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Slowing-down and capture cross sections have been consistently calculated for
p~, m~, K7, and p in collisions with hydrogen and helium atoms and isotopic variants.
Capture-energy distributions are determined using the differential-energy-loss cross sections
in the laboratory frame. Capture is found to occur predominantly at energies near or below
the ionization potential of the target. Ratios of capture on different species are given as a
function of the mole fraction of each species present in mixtures. For 7~ in a He-H mix-
ture the reduced capture ratio obtained is ~0.73, slightly less than the experimental value
of 0.92 for the He-H, mixture. In contrast with another recent theoretical calculation and
in agreement with experimental analysis, it is found that atomic capture of pions in the
helium-hydrogen mixture is only slightly nonlinear. It is pointed out that some prior
theoretical treatments are in error because of inconsistent calculation of the slowing-down
and capture processes and/or subsequent approximate treatment of the energy transport.
Use of capture and transfer rates in muon kinetics, e.g., muon-catalyzed fusion, is discussed.
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I. INTRODUCTION

The capture of negative mesons in mixtures of hy-
drogen and helium has been studied experimental-
ly"? and theoretically,’ but basic questions remain
unresolved. This system is of current interest in the
rekindled investigation of muon-catalyzed fu-
sion.*~!* The interpretation of the most recent ex-
periment,' which was performed with negative pions
using the y-ray signature of 7° decay (the 7° comes
from 7~ charge exchange with the proton), is com-
plicated by the competition between nuclear capture
and transfer to helium following atomic capture of
the 7~ by hydrogen. Some uncertainty in compar-
ing theory with experiment arises from the fact that
the experiments are performed with H, molecules,
while so far theory has been applied directly only
with H atoms. However, many yet-unsettled ques-
tions involve the atomic case as well, and the present
work will consider the He + H (and isotopically
variant) mix. The principal issues, all intimately re-
lated, in regard to atomic capture in the mix are the
energy at which capture occurs, the He- to H-
capture ratio, and the possibility that this capture
ratio has a nonlinear dependence on the relative con-
centrations. The crucial importance of consistent
treatment of the slowing-down and capture process-
es has been emphasized in recent years.'* Such con-
sistent calculations, using a wide diversity of
methods, have been carried out for H atoms!>—1’
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and He atoms!® separately, and all show that cap-
ture occurs primarily at energies about or below the
ionization potential of the target. On the other
hand, calculations of the capture cross section alone
coupled with use of Rosenberg’s'® slowing-down
cross section have predicted capture in much more
energetic collisions for both H and He atoms. The
present work is the first consistent calculation for
the He-H mix.

Several calculations of slowing-down and/or cap-
ture cross sections for negative muons by hydrogen
atoms have been published. The various results are
discussed and compared in Ref. 17, which presents a
classical-trajectory Monte Carlo (CTMC) calcula-
tion. The CTMC results, which we believe to be the
most accurate available at low to moderate energies,
are in fairly good agreement with results of the
much more economical diabatic-state method'® at
energies below about 200 eV. Since the probability
of capture rapidly decreases at energies exceeding
the ionization potential, we have chosen to apply the
diabatic-state method to the He target as well.
Methods used in previous calculations of negative-
meson capture by the He atom include the Born ap-
proximation by Korenman and Rogovaya,’ the
Coulomb-Born approximation by Haff and Tom-
brello,”® and the distorted-wave (DW) method by
Cherepkov and Chernysheva.'®* The DW calcula-
tion, the best of these descriptions, described the
atoms, atomic ion, and ejected electron by Hartree-
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Fock wave functions, and the initial and final muon
states by Hartree wave functions. The muon
initial-state wave function was calculated in the
frozen potential of the ground-state atom, and the
muon final-state and ejected-electron wave functions
were calculated in the frozen potential of the atomic
ion. This calculation should be fairly accurate ex-
cept at low energies where the chosen frozen cores
are inappropriate. The DW capture cross section
for 4~ +He is much smaller than the corresponding
Born result except at E <1 au., where the two
agree. It may also be noted that at E <1 a.u. the
Born capture cross section for u~+H is much
larger than the CTMC result as well as the
adiabatic-ionization (with curved trajectories) re-
sult.!” Adiabatic ionization?' should be a sensible,
though not quantitative, description of u~+H col-
lisions at low energies. It appears likely that the
perturbative methods overestimate the cross section
at collision energies below the ionization potential of
the target.

