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Based on the first Born approximation and coupled-channel wave functions, a full
three-dimensional treatment of state-to-state reactive scattering (rearrangement collision)
has been made to derive explicitly the transition amplitude, differential cross section, and
total cross section for atom-diatomic molecule systems. The present coupled-channel
Born-approximation method will serve as a generalization of the distorted-wave Born-
approximation method that we discussed elsewhere.

I. IN rRODUCTION

The three-dimensional treatment of elementary
molecular rearrangement collisions has been of
great interest. Two of the computationally used
three-dimensional methods are the close-coupling'
and DWBA (distorted-wave-Born-approxima-
tion)s' methods. In the DWBA, the interaction
potential in the Hamiltonian is divided into two
potentials, the distorting and perturbation poten-
tials. The former is used to obtain the distorted
wave function by solving the resulting Schrodinger
equation. The latter is the interaction potential re-
sponsible for opening a new arrangement channel.
The first Born approximation and the distorted-
wave functions are used to construct the transition
amplitude from which the differential and total
cross sections are obtained. In the close-coupling
method, the total wave function is expanded in
terms of rovibrational basis functions. Wave func-
tions properly constructed from the solutions of
the resulting coupled Schrodinger equations are
then used to obtain the S matrix. The S matrix is
required to satisfy asymptotic boundary conditions.
The scattering amplitude constructed from the S
matrix is used to derive the differential and total
cross sections. Unfortunately, the exact close-
coupling methods demand excessively large compu-
tation time.

In general, the effect of coupling is not ignorable
in rearrangement collisions (reactive scattering). In
the usual DWBA, the coupling effect is not taken
into account. The distorted-wave function used in
the DWBA transition amplitude is simply the solu-
tion of the Schrodinger equation which describes
only elastic scattering in the entrance and exit

channels, respectively. In this paper, by consider-
ing the first Born approximation and coupling be-
tween channels in each arrangement (that is, the
initial and final arrangement, respectively), we
derive a three-dimensional CCBA (coupled-channel
Born-approximation} formalism that describes
state-to-state reactive scattering processes involving
atom-diatomic molecule systems. The present
CCBA will serve as a generalization of the DWBA
method that we presented elsewhere. The theoret-
ical development will be largely self-contained in
nature, requiring only a small number of refer-
ences.

II. FORMAL CCBA TRANSITION
AMPLITUDE

4 is the total wave function and H the Hamiltoni-
an. H can be viewed in terms of an arrangement
channel a,

H=H~, (2.2a}

with

H =h+T+U (2.2b}

Discussions which follow below are general for
reactive scattering (particle transfer) processes that
occur as a consequence of collision between two
composite particles. The transferred particle can
also be a composite system. We write the
Schrodinger equation to describe the system of two
interacting composite particles,

(2.1}
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PygyR=1,

P~=P, Q =Q R =R,

(2.3)

{2.4}

where h is the intrinsic Hamiltonian which de-
scribes the internal motions, T the relative kinetic
energy, and U, the interaction energy between the
two particles in the arrangement channel a.

We introduce the projection operators, P, Q, and
R. P is to denote projection onto an entrance
channel state {in the initial arrangement channel
a},Q onto other states in the same initial arrange-
ment channel a, and R onto states in the final ar-
rangement channel p. These projection operators
satisfy

W =U, (P—ig)U (Pig). (2.10)

Considering the Hamiltonian {2.7},we write the
scattering integral equation that satisfies the boun-
dary condition of an outgoing wave in the arrange-
ment channel a,

or

a =Xa gga 8'aXa(+) (+) + (+) (2.11)

where the Green's function is

+ + + +8a f la+8 la+at a (2.13)

'P'+'=X'+' yg'+'[U {P/—Q) U (P4-g)]X'+',

(2.12)

PQ =QR =PR =0 . (2.5}
with

In addition, they are commutative. The interaction
potential viewed in terms of the arrangement chan-
nel a is

g~+ = I/[E HN (P—yg)—UN(P ~g}+is] .

