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The importance of the resonance contributions to inelastic scattering of electrons from
atoms and ions has been appreciated for quite some time. We have used an approximate
method to compute the resonance contributions to selected inelastic transitions in 0vI and
SIv and compare our results with other theoretical calculations. We find that our total
resonance-enhanced collision strengths are in very good agreement with other calculations.
%'e also can accurately compute the positions of individual resonances but can sometimes be
in error by a factor of 2 on individual resonance widths.

I. INTRODUCTION

The presence of closed channels in the S matrix
for electron scattering from atomic systems can give
rise to resonance structure in the computed cross
section. Some early estimates' using the Green's
function for the Coulomb field indicated that the
average resonance contribution may be very large
compared to the background cross section. Other
investigations have been carried out using distorted-
wave techniques directly, ' close-coupling tech-
niques, close coupling along with quantum-defect
theory, ' distorted wave with quantum-defect
theory, ' and perturbation theory. In the present
paper we use close-coupling, distorted-wave, and
Coulomb-Born calculations coupled with quantum-
defect theory on OVI and compare these results to
those of Bhadra and Henry and Presnyakov and
Urnov. ' In order to estimate how well the method
works for less highly charged ions, we have carried
out distorted-wave calculations coupled with quan-
tum defect on the P'- P' transition in SIv and
compare our results with Dufton and Kingston.

II. METHOD

A. Positions and Widths of the Resonance

The use of quantum-defect theory for determining
the positions and widths of resonances has been for-
mulated by Seaton. ' We briefly summarize his for-
mulation here using his notation. He forms the ma-
trix X from the reaetanee matrix E.

x=(i —z )(~+a i-' . (&)

The R matrix is usually slowly varying with energy
and is thus fitted by a low-order polynomial in ener-

gy. Thus the g matrix can be computed at any ener-

gy from the fit parameters for the R matrix. A ma-
trix g is then formed from the X matrix. g is
formed such that it differs only by a phase factor
from the S matrix for open channels. Thus the col-
lision strength for an inelastic transition between
two open channels can be given in terms of g, the
submatrix of g corresponding to open channels.
Seaton gives g in terms of X,

=X —X (I„—e ') 'X„, (2)

where a subscript 0 refers to open and e refers to
closed. Thus, for example, 7„ is the submatrix of 1
connecting closed and open channels. The v, is a
complex effective quantum number for channel c.
The energy can be written in terms of v,

Z
(3)

v~

where E, is the energy of channel c and Z is the
residual charge.

One sees that at certain (complex) values of the
energy, g given by Eq. (2) will have poles. These
poles will give rise to resonances in the collision
strength. These resonances will form a Rydberg-like
series. To see this we write v, in terms of an integer
n and a complex quantum defect p, :

v, =n —p, (E) .

The quantum defect in general is relatively slowly
varying with energy. Thus, if a resonance occurs at
an initial value of v, it will be repeated whenever v,
changes by an integer.

%'e can associate a pole energy with the closed
channel giving rise to the pole through the quantum
defect. As noted previously, the reactance matrix is
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slowly varying with energy. Also, for a diagonal
reactance matrix, the relation

R;; =tan5;

holds where 5; is the phase shift. %'e use this rela-
tion as an approximation for the nondiagonal 8 ma-
trix. The quantum defect is then related to the ana-
lytic continuation of the phase shift by

Pi= 1

(see Seaton"). We thus obtain a first approximation
to the quantum defect for each closed channel by
fitting the reactance matrix above threshold, extra-
polating below threshold, and using Eqs. (5) and (6).
Picking a value of n for use in Eq. (4), we obtain an
approximate pole position from Eq. (3). As dis-
cussed below, the exact pole position can be found to
very good precision by numerical methods. One can
then use this value of E and the value of E, for the
closed channel corresponding to the 8;; used to find
v, . Use of Eq. (4) then gives the complex quantum
defect.