The diabatic-state method has been described in
detail previously (Ref. 16, referred to as paper I) and
so will be only briefly summarized here before
proceeding to its results for capture of negative
mesons in He-H mixtures.

II. DIABATIC-STATE METHOD

The negative-meson—atom interaction is de-
scribed in the Born-Oppenheimer framework (i.e.,
the meson is treated as a heavy particle), but diabat-
ic rather than adiabatic electronic states are em-
ployed.'® The potential-energy curve V;(R) of the
diabatic state iy, unlike the adiabatic potential
curve V,(R), may cross into the electronic continu-
um even in cases where adiabatic ionization is pre-
cluded. At distances R smaller than the crossing
into the continuum at R, the discrete diabatic state
has a finite autoionization width, which is given by

L(R)=2mp, | (LY. |H—V;|¥a)|*, (1

where p, is the density of states associated with the
continuum electron wave function ¢, at energy
Vy—Vi, ¥§ is the wave function of the system
with one electron removed, and .« is the antisym-
metrization operator. The ionic wave function, with
potential energy V', is also calculated in the Born-
Oppenheimer approximation, using the same core
orbitals as in Y. In practice, we avoid direct
evaluation of continuum integrals by discretizing the
continuum and utilizing Stieltjes moment theory.?

It is now convenient to formulate the collision
problem in terms of the complex potential

W(R)=Vd(R)—§I‘(R). 2)

The scattering in this potential is treated by the
impact-parameter method with quasiclassical trajec-
tories. For a collision at relative energy E., and
impact parameter b, the probability of ionization is
obtained as the solution of the first-order differen-
tial equation

bR _, [_m 172 1_b_2_ V,R) |7
dR - 2Ecm R 2 Ec.m.
XT(R)[1-p(R)], 3)

where m is the reduced mass. On the trajectory, R
goes from « to R (with A= —1), then from R to
o (with A=+1), where the classical turning point
R satisfies

2
c.m.

b°E
Ec.m. - Vd(Rcl)_ R—2

cl

—0. @)

The two values of p(R) are denoted p;,(R) and
Pout(R). The doubly differential cross section for an
energy loss € in a collision at impact parameter b is
given by
dzU(Ec.m. ,6b)

dedb

R, d
=27b ch] f(G,R )E[ _pin(R)+pout(R)]

dé'o(R )
dR

dR . (5)

The energy losses are distributed about the energy
€(R)=V4(R)—V;5(R)+1, , (6)

where I, is the ionization potential of the target
atom.”® The distribution function f(e,R) is not
completely determined by the theoretical formula-
tion. In paper I a Lorentzian distribution (with
width T') was assumed. Subsequently, the CTMC
calculation'” has shown directly that the energy dis-
tribution is more nearly exponential. Hence we now
use an exponential distribution (with width I"),

f(e&,R)=C(R)exp[ —(21n2) | e—€(R) | /T(R)] ,
@)

where C(R) is a normalization constant.
The differential energy-loss cross section is given
by

do(E_ . ,€) _ fuo do(E_ , ,€b)
“Jo

de dedb ®
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If e>E_ . the negative meson is captured; hence
we can calculate the capture cross section

do(E;  ,€)

OaplEom)= [ — " —de ©)

and the slowing-down cross section

E . do(E_pn ,€)
aslow(Ec.m. )= fO chm : de (10)
The total ionization cross section can be obtained as
the sum of o,y and oy, or more directly by

HEcn)=27 [ ” pouR— )b db . (1

III. INTERACTION POTENTIALS AND
CROSS SECTIONS

The potentials for the interactions of negative
mesons with H and He atoms are shown in Figs. 1
and 2. The same curves apply independent of the
meson mass since the calculations are done in the
Born-Oppenheimer approximation. The potential
curves shown are the electronic energies, the attrac-
tive meson-nucleus Coulomb term having been sub-
tracted out. The results for the H atom, from paper
I,'® show that the diabatic curve crosses into the
continuum at R,~1.86a, as compared to the adia-

ENERGY (a.u.)