(2.14}

U.={P+Q+R)U.(P+Q+R) . (2.6)

The two-potential Hamiltonian suitable for the
description of the CCBA is written

X'+' above is the solution of the scattering integral

equation corresonding to the Hamiltonian P
which prohibits the opening of a new arrangement
channel

or

H. =H'. +(P+Q)U.(P+g)+ W. , (2 7) X,'+'=4 +gI+ (P+Q)U (P+Q)@, , (2 15)

where 4 is the free state, that is, the solution of

H =P g8' H4 =E4 (2.16)

with

H'=h iT,
P =H ~(Pyg)U (P~Q)

=H'~U —W,

{2.8}

(2.9)

Following the Gell-Mann —Goldberger transfor-
mation, we find the T-matrix element for the
state-to-state rearrangement collision between the
two arrangement channels a and P,

Tp, = (@pi (P ig)U (P ~g) —Wp i

X'+')

—(XZ '
~

U (P~Q)U. (Py—g) ~%'+') .

{2.17}

The insertion of (2.12) and (2.15) into (2.17) yields

&p, =(@p~ (P+Q)U (P+Q)+(P+Q)U (P+Q)gI+ (P+Q)U {P+Q) Wp
~

@)—
~ (X& '

~

U (P+Q) U (P+Q—)

+[U —(P+g)U (P+g)]g+[U —(P+g)U (P+g)] ~X'+'), (2.18)

where Wp is the expression (2.10}for the arrange-
ment channel P. In the case of the same coordi-
nate system, the first term of (2.18) vanishes due to

I

the othogonality between the bound state and
scattering state. This definitely occurs when a
transferred particle forms a bound state with an in-
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finitely massive core after the interaction between a
projectile and an infinitely massive target particle.
Otherwise, a recoil effect causes the bound and
scattering states to be in different coordinate sys-
tems. In this case the first term will not vanish.

However, in the DWBA and CCBA expressions,
the first term is usually neglected and the higher-
order contribution in the second term of (2.18}is
ignored. Thus the first Born approximation leads
to the CCBA transition amplitude of the type.

~~ "=&X,' 'i U. (~+-Q)U.(~+Q) ~X."'&,
(2.19)

Rb~

0 /

/
/

V
fb

FIG. 1. Vector diagram of reactive scattering
A +BC~AB+C. The continuous line is for the initial
arrangement channel while the dotted line is for the fi-
nal arrangement channel.

or using (2.10),

rcc'A=&X~ '~ W. ~X.'+'& .

The use of {2.6} for (2.19) above yields

T =&X' ' iRU {P+Q)iX+ )

since

(2.20)

(2.21)

HSp„j I (R„rH)=E'p„j I. (R„r,) . {3.1)

tions fall into this category.
Introducing the set of channel quantum numbers

I n„j„L,] in an arrangement channel a, we
rewrite the Schrodinger equation {2.1},given in the
previous section, as

R ~X.'+')=~~X~ ')=Q ~Xp ')=o. (2.22)

From the inspection of (2.20} and (2.21},above, we
now see that the perturbation potential W defined
in (2.10}takes the role of opening a new arrange-
ment channel P. Explicit descriptions of the
state-to-state CCBA transition amplitude, differen-
tial cross section, and total cross section follow in
Sec. III.

III. EXPLICIT CCBA TRANSITION
AMPLITUDE AND CROSS SECTIONS

In the previous section, the colliding and depart-
ing particles were considered to be the composite
systems made of any number of "elementary parti-
cles." The elementary particle is to mean a parti-
cle with no internal degree of freedom. Here we
limit our discussions only to the case of reactive
atom-diatomic molecule systems of type A +BC.
Such a study has the merit of simplicity. Besides,
many of. the important elementary molecular reac-

l

The complete wave function is expanded in terms
of the rovibrational basis functions

(3.2)

and the rovibrational wave function of the diatom-
ic molecule

P„z (r)=[u„j(r)/r]YJ (r) . {3.3}

Here n, is the vibrational quantum number and j,
the rotational angular-momentum quantum num-
ber of a diatomic molecule. L, is the relative orbi-
tal angular-momentum quantum number between
the atom and diatomic molecule, J is the total
angular-momentum quantum number, and M is its
projection quantum number. R, is the channel
coordinate vector connecting an atom and the c.m.
(center of mass) of the diatomic molecule and r,
the interatomic displacement vector of the diatom-
ic molecule in an arrangement channel a (see Fig.
1 for details).