Writing the complex quantum defect as

the resonance series will occur at energies

points are closely spaced relative to the separation
between successive resonances in a Rydberg series
corresponding to different values of n in Eq. (g).
This method has proven satisfactory, providing
good pole positions in less than ten iterations in
most cases. The value of the quantum defect was
found to usually be slowly varying with energy so
that it is a good predictor of positions and widths
along a Rydberg series.

A second numerical approach to the solution of
Eq. (10) was to find the eigenvalues of X„—e
If the eigenvalue is zero, then the determinant is
zero. The zero eigenvalue was found by perturba-
tion theory. This method gave agreement with the
method outlined above.

The computer program RANAL was written to
implement many of the procedures outlined above.
A preliminary version of RANAL was provided by
Christensen. ' We modified the program so that the
degenerate closed-channel method of Seaton could
be used. %e had noted that the perturbation theory
of Cowan has worked well in other cases and that
his method does not include channel coupling. %e
thus modified RANAL so that it could be made to ig-
nore all but one set of degenerate closed channels so
that the formulation of Seaton' was applicable.
This method produced results that were in excellent
agreement with the results from the numerical pro-
cedures outlined above.

where E, is the threshold energy of the closed chan-
nel and will have widths of

4Z (n —a)P
l(n ~)'+P' j'

as given by Norcross and Seaton. Thus one sees
that finding the widths and positions of the reso-
nances is equivalent to finding the poles of g~
which is equivalent to finding the zeros of the deter-
minant

fX», —e '/ =0.
For the case in which all the closed channels have
the same threshold energy, the poles can be found by
a diagonalization of J„.' In the cases we consider
here, the closed channels have different threshold
energies. %e have determined the roots of Eq. (10)
and thus the quantum defects by numerical pro-
cedures.

A straightforward method for finding the zeros of
the determinant given by Eq. (10) is to evaluate the
determinant at three distinct energy points and fit it
to a quadratic. This then predicts a closer approxi-
mation to the zero. This process is iterated. Some
care must be taken that the original three energy

TABLE I. Collision strengths in OVI at 5.9 Ry com-
puted by different methods with I.&4.

DW' GAd
CCb GA
Hyd' GA
D% DCC'
CC DCC
Hyd DCC
DVV AV'
CC AV

1.68
1.61
1.22
1.63
1.57
1.24
1.63
1.67

2$-3$

0.281
0.271
0.266
0.340
0.316
0.235
0.333
0.310

2p-3$

0.787
0.848
0.655
0.921
0.905
0.549
0.810
0.834

'DW, distorted wave.
bCC, close coupling.
'Hyd, Coulomb-Born calculation with hydrogenic bound-

state wave functions.
4GA, Gailitis average of original RANAL program.
'DCC, Using one set of degenerate closed channels at a
time in RANAI, .
AV, simple numerical average of detailed collision

strength.

B. Collision strengths

For the case of degenerate closed channels one can
use Seaton's formulation to obtain a Gailitis -type
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TABLE II. Comparison of the GA and AV collision strength using dose-coupling matrix
elements above threshold for the 0VI case at 5.9 Ry.

Symmetry

's
3g
1p
3p
la
3g)

lp
3p
16
36

Total

GA'

0.082
0.128
0.134
0.133
0.032
0.003
0.223
0.118
0.324
0.436
1.61

2$-2p

0.085
0.128
0.135
0.130
0.012
0.003
0.222
0.118
0.302
0.436
1.67

0.015
0.002
0.029
0.046
0.067
0.033
0.025
0.027
0.019
0.008
0.271

2$-3$

0.013
0.002
0.028
0.051
0.075
0.032
0.025
0.027
0.051
0.007
0.310

0.044
0.007
0.137
0.081
0.113
0.066
0.129
0.038
0.149
0.085
0.848

0.021
0.003
0.114
0.086
0.084
0.058
0.193
0.035
0.161
0.078
0.834

'GA, Gailitis average of original RANAL program.
AV, simple numerical average of detailed collision strength.

average collision strength. In practice it appears
that this method gives acceptable results when thc
difference in the threshold energies is small relative
to the energy difference between the lowest closed
channel and the energy point at which the collision
strength is being computed. In cases where the de-
generate theory does not apply, wc have used two al-
ternative methods.

