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Classical limit of an induced harmonic oscillation with radiation damping
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The previously proposed method to obtain classical limits of quantized fields using von
Neumann —lattice coherent states as basis states for the projection form of the Schrodinger
equation is modified in order to take into account the reaction of the radiation field to the
charge in a compact manner. The modification is based on the work of Glauber on the
time evolution of coherent states. To illustrate the method, a charged harmonic oscillator
with and without initial external electromagnetic field is investigated.

I. INTRODUCTION

In our previous paper' (hereafter referred to as I)
we have formulated a method to obtain classical
limits of quantized fields using von
Neumann —lattice coherent states (VNI.C) as basis
states for the projection form of the Schrodinger
equation. We applied the method to derive the
semiclassical Schrodinger equation for a charged
particle, with the electromagnetic field treated as a
c-number field, from the fully quantized theory.

It is the purpose of the present paper to modify
the previous method in order to take into account
the reaction of the radiation field to the charged
particle in a compact manner. The modification is
based on the work of Glauber ' on the time evolu-
tion of coherent states.

We shall apply this method to show how one can
derive the classical description of a charged har-
monic oscillator with radiation damping from the
fully quantized description of the system. Al-
though this is only a specific example to illustrate
the method, this example itself is of great interest.

As is well known, the "lifetime'* of a quantum-
mechanical charged harmonic oscillator in the nth
excited state due to the electromagnetic radiation
damping is

1
+n nI

tation energy is increased. In apparent contradic-
tion to this, the lifetime of the corresponding classi-
cal oscillator is

which is independent of the energy of the oscillator.
Such an apparent discrepancy is, of course, due to
the different definitions of lifetime in the two cases.
In the quantum-mechanical case, the lifetime is de-
fined as the decay time of the nth excited state to
the (n —l)th excited state. In the classical case, the
lifetime is defined as the time in which the excita-
tion energy of the oscillator is reduced approximate-
ly to a half of the initial value. That is, qualitative-
ly a highly excited harmonic oscillator (classical
limit case) has to make transitions approximately n

times until its original excitation energy is reduced
to half of the initial value. This can be shown, i.e.,
Eq. (1.2), also more quantitatively by a statistical
consideration.

But another discrepancy remains which cannot be
resolved so simply. If one makes a Fourier analysis
of the electromagnetic radiation of a damped classi-
cal harmonic oscillator, the frequency width of this
radiation is given by

instead of

2e v

3 Itic

where m is the mass, v is the frequency, and e is the
charge of the oscillator. This means that the life-
time decreases proportionally as 1/n when the exci-

Relation (1.4) would follow from a simple applica-
tion of the energy-lifetime uncertainty principle;
that is, as already mentioned above, the average life-
time of a quantum-mechanical harmonic oscillator
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state is 1/Pl I and tlMfcfoic 1ts cncfgy width is

5' H;„,+ —.—P =0 .
i Bt

(2.1)

That tlM clcctfoID8gnctic radiation Gf 8 daIDpcd
classical charged oscillator has such 8 reduced fre-
quency width is connected with the fact that in the
c1ass1cal liImt IDany diffcfcnt osciBator states I'ad1-

atc coherently 1Q contI'Rst to tlM radiation Gf 10%'

quantuID Oscillator cxcitations. A detailed under-

standing of this reduced frequency width can only
bc ObtRincd froID 8 consistent quRQtuID-IDcchan1cal
derivation of tlM classical llImt.

Thc pfoblcID of thc quantuID-IDcchanical charged
oscillator 1ntcfacting with its IR«iiRt10Q field has
been investigated by many authors, but %c think
that ouf IIlcthod, which wc shall p1cscnt hci'c, 1s

IDuch IDorc compact Rnd can bc straightforwardly
extended to thc case whcfc Rn 1nitial cxtcmal clcc-
tfomagnetic field excites the charged oscillator. In
this %'ay tlM cxtcrnal field can also bc inclU«ie«i in
the correct quantum-mechamcal description of the
total systeID.

In Sec. II, the formalism is briefly outlined avoid-
ing ovcflaps with thc picv1ous papcI' Rn«i clafifying
the new points based on the work of Glauber. Also
1Q Scc. II, thc HRIDilton18Q of tlM systcID 1s dis-
cussed and a set of equations for the time-dependent
complex c1gcnvalucs fof thc bas1S states is dcfivcd
from that Hamiltonian by making use of the projec-
tion method. Starting with the set of equations for
thc complex c1gcnvalucs, 1Q Scc. III thc radiation
daIDping of Rn initially displaced chaIgcd Gscillatof
is treated. It 1s explicitly shown how tlM corre-
sponding classical description can bc Obtained start-
ing from the fully quantized treatment. In Sec. IV,
an induced radiation of the charged oscillator is
tfeated. That 1s, initiaBy tlM charged oscillator is in
its ground state and a nonvanishing (expectation
value) electromagnetic field exists. For this case
ouf method shows 8 superiority to othcf IDcthods
11kc VAgncr-%cisskopf type approximations. The
appearance of two dRIIlping IDodcs Rfc examined.
In Sec. V tlM fcsults afc discussed Rnd conclud1ng
1CIDafks afC giVCQ.