We introduce the partial-wave function which
describes the relative motion between the atom and
diatomic molecule with the relative angular
momentum L; and its projection M;,

XI.,M (R)= [XI(R)/R]YI. '(R ), ,

'p„~ I, (R„r,)= g [X„, , ~, . ~ (R ) @p„, , (r )]ps',
I rt I

~a Ja La

where

[X. . . (R ) Ssts, ., (rH)]&~ ——5', , (R„rH)[X. . . z (R, )/R, ][u, , (r, )/r, ]

(3.4)

(3.5)
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with

I

8'j, L, (R„r~)= g (jaLamaMa i
JM)Y, '(r~)Y;(Ra) .

Ja La a a (3.6)

a in the expansion of (3.4) is an index to introduce all possible artungement channels. The scalar product of
(3.1) by the product of the radial molecular wave function u, , (ra )/ra and the bipolar spherical harmonics,' J'
5'j, L, (R„r,) leads to the set of the coupled differential equations

~a La

L,'(L,'+1)
K, , g. . . (Ra)dR2 R2 na ja a ja La~aiaLaa a a

(n,'j,'L,'
i

U in,"j,"L,")p „„„.. (R, )
tl ~ ttL tt"a Ja a

g ~R, f d r, d R, [u, , (ra}/ra]S', L, (R„r~)(H E)[u„&—(rb)/rs]
~bJbLb

X S~j~~iI(Rs&rs )Xa&j&L&~ l. L (Rs }/Rs, (3.7)

where the wave number K, ., is
"aJa

K, , =K,'=
~a Ja

' 1/2

(3.8}

and the interaction matrix element is

(n,'j,'L,'
i

U
i n,j,L ) = f f u, , (r, )9', , (R„r,)U u„z (r )O'J L (R„r,)d2R d3r, , (3.9a)

or more explicitly

(n,'j,'L,'
i U~ i njaL, ) =(—1) ' ' [(2j,+1)(2j,'+1)(2L, +1)(2La+1)]'~2

)& g U, , (R, )(j,j,'00ijO)(L, L,'00' jO)
~a Ja ~+a&a

J

X W(j,L,jaL,';Jj )/(2j +1) . (3.9b}

The undefined symbols above are as follows: p, is the reduced mass and e, ., the internal (rovibrational)"aJa
energy of the diatomic molecule. U, , (R, ) is given by

~a Ja ~aJa

Uj, , (R, }=f dr, a„, , (r, )Uj(R„ra)u„j (ra) (3.10)

with
1Uj(R, r )=[(2j+1)/2] f U~(R„r )Pj(aR r, )da{R r, )a, (3.11)

which results from

(3.12)U (R„r,)= g Uj (R„r,)PJ(R, r, } .
J

W(j,L,j,'L,';Jj ) in {3.9b) is the Racah coefficient. Finally, g in the last term of Eq. (3.7) is to denote the
summation over arrangement channels other than cz. This last term represents coupling between arrange-
ment channels.
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However, in the CCBA we use the Hamiltonian which describes only elastic and inelastic scattering pro-

cesses in both the initial and final arrangement channels. Such Hamiltonian has the property of (2.9} shown

in the previous section. Thus the Schrodinger equation is in the form of

JM ~ JM
~NXn j L, (Rn, rn) =EXn j r, (Ra~ra )

The resulting coupled Schrodinger equations from (3.13) exclude the arrangement coupling term and re-

places U by U —W in (3.7),

(3.13)

d L,'(L,'+1)
+K i gX .r i t (Rn )

2p dg2 g2a a a
"ajo La "ojoLo

tl ~ IIL lt"a Ja a

(n,'j,'L,'
~

U —W
~
n,"j,"L,")X „„„.(R, ) . (3.14)

We write the total wave functions

l CTL

X~+~ (K,R, r )= gi 'e '(j,L,m, M,
~
JM)[X, , ~, „.~ (R, ) Sp . .. .(r, )]Jbt YL,

' (K, ),

(3.15}

for the initial arrangement channel, and

lOL
X„'-.' (Kb, Rb, r, )= g i 'e '(JbLbmbMb I

J'M')