R(ag)

FIG. 1. Electronic potential energies (excluding muon-
nucleus Coulomb attraction) of p~+H and p~+H™ in-
teractions. Adiabatic energies (solid curves), diabatic en-
ergies (short-dashed curves), and the ionization width of
the diabatic state (long-dashed curve) are shown. Since
the negative meson is fixed in the Born-Oppenheimer ap-
proximation, the same curves apply to any other “heavy”
particle of charge —1 (i.e., 7, K, and j). Unit of ener-
gy is 1 a.u. (=27.21 eV) and the unit of distance is lag
(=0.529 18 10~% cm).
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FIG. 2. Electronic potential energies of u~+He and
1~ +He*. See caption of Fig. 1 for other details.

batic critical distance?' of R,~0.64a,. Qualitative-
ly, mR? is a better estimate of the effective low-
energy stopping cross section than is the much
smaller mR2. Of course, in any system where the
negative ion, formed in the adiabatic united-atom
limit, is bound, adiabatic ionization is not possible at
all. This is the case for u~ +He whose interaction
potentials are shown in Fig. 2 (the united-atom limit
is H™). The u~ + He calculations were done with a
basis set similar to that used for u~+H, 20—s,
20—p, and 20—d even-tempered Gaussian functions
on the He atom (the d functions were omitted in the
Stieltjes-moment-theory calculation of I'). In the di-
abatic calculation of V" the same ls orbital ap-
propriate to neutral He was imposed on He*; hence
V7 does not quite approach ¥,;" as R— . The di-
abatic crossing for u~ +He occurs at R ~0.96a,, a
smaller distance than the u~+H diabatic crossing.
On the other hand, the width I is larger for He than
for H so it is perhaps not immediately obvious
which will present the larger cross section.

In the cross-section calculations the adiabatic po-
tential curve was used at R > 4a, (well outside R, )
and the diabatic curve at R <2.5a, with smooth in-
terpolation in between. The only effect of the adia-
batic curve is in the determination of long-range
barriers in the effective potential V(R)
+(b/R)E_, , which reduce the cross section at
very low collision energies. The capture and
slowing-down cross sections for pu~+H and
1~ +He are shown in Figs. 3 and 4, respectively, as
a function of laboratory scattering energy

Elab=(l+y)EC.m‘ ’ (12)

where y is the ratio of the meson mass to target
mass. Clearly, the capture cross sections decrease
rapidly at relative collision energies exceeding the



1824 JAMES S. COHEN, RICHARD L. MARTIN, AND W. R. WADT 27

E T T T T
3 E
E s 1
IO-‘GE 4
- E”_,—c
— Id'75— =
~ E 3
13 F 3]
o r ]
b L 1
oL i
: .
. :
|
IOI9F 3
[ y

'620 L 1 ! b N
10 20 50 100 200

Elub (ev)

FIG. 3. Slowing-down cross sections o, (dashed
curves) and capture cross sections o, (solid curves) for
p~+H. a, Present calculations; b, values from Ref. 3
(0gow from Ref. 19).

ionization potential of the target; i.e., the electron
generally escapes with a kinetic energy smaller than
1 a.u. as the result of a low-energy collision. At rel-
ative collision energies below the ionization poten-
tial, the capture cross section increases relatively
slowly as the collision energy decreases, owing to
trajectory deflection by the Coulomb attraction to
the nucleus. The Born-approximation capture cross
sections,® which have also been used to describe the
He-H mixture, are shown for comparison in Figs. 3

|d|5
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FIG. 4. Slowing-down cross sections og.. (dashed
curves) and capture Cross sections o,y (solid curves) for
p~+He. a, Present calculations; b, values from Ref. 3
(0s1ow from Ref. 19); and c, results from Ref. 18.

and 4. The present capture cross sections fall off
somewhat faster than the Born values at E_ ,, >1,
and, more importantly, are much smaller. On the
other hand, the present capture cross section for He
does not fall off quite as rapidly as does the DW re-
sult,'® but the two are comparable in magnitude.
Both perturbative results, the Born and DW approx-
imations, give much larger capture cross sections
than the present calculations at E., <I,, even
though the Born approximation does not account
for trajectory curvature. It is also interesting to ob-
serve that the change in the capture cross section at
energies near the ionization potential is much more
gradual in the perturbative approaches than in the
present calculation and in the presumably more ac-
curate CTMC calculation (the total ionization cross
sections are still quite smooth in all the calcula-
tions).