One method is a simple numerical average. The
detailed collision strength can be calculated from the

g~ matrix of Eq. (2). This matrix can be obtained
from the fit coefficients for the reactance matrix
and thus does not require very much computer time.
In fact, goo and, hence, the collision strength, can be
computed thousands of times in seconds of CPU
(central processing unit) time on a large computer
such as a Contral Data Corporation CDC-7600.
Thus the numerical average can be made quite accu-
rate by using a suitably fine energy mesh.

Our second approach to the collision strength wss
to use the Gsilitis average limited to one set of de-
generate closed channels at a time. We obtain the fi-
nal result as a sum of the resonance enhancements
and the background contribution. This method gave
collision strengths which agreed very well with the
numerical averaging procedure.

III. RESULTS

A. Ovl

For OYI me have comparisons of results from a
number of combinations of coInputstional methods.
We have calculated the reactance matrix above
threshold by close-coupling, distorted-wave, ' and
Coulomb-Born hydrogenic approximations. The
close-coupling calculation used the linear algebraic

TABLE III. Comparison of collision strengths in 0 IV
at 5.9 Ry.

Method Q(2$, 3$)

CC' GA' 0.362 1.19
0%' GA 0.372 1.13
Hyd' GA 0.347 0.93
Bhadra and Henry 0.38 1.2
Presnyakov and Umovf 0.43 3.9
'CC, closed-coupling reactance matrix above threshold.
b0%', distorted-wave reactance matrix above threshold.
'Hyd, Coulomb-Born with hydrogenic target wave func-
t1ons above thl'cshold.
GA Ga111t1s-type avclagc.
Rcfcrcncc 6.

'Reference 1.

approach based on the integral equation formulation
of Collins snd Schneider' ' snd included the 2s, 2p,
3s, 3p, and 3d states. The different reactance ma-
trices were extrapolated below some of the thresh-
olds with the use of RANAL to obtain the resonance-
enhanced collision strengths. Wc computed the
enhanced collision strength by the original RANAL
program, the simple numerical average, snd by us-
ing sets of degenerate closed channels. We carried
out these calculations at 5.9 Ry, mhich is above the
3s threshold at 5.82 Ry but belom the 3p (6.06 Ry)
and 3d (6.13 Ry) thresholds. We present here our
calculated collision strengths for the 2s-2p, 2s-3s,
and 2p-3s transitions. These calculations mere car-
ried out to total system I. of 4 since most of the res-
onance contributions come froIQ thc lomcI'-lying an-
gular momentum states. In Table I we show the to-
tal collision strengths coIQputcd by the diffcrcnt
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combinations of methods. One sees that the differ-
ence in the methods is not exceedingly large. For
this case we note that the energy of 5.9 Ry is 0.16
Ry below the 3p threshold and that the 3d threshold
is only 0.07 Ry above the 3p threshold. Thus the
approximation that all the closed channels have the
same threshold energy is not far off. In Table II we
compare collision strengths for each symmetry cal-
culated by the Gailitis average method versus the
simple numerical average when the above threshold
matrix elements were computed from the close-
coupling approximation. One sees that in some
cases the partial-wave values differ by a large
amount but that the totals agree quite well.

We also compare our total collision strengths with
other theoretical results in Table III. Our total col-
lision strengths include the resonance-enhanced col-
lision strengths out to L =4, and the background
collision strengths for higher-L values. The Bhadra
and Henry results were estimated from their
graphs. One sees that our distorted-wave and close-
coupling results are both in very good agreement
with them and that our Coulomb-Born hydrogenic
results are not in serious disagreement. To obtain
the Presnyakov and Urnov' collision strengths we
normalized their background cross sections to our
background collision strengths of 0.18 for the 2s-3s
and 0.13 for the 2p-3s transitions at an energy of 6.2
Ry. We then used these normalization factors to ob-
tain their collision strengths at 5.9 Ry. We note that
this normalization to the close-coupling background
gives collision strengths somewhat larger than our
hydrogenic background, but not by a substantial
amount. We see that with this normalization, the
Presnyakov and Urnov result for the 2s-3s transition
agrees well with the other results. However, the 2p-

