lengths and phase shifts for
all the rare gases are given in Tables I-V in the ap-
proximations: H (HFEG), HO (orthogonalized
HFEG), HC (HFEG plus correlation), and HCO
(orthogonalized HFEG plus correlation). Also in-
cluded in the tables for comparison are phase shifts
from other sources, including EXPT. (experimental
fits), SE (static exchange), POL. ORB. (polarized or-
bitals), MBPT (many-body perturbation theory), and
SRPAE (random phase approximation). We have
not compared our results with the approximate
model-exchange polarized-orbital phase shifts of

Yau et al.>* since these are similar to the polarized-
orbital results of Thompson.** We do include in
Table II recent model-exchange nonadiabatic polari-
zation results (SEPna) for neon.*

The argon phase shift comparisons in Fig. 2 and
in Table III illustrate a number of features found to
be common to the other rare gases as well. The
HFEG approximation to exchange generally un-
derestimates the strength of the (attractive) exchange
potential, giving s, p, and d phase shifts that are
smaller than “accurate” static-exchange results.
(This has been noted by other authors.?>?>26) Im-
posing the orthogonality constraint increases the
phase shifts. For s waves, these increases in phase
shift at low energies are approximately given by
(0.2)k for He, (0.02)k for Ne and Ar, and (0.01) k for
Kr and Xe, the coefficients of k in these expressions
corresponding roughly to the accumulated inward
shift of the nodes in the s-wave radial functions.
The correction is large for He, a case where one
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TABLE IV. Krypton elastic electron-scattering phase shifts. Integral multiples of 7 have

been removed.

k H HO HC HCO

s wave
0.0 =-3.1)2 (=-—3.1)
0.1 —0.189 —0.188 0.0961 0.0969
0.2 —0.381 —0.380 —0.0156 —0.0147
0.4 —0.760 —0.758 —0.384 —0.383
0.6 —1.127 —1.124 —0.780 —0.779
0.8 —1.472 —1.470 —1.158 —1.157
1.0 1.350 1.352 —1.513 —1.512
2.0 0.115 0.115 0.284 0.285

p wave
0.1 —0.0092 —0.0055 0.023 0.024
0.2 —0.073 —0.053 0.029 0.034
0.4 —0.331 —0.277 —0.109 —0.096
0.6 —0.633 —0.577 —0.361 —0.348
0.8 —0.916 —0.876 —0.633 —0.624
1.0 —1.169 —1.145 —0.893 —0.887
2.0 1.017 1.018 1.197 1.197

d wave
0.1 0.0022 0.0020 0.0072 0.0072
0.2 0.0021 0.0021 0.0231 0.0231
0.4 0.0161 0.0161 0.116 0.116
0.6 0.0934 0.0935 0.382 0.382
0.8 0.3001 0.3002 0.8365 0.8365
1.0 0.6313 0.6317 1.1900 1.1901
2.0 1.1368 1.1372 1.3527 1.3528

®Scattering length in ay.

might expect the electron-gas approximation to be
particularly poor. The same reasoning applies to
H,, where a similar failing of the HFEG approxima-
tion has been noted by Morrison and Collins.?
These authors showed that accurate phase shifts
could be obtained for H, by adjusting the ionization
potential I in Eq. (8), effectively making the ex-
change potential stronger and thereby shifting the
node in the “s-wave” radial function inward. The
influence of orthogonality on p-wave scattering is
somewhat more striking, especially at low energies
where the phase shifts are small due to the centrifu-
gal barrier. For example, in Tables II—V, one sees
that the orthogonality corrections to p-wave scatter-
ing at k=0.4 (2.18 eV) are 0.030 for Ne, 0.044 for
Ar, 0.055 for Kr, and 0.059 for Xe. The correction
is not even approximately linear in k since the posi-
tions of the nodes in the p-wave radial functions are
sensitive to energy because of barrier penetration.
The important observation, however, is that the

orthogonality correction, while improving the phase
shifts, does not give high accuracy. The SE compar-
isons in Fig. 2 and Table III for Ar adequately illus-
trate the situation for Ne, Kr, and Xe as well.