(3.16}

for the final arrangement channeL In the case of negligible coupling in (3.15) and (3.16), the coupled-

channel wave functions which describe relative motions are reduced to the usual distorted-wave functions, '

L icrL M ~ M+

X,'+'(K„R, )= g i 'e 'XL, (K„R,}YL, '(R, }YL, '(K, )
Ka~a

(3.17)

l &L

Xb "(Kb,Rb)=
K R g i 'e Xlb(Kb, Rb)YLb (Rb)YLb (Kb) .

b b LbMb

(3.18)

Now we introduce (3.15) and (3.16) into the CCBA transition amplitude (2.20), in order to obtain

CCBA CCBA
Tpa =Tn j&m&~ j m

(4 )2 I I l((TL +O'I )

gi ' e '
( —1} BJJ5btbt (j,L,m, Mn

~
JM)(jbLbmbMb

~

J'M')(j,'L,'m,'Mn
~
JM)

K,Kb

XJ(bLbmbMb I
J'M') YL, (K, )YL, '(Kb)g IX, , , (Rb)p'. . .(rb)Wnp. . .(r, )

XX„,., ~, „.q (R, )dRbdR, . (3.19)

g is the Jacobian of transformation from r, and rb to R, and Rb. From the inspectation of (2.19) and
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(2.20} along with (3.14},we write the perturbation potential (operator) in the form of

W =U — )n,j,L, )(n,j,L,
~

U ~n,j,L, )(n,j,L, ~+ g' ~n,'j,'L,')(n,'j,'L,'
~

U ~nj, L, )(n,j,L,
~

na&a La

+ p'
I noj L &&n j Lo

I
U Ino'jo'L'&&no'jo'Lo'

I

"ajaLa

+ g' ~n,"j,"L,")(n "j,"L "~ U ~n,'j'L,')(n'j,'L,'
~

{3.20)

&a ja I-a

g' stands for the exclusion of summation over the state
~
n,j,L, ).

Consider now the expression
I

~ (rb)4„.J. .(r, )= g ( —1) '(jbj,'mb —m,
' ~j'm')[P'. . .(rb) Sp. . .(r, )]' ~

j'm'

with
r

[P.. .. , (rb) SP„, , .(r, )]' = g( —1) '(jbj,'mb m,
'

~j—'m')P*. .. . (rb)P .J. .(r, }.
I ~b&b mb ~a Ja ma

mb

(3.21}

(3.22)

Here j' is the transferred angular-momentum quantum number between the intermediate states in the two

arrangement channels and is constrained by

j j b j4g=L4g —Lb

which assures the conservation of the total angular momentum

J= j,+L,= j,'+L,'= jb+L,'= j,+L, .

The substitution of (3.21}into (3.19) yields

{3.23)

(3.24)

oJJ '5MM &j'.L.m'.M.
~

JM ) &jbLbmbMb
~
JM )

b jb b aja a gbg
X (j,'L,'m,'M,'

~

JM ) (jbLbmbMb t
J'M')

X (jbj,
'

mb —m,
'

~j 'm ') YL,
' (K, ) YL,

'
(Kb )

X JX„.. z. „.z (Rb) W (R„r,)[p'. . . (rb) Sp„. . .(r, )]J'~n j m

XX„,., ~, . ~ (R, )dRbdR (3.25)

Note that in the limiting case of zero coupling, the expression (3.25) here is reduced to the DWBA expres-

sion [Eq. (19}of Ref. 4]

T„~ —g( —1) '(j.bj, mb —m, ~jm )
jm

X rgb ' (Kb,Rb)W(R„r, )[p„j.~ (rb) Sp„j. (r, )]J g,'+'{K„R,)dRbdR, ,

where the perturbation potential 8' is of the form

W (R„r,)=U —Up~0,

(3.26)

{3.27}
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with Uoo being a properly chosen spherically symmetric distorting potential.
We define

I I

fj' '(Rb, R, )=ij W (R„r,)[sI}"„, , (rb) Sst} .i. .(r, )]J' ~ (3.28)