p S~ mmetry

O0
I I I

3s result is in serious disagreement. We are confi-
dent that the source of the disagreement is not in the
use of hydrogenic wave functions, since our hydro-
genic results are in good agreement with the more
elaborate methods. We do note that there appears to
be a problem in the vertical scale of the 2p-3s graph
of Presnyakov and Urnov. Specifically, the label of
150 on that graph appears to be placed at a position
corresponding to about 600 on the logarithmic scale.
Thus, we are unsure of the actual value of the cross
section for the 2p-3s transition obtained by
Presnyakov and Urnov.

B. SIV

We consider next the 3s 3p( P)-3s3p ( P) transi-
tion in S IV. We chose this case because we wanted

0.820.66 0.68 0.70 0.72 0.A 0.76 0.78

E (Ry)
FIG. 2. Collision strength vs energy showing the pres-

ence of resonances in the 3s 3p P-3s3p P transition,2 2 24 3po

symmetry, in S IV.

S I V P Symmetry
I I I

S IV Total

CI
O
Cl

I

0.66 0,68 0.70 0.72 0.4 0.76 0.78 0.80
E (Ry)

FIG. 1. Collision strength vs energy showing the pres-
2 2 24 3 g)eence of resonances in the 3s 3p P-3s3p P transition,

symmtery, in S IV.

&' "'t lllj.lLill„!«il, ~,

0.66 0.68 0.70
I

0.72 0."A
I

0.76 0.78 0.80 - 0.82

E (R~)

FIG. 3. Total collision strength vs energy showing the
presence of resonances in the 3s 3p P-3s3p P transition
in SIV.
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TABLE IV. Target-state mixtures used.

Dominant
configuration

3s 3p P

3s 3p P

3s3p D

3s3p S

3s3p P

3s3d D

Configurations
included

3s 3p( P)
3p (P)
3s3p('P)3d(2P)
3s3p( P)3d( P)
3s3p ( P}
3s3d ("P)
3p ( P)3d( P)
3s3p ( D)
3s 3d( D)
3s3d ( D)
3p ( P)3d( D)
3p ('S)3d( D)
3s3p ( S)
3s3d ( S)
3s3p ( P)
3s3d ( P)
3p ('P)3d( P)
3p ( D)3d( P}
3s23d( D)
3s 3p 2(~D)

3s3d ( D)
3p ( P)3d( D)
3p ('D)3d(~D)
3p ( S)3d( D)

Mixing
coefficient

0.975 37
0.16447
0.11671

—0.089 29
0.99501
0.072 98
0.068 03
0.892 34
0.42209
0.053 53
0.13043
0.075 38
0.985 00
0.17244
0.96861
0.046 35
0.142 23
0.198 55
0.88072

—0.41864
—0.090 25
—0.06070
—0.00904

0.19277

to try the method on a complex ion with a relatively
low level of ionicity. Also, a close-coupling calcula-
tion for this transition has been performed by Duf-
ton and Kingston.

%e illustrate the effect of resonances on this tran-
sition in Figs. 1—3. Figure 1 is a graph of collision
strength versus energy for the P' symmetry; Fig. 2
is for the 'P' symmetry and Fig. 3 is the collision
strength summed over the 3P', 3P', D', D', 3P',
I', 6', and 6'symmetries which are all the sym-

metries included in the calculations done here for
this transition. Figures 1 and 2 are included for
comparison with Figs. 2 and 3, respectively, of Duf-
ton and Kingston.