The slowing-down cross sections, which are equal-
ly important for determining capture-energy distri-
butions, are also shown in Figs. 3 and 4. The
present result is somewhat smaller than the DW
cross section, but both are much larger than the
value of Rosenberg!® which has been used in con-
junction with the Born approximation to capture.’
Roughly speaking, one may expect capture to occur
at energies where the capture and slowing-down
cross sections are comparable. More precisely, it is
the differential energy-loss cross section which is re-
quired in the calculation of capture distributions.
The part of this cross section reflecting energy im-
parted to the ionized target electron is denoted
do/de and determined by Eq. (8). Its values are
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FIG. 5. Differential energy-loss cross sections for
K~ +He and K~ +H in the c.m. frame (do,,, /de€, solid
curve; d o,y /d€, long-dashed curve) and in the laborato-
ry frame (doyey /d€’, short-dashed curve). Collision en-
ergy is E;, =40 eV, or E., =35.3 for K~ +He and 26.2
eV for K~ +H.
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shown in Fig. 5 for collisions of negative kaons with
H and He atoms.

There is an additional contribution to energy loss
which is due to the momentum imparted to the tar-
get atom. Previous work has suggested that the
component of this energy transfer resulting from
elastic scattering is negligible.'"® However, it is clear
that transfer of kinetic energy in nonelastic scatter-
ing must also be accompanied by transfer of kinetic
energy to the target nucleus (assumed to be initially
stationary in the laboratory frame). The latter ener-
gy loss has often been neglected but can be signifi-
cant especially for the heavier projectiles (K~ and
p) and for capture at very low energies. Simple
consideration of conservation of linear momentum
shows that the total energy loss (in the laboratory
frame) is given by

, € 2E,  2V°Ej sin®0
€~
Y+1 " (y+1)7? (y+1)?
_ 2¥Ew | lrt1e 12
(y+1)? Eg
)
X l—lﬁe— cos@ , (13)
1— (y+1)e
Elab

where 6 is the laboratory deflection angle of the pro-
jectile. In this expression the momentum of the
electron has been neglected since it is quite small,
and the electron is expected to be emitted nearly iso-
tropically (in the c.m. frame) in any event. Con-
sistent with the neglect of elastic scattering, the de-
flection angle in inelastic scattering will also be
neglected. This deflection angle is not given by the
usual diabatic-state treatment and would involve a
considerably greater computational effort. (For
each E_,, and b, a longer trajectory would have to
be integrated and branched to the final state at a
number of points where ionization is possible. The
contribution of deflection could more sensibly be
checked in the CTMC calculation where exact
three-dimensional dynamics is performed.) The ra-
tio €' /e is shown in Fig. 6 for =0. Neglecting de-
flection the total differential-energy-loss cross sec-
tion do/d€’ can be obtained simply from do/de us-
ing the relation
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€
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Elab
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e~(y+1)e' —2yEy, (14)

The values of do/de’ for K~ +H and K ~ + He are
also shown in Fig. 5 for comparison with do/de.
Note that capture occurs when €>E..,, or
equivalently € >[(2y+1)/(y+1)?]E),. Also note
that € has a minimum value €,;,, which for capture

[o] 0.2 0.4 0.6 0.8 1.0

€e/E 0

FIG. 6. Approximate ratio of energy loss €’ in the labo-
ratory frame to energy loss € in the c.m. frame as a func-
tion of €/E., for p=, #~, K, and p colliding with H
atoms.

is equal to the target ionization potential. Conse-
quently, in the absence of elastic scattering, the
lowest laboratory energy at which a free negative
meson can OcCcur is

Emr=[v¥/(y+1)]emin - (15)

Elastic scattering will fill this void to some extent
(of course, the target atoms are not exactly station-
ary in the laboratory frame, as assumed, either).