(3.29)

with k =a or b W.e note that the form factor f above transforms under rotations of the coordinate system

like the complex conjugate of a tensor operator of rank j,
~t, t ~ t I

jj'~ (RbsRH)= g FL, L J(RbsRH)5L I (Rb&RH)

L2L )

with

(3.30)

9'1,1,(R„R.)= g(L,L, M, M—i Ij m')YL, '(Rb)YL, '(R, ),
M2

(3.31)

~ t ~ t ~ t t

FL 1. J'(Rb, R, }=g (L2L, M2M—I Ij'm'& f fq" '(Rb Ro)YL '(Rb)YL '(R, )dRbdR, .
M2

The use of (3.28)—(3.32) for (3.25) leads to

bjb b pajama g gb u

(3.32)

x(j,L,m, M,
I JM)(jbLbmbMb

I JM)(j,'L,'m,'M,'
I
JM)

X&jbLbmbMb I JM&&jbj'mb —m' Ij'm'&&LbL' MbM' Ij'm—'&

~ I t

XYL '(K, )YI (Kb) f X,, (Rb)F, q, ., (Rb, RH)

XX„,i, q, . ~ (R, )RbdRbR, dR, . (3.33}

We choose the z axis along the incident wave vector K, and the y axis along K, X K~, by requiring the
wave vector Kb of the scattered particle to be in the x-z plane. Thus the polar angles K =(8,sts) become
K, =(0,0}and Kb =(8,0},8 being the scattering angle. This yields

Yl '(K, )=[(2L,+1)I4r]' 5M p. (3.34)

I
1/2

~ ibtb t+jtb~» (2Lb+1)«b
I
Mb

I
)'—

(3.35)

In view of the angular-momentum vector coupling (LbL, —MbM,
Ijm ) due to

j =L~ —Lb ——j b
—ja s

which obeys the conservation of the total angular momentum J, we write

~M 0 ~m+Mb, 0

(3.36)

(3.37)
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and, therefore,

(I~I ~)/2 (~b+1) «b l—m
I

)l
Yt,b (Kb)=( —)' '

4 (L + Im I)( I,

The introduction of (3.34) and (3.38) into (3.33) yields

z CCBA ~ br ~ 2
a b j e a b

( 1)~a + b( 1)( Im I m)/2[(2L + 1)(2L + 1)]1/2
Nbjb )Nb IlgJg Nlg g gb a

I
'1/2

PJ I (8)&jaL,m, OI Jma&&jbLbmb —m
I Jma&&jaLamaMa I

JM&
(Lb+ lm I)!

(3.38)

x &j b Lb mb™b
I
JM & &j bj' mi m; —

Ij 'm'
& & LbL,' Mb M—; Ij 'm '

&

XX,j,~, . ~ (R, )RbdRbR, dR, ,~a jo a ~a&a a

where the form-factor coefficient is given by

' "(—1) ' '(2j +1)(2jb+1)LbL~J 2 l

2 / 2 /2
Ja Jb

Ab Jb —Ab J —A,

X g g ( —1) ' '(2k+1) )„(sbR,) (tbRb) (s,R, )'
k Abk,

X(t.Rb) 'G ""(R,R )Z"' '. .n jn j j jXA, k

(3.39)

(3.40}

where

1 JbGk
' '(Rb, R )= [u„~b(rb)le ]Wa(Ra, r )[u„j (r )/r, ']Pk(R, r, )d(R .r, ) (3.41)

with

jbj kbk k dbd k Jbt j
dbdo

dbd k
ML t.'j ——&dbkOOILbO&&d kOOIL 0&W(dbLbd L, ;kj )

(3.42}

(3.43)

~kbk dbd =[(2da+1}(2db+1)]' '&jb ~b~aOO
I dbO&

kb j —A,, d,
X&j.—jI.}IbOOld. O& jb kb }(,o db

Jb Ja J
where

Ji J2

J4 ~34

Ji3 j24



27 THEORY OF ATOM-DIATOM REARRANGEMENT COLLISIONS. . . 195

above is the 9-j symbol. The mass factors are given by

s, = —Mg(Ms+My)/[Ms(My+Ms+Me)],

r~ =(Mg +Ms )(My +My)/[Ms(Mg +Mg +My)],

Sb =Ca ~

(3.45a)

(3.45b)

(3.45c)

rb
———(Mal+Ms)Mcl[Mg(My+Ms+Me)] .