In contrast to the 0vI case, where Inixing effects

in the target state are quite small, configuration in-
teraction mixing in SIV is an important effect.
However, intermediate-coupling-type mixing has
been found to be extremely small and thus has been
neglected. The Hartree-Fock target-state mixtures
used in the present calculations have been computed
using the programs of Cowan' and are summarized
in Table IV. Note that if one uses the Fano-Racah
phase convention in the wave-function definition,
the phase for all the minor components {with the ex-
ception of the values 0.42209 and —0.41864) will

be changed.
We have computed the quantum defect by a

variety of methods for the P' and P' symmetries
and compare them in Tables V and VI. First, we
used the modified degenerate closed-channel theory
on the distorted-wave resonance matrix calculated
above the thresholds both with and without configu-
ration interaction. We also used this theory with the
close-coupling reactance matrix of Dufton and
Kingston calculated above the thresholds and kind-
ly provided to us by Aggarwal. ' %e note that for
these calculations we have used only five or six ener-

gy points for the reactance matrix in the region
above threshold. Finally, from the positions E, and
widths I of the resonances in the Dufton and
Kingston paper, we calculated the corresponding
values of a and P using Eqs. (8) and (9). In general,
we note good agreement on the real part a of the
quantum defect. Thus the positions of the reso-
nances should be predicted consistently mell by the
different methods. The imaginary part P shows
more variation. For the most part, the agreement is
better than a factor of 2. There are some cases with
significantly higher discrepancies. However, these
resonance series have been found to be quite weak
and add practically nothing to the total collision
strength.

We have used the quantum defects calculated
from the distorted-wave reactance matrix with con-
figuration interaction to find the positions and
widths of the resonances. %e compare these with
those of Dufton and Kingston for the P' and P'

Configuration PNM pPCI

TABLE V. Quantum defects for the I"symmetry in S tv at 0.70 Ry.

~PCI DKRM ~DKP pPNM pDKP

3s3p ( D)nd
3s3p ( P)ns
3s3p~( P)nd
3s 3d(~D)nd

0.311 0.309
1.206 1.206
0.314 0.319
0.340 0.339

0.28
1.24
0.43
0.64

0.34
1.24
0.34
0.26

0.0103
0.011 7
0.003 89
0.000 612

0.006 89
0.008 41
0.000 526
0.00196

0.0103
0.0168
0.000 65
0.083

0.0063
0.0077
0.005
0.003

'PNM, Present results with no mixing.
PCI, Present results with configuration interaction included.

'DKRM, Results from Dufton and Kingston's reactance matrix elements above threshold.
4DKP, Results from Dufton and Kingston's (Ref. 4) positions and widths.
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TABLE VL Quantum defects for the 'p' symmetry in 8 IV at 0.70 Ry.

Configuration

3s3p ( D)np
3s 3p'(~D )nf
3s3p {S)np
3s3p'('P)np
3s'3d('D)np
3s'3d('D)n f

PNM

0.891
1.0362
0.892
0.892
0.927
0.0270

0.892
1.0387
0.893
0.899
0.928
0.0273

0.936
0.952
0.970
0.996
0.924
0.598

0.93

0.99
0.98
0.91
0.29

0.012 2
0.001 70
0.0122
0.0140
0.00149
0.001 32

pPCI

0.007 87
0.0000133
0.0110
0.012 7
0.003 72
0.00137

pDKRM

0.00957
0.002 27
0.022 5

0.0174
0.005 04
0.010 1

0.0088

0.0099
0.012
0.003
0.011

'Abbreviations same as in Table V.

symmetries in Tables VII and VIII. In order to be
consistent in the comparison of the resonance posi-
tions, we have used the threshold energies of Dufton
and Kingston in Eq. (8) in every case. These thresh-
old energies in Rydbergs are 0.61 for the 3s 3p ( P)
state, 0.846 for the 3s3p ( D), 1.1514 for the
3s3d2( S), 1.2461 for the 3s3p ( P), and 1.4304 for
the 3s~3d(2D). As noted above, one expects the ob-
served good agreement in the calculated positions of
the resonances. Also, because of the variation in P,
one sees that the widths show some disagreement.
In fact, for the 3s 3d( D)nf resonances for the P'
symmetry, the disagreement is substantial. Thus we
caution that the distorted-wave matrix elements cou-
pled with quantum-defect theory should not be used
for a detailed analysis of individual resonances.
However, it does appear that the method is quite
useful in predicting the positions of the resonances
and, in most cases of strong resonances, a fair esti-
mate of the width. We note that the quantum de-

fects are very slowly varying with energy and that
Tables VII and VIII were made up with values of a
and P calculated at 0.70 Ry.