When correlation effects are included, via Eq.
(13), the comparison of phase shifts with experi-
ment® and with accurate polarized-orbital*®—*% or
other methods that include correlation effects’®* is
more encouraging, as illustrated in Fig. 2 for Ar.
The situation is similar for the other rare gases (cf.
Tables I—V). Total elastic scattering cross sections
are illustrated in Figs. 3—7, where selected experi-
mental results are given for comparison.*!~%
Agreement is good over a wide energy range, except
at very low energies, where our combined HC ex-
change and polarization potentials are too weak to
accurately reproduce the positions of the Ramsauer
minima and the values of the scattering lengths.
This is evident for Ar, illustrated in Fig. 2, where
the HC s-wave phase shift is too small at small
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TABLE V. Xenon elastic electron-scattering phase shifts. Integral multiples of 7 have

been removed.
k H HO SE? HC HCO SRPAE*
s wave
0.0 (=—6)° (=—6)
0.1 —0.260 —0.259 —0.227 0.125 0.127 —0.098
0.2 —0.479 —0.477 —0.019 —0.018
0.4 —0.927 —0.925 —0.482 —0.480
0.6 —1.357 —1.355 —0.962 —0.961
0.8 1.381 1.382 —1.409 —1.408
1.0 1.011 1.012 1.15 1.323 1.324 1.397
2.0 —0.405 —0.404 —-0.214 —0.213
p wave
0.1 —0.041 —0.036 + 0.009 + 0.010
0.2 —0.120 —0.095 0.030 0.034
0.4 —0.449 —0.390 —0.158 —0.149
0.6 —0.815 —0.762 —0.486 —0.477
0.8 —1.155 —1.120 —0.825 —0.818
1.0 —1.458 —1.439 —143 —1.145 —1.141 —1.18
2.0 0.521 0.522 0.719 0.719
d wave
0.2 0.024 0.024
0.4 0.026 0.026 0.226 0.226
0.6 0.191 0.191 0.797 0.798
0.8 0.546 0.546 1.274 1.274
1.0 0.859 0.859 1.387 1.387
2.0 0.731 0.731 0.953 0.953

*Amus’ya et al. (Ref. 40) (random phase approximation).

®Scattering length in aq.
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FIG. 3. Electron-helium elastic cross sections: ——
HC model; — — —, HCO model; A, experimental (Refs.

41, 42).
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FIG. 4. Electron-neon elastic cross sections:

HC model; A, experimental (Ref. 41).
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FIG. 5. Electron-argon elastic cross sections: —-—,
HC model; O and A, experimental (Refs. 43, 44).

values of k, by about (0.15)k, passing through 37
(note 19— 27 is shown) at k~0.13 (0.23 eV); the ob-
served Ramsauer minimum is located nearer to
k=0.16 (0.35 eV). The trend is evident in the cross
sections illustrated in Figs. 3—7, where HCO results,
shown for He, offer some improvement. For Ne-Xe,
the HC and HCO cross sections are essentially iden-
tical. It should be noted that the HC result for the
position of the “Ramsauer-minimum analog” in the
p-wave phase shift*® is much closer to the accurate
value of k=0.30. It is also notable that the HC
scheme reproduces the d-wave resonance fairly well.
Of course, for energies well below the centrifugal

KRYPTON

N
T

ELASTIC CROSS SECTION (I0"'6cm?)
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o

FIG. 6. Electron-krypton elastic cross sections: ——,
HC model; O and A, experimental (Ref. 45).

barrier, the /50 phase shifts are dominated by the
long-range polarization interaction of Eq. (12), and
errors in the short-range exchange and correlation
interactions are of no consequence. The second peak
located at about k=1.1 in the electron-xenon cross
section in Fig. 7 is due to an f-wave resonance.

IV. CONCLUSIONS

The method described here is a straightforward
extension of the FEG exchange model to include
correlation effects. In particular, it provides a con-
tinuous extrapolation of the long-range polarization
potential to small distances. It is concluded from
applications to elastic scattering of electrons by Ne,
Ar, Kr, and Xe that the orthogonalization correc-
tion is unnecessary for s waves in that it removes
only a small fraction of the error implicit in the
HFEG exchange potential. For p waves, the effect
of imposing orthogonality on the H or HC radial
functions is more significant. For example, in the
case of Ar, the HCO p-wave results in Table III are
in better agreement with the most recent measure-
ments and polarized-orbital calculations, except near
the p-wave Ramsauer minimum, where uncertainty
in both the theoretical and experimental phase shifts
is likely to be larger. However, as pointed out ear-
lier, the orthogonalization procedure applied to the
HC model is questionable. In the case of He, the
orthogonalization correction is larger and leads to
improved agreement with polarized-orbital and ex-
perimental results. In summary, the comparisons
described here suggest that the HC, and with cau-
tion the HCO, models of including exchange and

D

W

N

Y4

.

2 k===
0.5 1.0
k (ag")
FIG. 7. Electron-xenon elastic cross sections: y

HC model; — — —, HC model partial cross sections. O
and A experimental (Ref. 45).
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correlation in electron-scattering applications may
provide an acceptable simple method for treating
elastic electron scattering from complex molecules,
clusters, or surfaces, where more rigorous ap-
proaches are too difficult.
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