IV. CAPTURE DISTRIBUTIONS AND
DISCUSSION

The capture distributions are conveniently deter-
mined via the arrival probability density?* F,(Ej,),
which is defined such that the probability of a nega-
tive meson arriving (sometime during its history be-
fore capture) in an energy interval dE),, at E,,;, is
given by F, (E,,)dE),,. The arrival function satis-
fies the integral equation

Farr(Elab)= fO Bfree(Elab +€,€')
XFarr(Elab+€,)de' ’ (16)
where the branching ratio for free-free collisions is

Bfree(Elab’el)

2yi+1 do;(E,y,€')
3,0 |- E,—¢ | — 2
200\ iy e de
- za,-a,-(Elab)
' (17)

Here a; is the fraction of species i in the mixture,
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and ©(x)=1 for x >0 and O otherwise. Equation
(16) is solved numerically by starting with a normal-
ized uniform distribution in some “high” energy
range. With the present cross sections an initial dis-
tribution between 9 and 10 a.u. (much lower, of
course, than the actual initial meson energies) was
found to be sufficient to eliminate any dependence
of F,,, in the energy range where capture occurs, on
the initial conditions. In terms of the solution of
Eq. (16), the normalized capture probability density
for species i is then given by

Flu(En)= [ B&p(Eigy, € Fae(Ery)de’

(18)
where the capture branching ratio is
B (Ejgp,€)
a0 |e— 2y;+1 " do;(Ep,€")
(y;+1)? de'
- 2 a;0;(E)
i

(19)

Finally, the probability of capture by species i is ob-
tained,

W= fo F (E)dEy, . (20)

In the preceding paragraph we have been some-
what cavalier with the quantity €. Recall that €’
was defined as the energy loss of the negative meson
in the laboratory frame and so is rather arbitrary in
the case of capture. Actually, all that is required is
a mapping € —¢€ which is smooth at the boundary
between free-free and free-bound collisions. For this
purpose we used

2 1 E3 1/3
€= € — _uTElab L 3 (21)
(y+1) (y+1)

for € >[2y+1)/(y+1)*Ep. It is easily verified
that this expression joins smoothly with Eq. (14) at
€ =[2y+1)/(y+1)*]Eps. This connection allows
the convenience of not having to bother with any
frame transformation in solving Eq. (16). The bind-
ing energy of the captured negative meson is given
by

Ep
1+v "’
clearly, this is not the same as € — E|,;, since the c.m.
of the mesonic atom must remain in motion after
capture.

The energy distributions are shown in Fig. 7 for
capture of negative muons in pure H and in pure

Ey=€—E,, =€— 22)
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FIG. 7. Energy distributions of muon capture in pure
He (solid curves) and pure H (dashed curves). a, Present
results; b, results from Ref. 3; and c, results from Ref. 18.

He. The result for H differs from that in paper I at
very low energies since the calculation in I was done
in the c.m. frame. It is more proper to do the cal-
culation in the laboratory frame, especially for mix-
tures which will be considered below. The present
results are compared with those of Korenman and
Rogovaya (KR)® and Cherepkov and Chernysheva
(CO™ in Fig. 7. The results of KR show capture
occurring at much higher energies than do either the
present results or those of CC. The capture energies
obtained by Haff and Tombrello?® (not shown) are
even higher than those of KR (half the muons cap-
tured by ~75 eV in H and by ~200 eV in He). The
earliest calculation of KR (1975) found capture in H
mainly at still higher energies ( >200 eV). The high
capture energies are due more to their use of incon-
sistent capture and slowing-down cross sections
(both used the stopping power of Rosenberg'®) than
to the use of the Born approximation for capture.
We may note that elastic and (nonionizing) inelastic
scattering, which we (and the other calculations)
neglect, can only reduce the energy at which capture
occurs.