In order to illustrate the effect of the resonances
on the average collision strength, we consider the
quantity

E„I= f "n(E)dE,

where Q(E} is the detailed collision strength includ-
ing resonances. %e give a graph of I versus energy
for the I"symmetry in the energy range 0.66—0.82
Ry in Fig. 4 and from 0.66 to 1.4 Ry in Fig. 5. %e
use these graphs to illustrate the following points.
First, we note that a local value of the collision
strength is simply the slope of I. That is,

fE Q(E)dE
I.

TABLE VII. Comparison of positions and widths of resonances to the 'P'- P' transition in

S IV for the 'P' symmetry.

Configuration

3s3p~( D)7d
3s3p ( D)8d
3s 3p ~(2D )9d
3s3p ( D)10d
3s3p ( D)11d
3s3p ( D)12d
3s3p ( P)6d
3s3p ( P}7s
3s23d( D)5d
3s3p ( P)8s
3s3p ( P)9s
3s 3p ~(~P )10s
3$23d(2D )6d
s 3p ~(2P )12s

3s 23d(2D )Sd
3s23d( D)9d
3s 3d( D)10d
3s 23d(2D )11d

E, (Ry)

0.6450
0.6938
0.7268
0.7502
0.7673
0.7802
0.9673
0.9781
1.0161
1.0512
1.0980
1.1298
1.1496
1.1690
1.2?71
1.3104
1.3340
1.3512

E, (Ry}

0.6440
0.6930
0.7269
0.7501
0.7675
0.7804
0.9648
0.9743
1.0327
1.0490
1.0967
1.1278
1.1577
1.1690
1.2803
1.3126
1.3353
1.3521

I P(Ry)

0.0008
0.0005
0.0004
0.0003
0.0002
0.0002
0.0001
0.0016
0.0007
0.0010
0.0006
0.0004
0.0004
0.0002
0.0002
0.0001
0.0001
0.0001

PDK(Ry}

0.0011
0.0006
0.0003
0.0002
0.0002
0.0001
0.0009
0.0015
0.0009
0.0010
0.0006
0.0004
0.0007
0.0002
0.0003
0.0002
0.0001
0.0001

'P, Present results.
DK, Results of Dufton and Kingston (Ref. 4).
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TABLE VIII.
in SIV for the P'

Configuration

3$3p ( D)8p
3s3p ( P)5p
3s3p ( D)9p
3s3p ( D)10p
3s3p ( S)6p
3s23d(2D )5p
3s3p ( P)6p
3s3p ( S)7p
3s3p2( S)8p
3s3p2( P)7p
3s3p2( S)9p
3s3p'('S) lop
3s3p ( P)8p
3s'3d( D)6p
3s 3d( D)7p
3s'3d('D)8f
3s~3d( D)9p

Comparison of positions and widths of resonances to the 2P'-4P' transition
symmetry.

E, (Ry) EDK(R ) I P(Ry) I DK(Ry)

0.6679
0.7110
0.7092
0.7376
0.8064
0.8876
0.9003
0.9101
0.9733
1.0043
1.0145
1.0429
1.0677
1.0805
1.1863
1.2888
1.2923

0.0008
0.0066
0.0005
0.0004
0.0030
0.0020
0.0034
0.0017
0.0011
0.0020
0.0007
0.0005
0.0013
0.0010
0.0006
0.0001
0.0003

0.6666
0.6903
0.7085
0.7374
0.7879
0.8847
0.8934
0.9017
0.9683
0.9993
1.0114
1.0410
1.0677
1.0815
1.1864
1.2819
1.2928

0.0009
0.0053
0.0006
0.000S
0.0023
0.0004
0.0029
0.0019
0.0012
0.0029
0.0006
0.0005
0.0011
0.0008
0.0007
0.0007
0.0002

'Abbreviations same as in Table VII.