The summing indices are constrained by the following triangular inequalities:

0&~a &Ja ~

0&~b &Jb

IJ —}(o ~b
I

&d &j —~ +~b

I jb ~b ~a I &db &Jb ~b+~a ~

ld. —jl &db&d. +J,
IL.—d. I

&«L.+d. ,

(3.45d}

(3.46a}

(3.46b)

(3.46c)

(3.46d)

(3.46e}

(3.46fl

I Lb db I
&k &Lb+db .

The insertion of (3.40) into (3.39) and further reduction leads to

i(oi ++i ) ~ ) ~ I
Trx&A 2n ~~ p, —

&be ~ b
( 1)(i~ i

~)I2|.—J&
—Jb

nb Jbmb~na Jama
b a

)&( —1) ' b b (2j,'+1)(2jb+1}[(2L,+1}(2Lb+1)]'i

(3.46g}

«b I
m

I
)'—

PJ i(8)(j,L,m, O
I
Jm, )(jbLbmb —m

I
Jm, )

(Lb+ m )!

~ I ~ I

XW(j.'jbL,'Lb'j J)Ai i '
b aJ

(3.47)

where
1/2

&i'i. , =g g ( —1) ' '(2k'+1) 2,
k'

prier
b

b a

2Ja

2A''

1/2

JbJaAbA k JbJaAbA k
L'L' ' L'L''JaJ b a&

(3.48)

with the overlap integral S given by

~ r r I I g t ot I or r I

~b Jb b ~bij b ~a Ja a aJa a

A. 1 A, A, 1

gR ' R,' ' dRbdR, . (3.49)

Thus, the CCBA differential cross section for unpolarized diatomic molecules in the initial state is given by

(3.50)
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Now for the case of negligibly small (zero) coupling, we find from (3.47) that

X gi n be n b
( 1)~ lm I ™~~2( 1) n[(2L +1)(2Lb+1)]~~2

(Lb —Im I)!
(ij)&LbL.rn01 j~ &&jbj.~b ~.—

I j~ &Lb+ m !

kb Ar jbJ AbA, k JbJ AbA k
X Q Q ( —1) '(2k+1)

2)t 2)( ZLbL j SLbL
k j)l.bA,

(3.51)

18bma
nbjbmb n, j,L, I

= m I nbjb n,j„jm I' (3.52)

where the DWBA transition amplitude is given by

Tn j n j jm =2'ir~(+b+n)(2jn+1)(2Jb+1} i

l (OL, +Op )

X g i ' e ' b [(2L +1)(2L +1)'
LbLa

' 1/2

x '
PJ (8)&LbL,mOI jni&AL, L.j .

(Lb+ m !
(3.53)

where

2jb
AL L,j=g g ( —1} ' '(2k+1) 2~

k ibA,

'1/2 ' . '1/2
JbJakbkak JbJakbkak

ZLbL j SLbL (3.54)

~ ~

The phase factor i ' in (3.53) does not affect the DWBA cross sections.

Thus the DWBA differential cross section is

DWBA K
(3.55}

(3.56)

we obtain

We now note that this is the same as the DWBA expression derived elsewhere [examine Eq. (3.48) and its
related equations of Ref. 4 for verification]. Using the symmetry relation4

T DWBA
( 1 )la b++jj+ TDWBA

~bJb "aJa&J~ bjb~ aja»

with

DWBA

(2~fr')2 K. (2j, +&), , (3.57)

y(m)=0 for m=0 (3.58a)

y(m)=1 for m &0; (3.58b}
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m & stands for m greater than or equal to 0.
Finally, we use

cr= f d(cos8) f dP (3.59}

in order to obtain the CCBA total cross section

CCBA( . .
)

I oP'b b 1K TCCBA 2
bjb naja ~4 J( (2 1 )