The energy distribution of CC for u~ capture by
He is in fair agreement with the present calculation,
although it does fall off at energies immediately
below the He ionization potential in contrast to the
present distribution which is relatively flat below the
ionization potential down to a quite low energy.
This falloff appears to be due to the approximate
method used by CC to determine the arrival func-
tion rather than their actual cross sections. They as-
sume for this purpose that

dUslow(E7E)
de

and consequently approximate Eq. (16) by

~0gowE)d(e—1,) (23)
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Uslow(E)

E—I,)=Fy(E
F,.( 1,) arr(E) Us]ow(E)+a°apt(E)

(24)

Hence, in effect, energy losses greater than I, are al-
lowed in the case of capture but not in the case of
slowing down. This inconsistency causes a decrease
in F,p,(E) starting immediately below I,. In fact, if
the energy losses decrease as the collision energy de-
creases, which is generally the case, F,,(E) may
peak below I,. We believe that if the cross sections
of CC were used in Eq. (16) the resulting distribu-
tion would be in even better agreement with ours.
This agreement might at first seem a little surprising
considering that the capture cross section of CC is
significantly larger than ours at E <I,. The ex-
planation is that in both calculations it is assumed
that only capture occurs at E < I, and thus the mag-
nitude of o, here has no effect on F,,;. However,
the magnitude of the cross section at E <I, will
have an important effect on mixtures whose com-
ponents have different values of I,. The approxima-
tion presumed in Eq. (24) could cause most serious
errors in predicting capture ratios.

Two examples of capture-energy distributions in
mixtures are shown in Fig. 8. The mixture is
comprised of equal amounts of He and H, and the
distribution of captures on each atom is shown for
p~ and K~ mesons. The relative values of the H
and He capture distributions largely reflect the ratio
of the respective capture cross sections, and devia-
tion of their shapes from that of the capture profiles
of the pure species (shown in Fig. 7) reflects the en-
ergy dependence of this ratio. The structure at very
low energies, which is most apparent in Fig. 8 for
capture of K, arises from the different values of
EDMn [see Eq. (15)] for the two different tar-

Eqp (eV)
(9] 10 20 30 40 50
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0.2r 1
//
% 0.4 0.8 1.2 1.6 20
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FIG. 8. Energy distributions of muon (solid curves)
and kaon (dashed curves) capture by He and H in a mix-
ture comprised of equal mole fractions of He and H.

get atoms. The probability of capture by a given
species W;, obtained by integrating the capture-
energy distribution according to Eq. (20), is shown
in Fig. 9 for He, formation in He-H mixtures. Ac-
cording to the present calculations, the fraction of
muons captured by He is somewhat less than the
mole fraction of He in the mixture of He and H
atoms.

Perhaps more instructive than the capture proba-
bility itself is the reduced capture ratio
(W,/W3)/(a;/a,). A nonconstant value of this ra-
tio signifies a nonlinear dependence of capture prob-
ability on the relative abundances of the species.
The reduced capture ratios are shown in Fig. 10 for
muons in He-H, He-D, and He-T mixes. A mild
nonlinearity is exhibited. The reduced capture ratios
at three different relative abundances are also given
in Table I for muons in these and other mixes, as
well as for 7~, K~, and p in the He-H mix. The
nonlinearity of the capture probability is most easily
interpreted in terms of the arrival function, as dis-
cussed by Leon.2* If the arrival function is constant,
then the reduced capture ratio is simply the ratio of
the capture cross sections integrated over energy;
i.e., it does not matter that capture occurs at dif-
ferent energies for the two species. On the other
hand, if the arrival function increases as the parti-
cles slow down, then capture at lower energies is
favored, and conversely. Nonlinearity may result if
the arrival function depends on the relative concen-
trations of the species in the mix. One might think
that owing to capture the arrival function always de-
creases as the energy decreases, but such is not the
case. In a consistent calculation there is a relation
between slowing down and capture indicated by the
differential energy-loss cross section; that is,
do(E_, ,€)/de is continuous at e=E_, . Actually,
at very low energies the arrival function in the labo-
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FIG. 9. Fraction of muons captured by He as a func-
tion of the mole fraction of He in a mixture of He and H.
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FIG. 10. Reduced  capture ratios [e.g.,