gives a locally averaged collision strength. The reso-
nances show up as jumps in I on the graphs. It is
seen that the effects of a series of resonances is to in-
crease the average slope of I and to thus increase the
average collision strength. In fact, on the detailed
graph, Fig. 4, one can esimate the enhancement due
to one converging series of resonances by estimating
the slope at the right-hand side of the graph. The
background collision strength can be estimated from
the slope between the jumps near the middle of the
graph. We have found numerically that the Gailitis
average collision strength computed by the
quantum-defect method with the nondegenerate
closed channels uncoupled is in agreement with the

slope of this graph. One can also define an average
collision strength over the entire energy interval as
simply the final value of I divided by the total ener-

gy range. This value agrees quite well with the sum
of the results of the Gailitis average done over all
the closed channels separately.

A second point to be made from the graph is that
the resonance enhancement to the collision strength
and hence to the rate coefficient is a cumulative pro-
cess. Even narrow resonances can make a signifi-
cant enhancement. One sees that there is a series of
small closely spaced jumps in I in the energy region
around 0.80 Ry. Each individual jump is relatively
small and comes from a narrow resonance. Howev-

S IV P Symmetry S IV P Symmetry

A Qga
CL
U

Q o

I I I I I

0.66 0.88 0.70 0.II2 0,A 0.'76 0.78 0,80 0.82 0.84
E (R&)

FIG. 4. Plot of the integral of 0 vs energy over the en-

ergy region 0.66—0.82 Ry for the 'P' symmetry.

0.8
I I I I I I I

0.6 0.7 0.9 1.0 1.1 1.2 1.3 1.4

E (Ry)

FIG. 5. Plot of the integral of 0 vs energy over the en-

ergy region 0.66—1.38 Ry for the P' symmetry.
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TABLE IX. Total collision strengths for the 3s 3p 'P-
3s3p~ P transition in S IV.

E (Ry) 0 (with resonances) 0 (without resonances)

TABLE X. Comparison of 0 for the 'P' and 'P' sym-
metries for the 3s 3p P-3s 3p P transition in S IV at 0.70
Ry.

0.7
0.8
0.9
1.0
1.1
1.2
1.3

5.25
4.90
4.08
3.81
3.56
3.24
2.00

1.80
1.69
1.59
1.50
1.42
1.35
1.29

R-matrix
source

PCI'
DKRM'
PCI background
DKRM background

0 P

0.52
0.55
0.35
0.37

0.55
0.55
0.29
0.24

'PCI, Present calculations vnth configuration interaction
1ncluded.

DKRM, matrix from Dufton and Kingston (Ref. 4).

er, the total effect is to substantially change I and
thus the rate coefficient from what it would have
been if the resonance series had been absent.

In Table IX we give the total collision strength,
with and without resonance enhancements included,
summed over the eight symmetries considered here.
The resonance-enhanced collision strength was cal-
culated using the Gailitis average over one set of de-
generate closed channels at 8 time. The nonreso-
nance collision strengths were calculated with the
distorted-wave approximation. ' From the table one
sees that the enhancement drops significantly every
time a threshold in energy is crossed. This is due to
the opening of channels that had been giving reso-
nance enhancement to the 3s 3p( P)-3s 3p ("P) tran-
sition.

In Table X we compare our resonance-enhanced
collision strengths computed from the distorted-
wavc 8 matrix %'1th those coIIlputcd from Dufton
and Kingston s 8 matrix above thc rcsonancc
thresholds for the I"- I" transition in SIv. The
quantum-defect theory was used to obtain the col-
lision strengths for the P' and I" symmetries Rt

0.70 Ry. %C compare both the enhanced collision
strength and the background collision strength. One
sees that both the distorted-wave and close-coupling
8 matrices give nearly identical results. Thus, even
though individual resonance widths may be in error
by a factor of 2, the average resonance enhancement
to the collision strength is predicted quite accurate-
ly.