X I ~hb jba-n j;LbJ.+
(3.60)

where

TCCBA g g &
ae a( ])( ~m

~

—m)/2i ja jb( 1) a + b(2J + ])(2J + ])(2L + ])1/2

x (j.L.m. o
I
Jm. &(jbLbmb m

I
Jm—.&&j'L' m'M' I JM&&jbLbmbMb I

JM&

~ I ~ I

x (jbj,'mb —m,
' lj'm') (LbL,' MbMa —

I
j'm'&AL', L. . .

b aj
(3.61)

or briefly,

TCCBA . g pi a ja jbe a( ]) b j
( ])~ lm I

—m)/2(2j +])(2j +]}(2L +]}I/2
b a

~ I I

)( (J L,m, 0
I
Jm, ) (jbLbmb —m

I
Jm, ) W(j'j bL,'Lbj ' J)AL' L.LI LIJI (3.62)

]n the ]imiting case of zero coupling, the expression (3.60) is reduced to the DWBA total cross section,

PaPb b 1
Z

DWBA 2E
nbjb~naja = ~ J] (2. + 1}g g I nbjb n j;Lbjm I

o Ju+ Jm L,
(3.63)

where

llTJ

g(2j +1}(2jb+1)gi 'e '(2L +1)' '(LbL, m0I jm)ALbL j ~

b u La

(3.64}

Using the symmetry relation similar to (3.56),

T DWBA
( ])j +jb+aj™TDWBA

libJb~ J~ LbJm "bJb~"aJa'Lb&

we obtain

(3.65)

~4 +, 2J', +l .
(3.66)

IV. DISCUSSION AND CONCLUSION

Based on the first Born approximation and
coupled-channel wave functions in the initial and
final arrangement channels, we have presented the
systematic derivations of the state-to-state transi-
tion amplitude, differential cross section, and in-
tegral (total) cross section in order to describe the
rearrangement collision processes of atom-diatomic
molecule systems. We have also deduced the

DWBA expressions from the present CCBA as a
limiting case of zero coupling between channels in

each arrangement.
Coupling effects are expected to be more signifi-

cant at larger collision energies. For this reason,
the DWBA should selectively be used. The
DWBA here refers to the "conventional" treat-
ment, that is, the distorted-wave functions describ-

ing the relative motion between the colliding or
departing pair are elastic waves and the diatomic
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molecules remain free (unperturbed) during col-
lision. Such treatment is easily transferable to our
DWBA formalism, also. However, in a qualitative
sense, the "free molecule" treatment in the DWBA
is found to be good in describing the physics of
molecular reactions despite its inherent failure of
unitarity and quantitative accuracy. In the future,
it will be of great interest tp see how well the
present CCBA method will improve over the
DWBA. Also, it will be of great interest to study
the variation of coupling effects with the scattering
angle based on the CCBA.

The direct solution of the coupled Schrodinger
equation (2.7) for rearrangement collisions requires
excessive computation time. An excessively large
number of terms which take into account the high-
ly excited state (bound states) and unbound states
of the diatomic molecule would be required in or-
der to represent a new arrangement. In the CCBA,
we truncate the infinite set of equations to a rela-
tively small number of channels. This includes the
neglect of coupling between arrangement channels.
Such a strong coupling approximation with the

first Born approximation has been termed
coupled-channel Born approximation in nuclear re-
action. It is expected that our present molecular
version of the CCBA will be economically feasible.

Finally, we find from the present study that (l)
the transferred angular momenta incoherently add
to both differential and integral (total) cross sec-
tions only in the case of ignorable coupling as can
be seen from Eqs. (3.55), (3.57), (3.63), and (3.66).
(2) The incoherent contribution of product partial
waves to the integral cross section is predicted to
be universal for both cases of the zero coupling
and nonzero coupling, an (3) the difference between
the CCBA and DWBA differential cross section
defines the variation of coupling effects (excluding
coupling between arrangement channels) as a func-
tion of the center-of-mass scattering angle. The
last study will be of great value for further under-
standing of microphysical reaction mechanisms.
In view of various qualitative successes with the
DWBA, the present CCBA method is highly
promising for better quantitative results.
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