(Wye / Wy)/(ay. /ay)] for muon capture in mixtures of
helium (*He) with hydrogen (protium), deuterium, and tri-
tium. Departures from constant values signify nonlinear
capture.

ratory frame does decrease (at least, if elastic
scattering is neglected) owing to the momentum
transfer which must accompany ionization, but not
necessarily as a result of capture. At higher energies
the shapes of the arrival functions in the two frames
do not differ greatly. Setting aside the effect of
momentum transfer by considering the arrival func-
tion in the c.m. frame, then, as Leon clearly points
out, dF ., /dE <O if energy losses decrease as E de-
creases, and conversely. Note that it is the shape
and not the magnitude of the energy-loss cross sec-
tion which is relevant; i.e.,

1 do(E,e) 25)

o(E) de

should be compared at different energies E.
In the present calculations energy losses in the

c.m. frame decrease slightly as the particles slow
down in the energy range where capture may occur.
Consequently, the arrival function in the laboratory
frame has a maximum and is rather flat at
Ej >0.5 a.u. The reduced capture ratio is given
approximately by the ratio of the capture cross sec-
tions integrated over energy, and the nonlinearity is
slight. What nonlinearity there is comes from the
fact that the decrease of energy losses as the parti-
cles slow down is greater for H than for He targets,
so the arrival function for pure H has its maximum
at lower energy than does the arrival function for
pure He. Hence if the arrival function is determined
primarily by H, as is the case in a mixture of mostly
H, capture at low energy, i.e., by H, is favored. The
result is a reduced capture ratio (He relative to H)
which increases as the mole fraction of He increases.
It is important to understand that this behavior is
the result of the collision-energy dependence of the
energy-loss cross section and not merely the result of
captures on He occurring at higher energies than
captures on H.

Capture at different energies is a necessary al-
though not sufficient condition for nonlinearity.
For the heavier particles 7—, K ~, and p in the He-H
mix, this condition is less well satisfied than for u—,
and the nonlinearity can be seen to be decreasing in
Table 1. The laboratory collision energy at which
capture first occurs with high probability is given by
(y: + DI,'? for species #; for the He-H mix these en-
ergies (in eV) are 25.3 and 15.1 for 4, 25.5 and 15.6
for m—, 27.8 and 20.8 for K —, and 30.8 and 27.2 for
p. The effect for 4~ and K~ can be seen in Fig. 8.

For isotopic mixes these “thresholds” differ be-
cause of the different reduced masses (the difference
in ionization potentials is negligible); e.g., the ener-
gies are 14.4 and 15.1 for 4~ in the D-H mix. This
difference yields a nonunity reduced capture ratio
(see Table I), but, as already emphasized, is not suf-

TABLE I. Reduced capture ratios (W,/W,)/(a,/a,).?

a,=0.01, a,=0.99 a;=a,=0.5 a;=0.99, a,=0.01
u~ +(He,H) 0.732 0.749 0.788
7~ +(He,H) 0.711 0.726 0.759
K~ +(He,H) 0.555 0.558 0.564
p+(He,H) 0.431 0.433 0.434
u~ +(He,D) 0.772 0.796 0.851
u~ +(He,T) 0.786 0.812 0.873
p~+(D,H) 0.936 0.937 0.937
p~+(T,D) 0.978 0.978 0.978
u~ +(He,*He) 0.987 0.987 0.987

#Subscripts 1 and 2 refer to the species of the mixture in the order listed in column 1.
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ficient to guarantee nonlinearity. In fact, the
energy-loss shapes for u~+H and p~+D are simi-
lar, and the nonlinearity is negligible. We note that
if these calculations had been done in the c.m. sys-
tem, the reduced capture ratios obtained for the iso-
topic mixes would be virtually unity.