Finally, we note that at 0.70 Ry our present
method using the distorted-wave R matrix with a
conf1guratioil 1ntci'Rct1OQ gives 8 totR1 cflhanccd col-
lision strength of 5.25 and a background collision
strength of 1.8 for this transition in S rv. Thus, we
find an enhancement of just under a factor of 3. At
the same energy Dufton and Kingston appear to
find an enhanced collision strength of slightly over 6
from their graph of 0 vs temperature, their Fig. 4.
Also, it appears that their background collision
strength is slightly over 2, so that they also find a
resonance enhancement of about a factor of 3, van

%yngaarden and Henry have made an estimate of
this resonance enhancement by extrapolating col-
lision strengths from the above threshold region to
below threshold. They estimate an enhancement of
app1oximatcly 2.1.

IV. CONCLUSION

%C have used variations of the quantum-defect
theory to compute collision strengths for selected
transitions in OYI and SIv. %e find that using
distorted-wave matrix elements and ignoring cou-
pling between different nondegenerate closed chan-
nels, we can accurately predict positions of reso-
nances and can probably give the widths of strong
resonances to better than a factor of 2. Moreover,
we find that for the cases considered here, the
resonance-enhanced collision strengths are given
quite accurately compared to other methods, even
when the enhancement is substantial. The method
also applies if one uses close-coupling reactance ma-
trix elements above the resonance thresholds and
could be useful in locating resonances to be exam-
ined in detail by 8 close-coupling calculation. Onc
of thc advantages of this method is that the reac-
tance matrix only needs to be calculated at a small
number (five or six) of energy points in the above
threshold energy region. The fit parameters are then
used to calculate the matrix at all other energy
points.

ACKNOWLEDGMENTS

The authors are grateful to Dr. R. Christensen for
providing 8 copy of a preliminary version of
RENAL. %c also thank K. M. Aggarwal for sending
us the close-coupling reactance matrix elements of
Dufton and Kingston, and thank Dr. R. J. %. Hen-
ry for providing us his partial-wave collision
strengths for 0YI for comparison purposes prior to
publication.



1820 CLARK, MERTS, MANN, AND COLLINS 27

L. P. Presnyakov and A. M. Urnov, J. Phys. B $, 1280
(1975).

Michael S. Pindzola, Phys. Rev. A 15, 2238 (1977).
3M. D. Hershkowitz and M. J. Seaton, J. Phys. B 6, 1176

(1973).
4P. L. Dufton and A. E. Kingston, J. Phys. B 13, 4277

(1980).
5D. Norcross and M. J. Seaton, J. Phys. B 3, 579 (1970).
K. Bhadra and Ronald J. W. Henry, Phys. Rev. A 26,

1848 (1982).
7A. K. Pradhan, D. W. Norcross, and D. G. Hummer,

Phys. Rev. A 23, 619 (1981).
A. K. Pradhan, D. W. Norcross, and D. G. Hummer,

Astrophys. J. 246, 1031 (1981).
Robert D. Cowan, J. Phys. B 13, 1471 (1980).

' M. J. Seaton, J. Phys. B 2, 5 (1969).
"M. J. Seaton, Proc. Phys. Soc. London 88, 801 (1966)~

A. K. Pradhan and M. J. Seaton (unpublished).

R. Christensen (private communication).
t4M. Gailitis, Zh. Eksp. Teor. Fiz. 44, 1974 (1963) [Sov.

Phys. —JETP 17, 1328 (1963)].
James M. Peek and Joseph B. Mann, Phys. Rev. A 25,
749 (1982).

6L. A. Collins and B. I. Schneider, Phys. Rev. A 24, 2387
(1981).

' L. A. Collins and B. I. Schneider, Phys. Rev. A 27, 101
(1983).

tsRobert D. Cowan, Theory of Atomic Structure and
Spectra (University of California Press, Berkeley,
1981).

' K. M. Aggarwal (private communication).
W. L. van Wyngaarden and Ronald J. W. Henry, Astro-

phys. J. 246, 1040 (1981).