V. COMPARISON WITH EXPERIMENT

We have consistently calculated slowing-down
and capture cross sections, capture-energy distribu-
tions, and capture ratios for p~, 7=, K~, and p in
He-H (and isotopically variant) mixtures. Thus the
initial atomic capture is characterized. Available
experimental observations have been made, however,
after a time during which some transfer from the
lighter to heavier nucleus may have occurred. While
it has been verified both experimentally>?*>2® and
theoretically?” that transfer from ground-state
mesonic hydrogen to helium occurs at a very slow
rate, this hindrance does not apply to excited states
(it has been estimated”’ that transfer from H, to He
is appreciable for levels n>5). In the most
thorough experimental study to date, Petrukhin and
Suvorov! found that the observed probability of nu-
clear capture by hydrogen of a 7~ meson stopped in
the He-H, mixture is accurately fit by the form

WX =Pyq , (26)
where
Py=(14+40)"" (27)

is interpreted as the probability of initial atomic
capture by hydrogen, and

g=(14+4'C*?)~! (28)

is interpreted as the probability of pion transfer
from hydrogen to helium not occurring. Letting C
be the ratio of atomic number densities, i.e.,

C:nHe/nH=O.5nHe/nHZ N (29)

they obtained
A=A'=1.8410.09 .

Another measurement’?® gave 4 =1.72+0.13 in-
directly. Hence the net result is strongly nonlinear,
but Petrukhin and Suvorov predict that the initial
atomic capture is linear in agreement with earlier
less accurate experiments’ and consistent with the
present weak nonlinearity shown in Fig. 10 and
Table I.

The most sensible quantitative comparison be-
tween capture experiments (with H;) and theory

(with H) is made by using equal number densities of
H, and H. This is the case because undoubtedly the
slow negative meson about to be captured “sees” the
molecular orbital and not the separate atoms in the
molecule. (The situation of capture may be con-
trasted with that of deactivation of Hj, for example,
where the small neutral H; is expected to “see” each
nucleus separately.”’ In this case it is proper to
count H, as two H atoms.) The present results then
give A~1.46 in Eq. (27) for pions in the He-H, mix-
ture. (Note that 4 would be a factor of 2 smaller in
both the experimental and theoretical cases if C were
defined as the ratio of mole fractions a,/a,.) The
agreement with experiment is quite satisfactory. A4
priori, it is not possible to predict reliably whether H
or H, should be more effective at capturing negative
mesons. On the one hand, H, has the larger ioniza-
tion potential, thus favoring H,. On the other hand,
adiabatic ionization is not possible with H,, imply-
ing that H, may have the smaller cross section. The
latter relation is mildly suggested by the difference
between the present and experimental values of A.
In any event, the Z-scaling law is not valid.
Korenman and Rogovaya® have challenged the
experimental analysis made by Petrukhin and Su-
vorov. On the basis of their theoretical treatment of
the He-H mix (Born approximation for capture mat-
ed with Rosenberg’s stopping power) they predict a
large nonlinearity in the initial atomic-capture rate
and assert that the experimental results can be inter-
preted on this basis alone with no transfer from hy-
drogen to helium occurring. We have suggested in
Sec. IV that this large nonlinearity is due to their in-
consistent treatment of slowing down and capture,
and, in fact, such a large nonlinearity would be diffi-
cult to obtain in atomic capture. In this regard we
emphasize the importance of solving Eq. (16) for the
distribution of free particles accurately in the labo-
ratory frame. We believe that our results lend
credance to the experimental analysis of Petrukhin
and Suvorov. If this conclusion is correct, then in
most applications, e.g., to the kinetics of muon-
catalyzed fusion, the transfer of negative mesons
after initial capture must be taken into account. To
do this fully would require knowledge of yet-
undetermined cross sections for deactivation of Hj,
and transfer from various levels of HL to He. A for-
mula of the type in Egs. (26)—(28) may be adequate,
but the effective transfer probability g depends on
the specific reaction observed (charge exchange with
the nucleus in the aforementioned pion experiment).
In the case of muon-catalyzed fusion the situation is
not entirely clear. The formation rate for the dr u
molecule via the recently verified resonant
mechanism®*? may be comparable to the muon-
transfer rate from excited states of muonic hydrogen
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to helium.”’ Since reaction of the muon with the
nucleus is negligible, it is possible that transfer of
muons is still important at lower excited states than
for pions. Until more specific data is available on
the kinetics of muon-catalyzed fusion, it is probably
reasonable to use the effective capture ratio mea-
sured for pions.
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