This equation is written in the interaction picture
%1th regard to both the ch8fgc«i hRITDGQ1c oscillator
and thc radiation field in contrast to the mixed pic-
ture Used 1Q I.

Fof siiDplicity, wc considcf 8 charged harmonic
oscillator moving only in the z direction. Nothing
essential will bc lost by such 8 siIDplification. It
will only IDakc tIlc forlDulas siIDplcf. Thc interac"
tion Hamiltonian H;„, given in Eq. (2.3) of I then
assumes tlM forID

H;„,(i)= A(r) p(t)= A, (t) p( r),

(2.2)

where the field operator A, (t) is the z component of
the electromagnetic vector potential A(t) Rnd the
operator p, (t) is the z component of the momentum
of thc particle with the charge e and the mass m,
Hcic wc have Qcglcctcd A tcIms. In tlM following
d1scussions wc shall cons1dci only the 10%'cst-ofdcf
tcfID I the coupling constant, bccausc we Rfc 1n-

tcfcstcd in AM iad18tlon dRIDping effects, %'here thc
lowest-order term plays RQ essential folc. IQtfo«iUc"

ing the operators 8 and 8, which satisfy the com-
Inut8t10Q fclat1on

[B,B ]=1,
we can write p, (r) as

' 1/2

(t) (g+ tvf g Ivf)—

whcic v is thc frequency of the charged oscillatof.
Foi thc foHowing consi«ic1ations wc fufthcf RssuIDC

that the frequency is so small that the wavelength

of tlM cimtted radiation field 1s IDuch largcf thaIl
tlM spatial dimensions of thc haITDonic oscillator.
This IDcans that only d1polc waves Rfc emitted Rnd

A( r, t) can be described as a superposition of dipole
w8vcs with different ffcqucncics «0+

1 /2

2') IIL

II. DERIVATION OP
THE EQUATION OP MOTION

'I

sin(k„r)
g tfRQS 6Ig

As in tlM prcv1ous papcf (I), we st8rt %ith the
t1IIlc-dcpcIMicnt Schrodinger cquat1on foITDulated Rs

8 projection equation

where 6)@ afc thc ffequcnc1cs of dipole %aves Rnd

the operators a„and a„satisfy the commutation re-
lations
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(2.6)

The polarization vectors e„ in Eq. (2.5) are the

unit vectors lying in the z direction due to the oscil-

lation direction of the harmonic oscillator. The no-

tation trans(. . . ) means to take the transverse part
of the vector field ( ) and can be be written ex-

plicitly as

trans[ejp(kr)]=k e+ (e V) V jp(kr) = E jp(kr) ——ji(kr) e„—ej 2(kr),
k kr (2.7)

where jo, ji, and j2 are spherical Bessel functions and e,e„ is the radial component of e. In Eq. (2.5), L is the

radius of the normalization sphere and the wave number k„ takes the values

(n =1,2, . . . ) . (2.8)

The norm factor c+3fg/(2tp„L) causes the free Hamiltonian of the electromagnetic field to become

'2

H, i f (——E'+B')d'x= f —, —A +(VXA)' d'x = g iritp„(ata„+ —,')
8m. 8n. c2 Bt

(2.9)

as it must be due to the commutation relations (2.6). For small r values, Eq. (2.7) has the form

sin(k„r)
trans e„ =

3 kn &n+0(knr) (2.10)

Thus, using (2.10), the long wavelength approximation discussed at the beginning of this section gives the in-

teraction Hamiltonian
' 1/2

(a e
' n'+a e' ")(Btet~ Be )—

3
Pf nH;„,(t)=

T

(2.11)
mc 2

This H;„,(t) can be further simplified by introducing the rotating-wave approximation, namely, ignoring
the fast oscillating terms with the phase factors exp[+i (tp„+ v)t] and retaining only the terms with the phase
factors exp[+i(tp„v)t]. With t—his approximation we find

H;„,(t)= ice g—~co„[a„Btexp[ i (tp„—v)t] —a„Bexp—[i (ar„—v)t]],
n=1

where
' 1/2

e v

c 3mL

(2.12)

(2.13)

Next we must determine suitable basis states for the projection equation (2.1). As already discussed in I, the
von Neumann —lattice coherent states (VNLC) are suitable as basis states for the electromagnetic field. In the
present case we introduce such a VNLC basis also for the charged harmonic oscillator. The properties of
VNLC are listed in Sec. III of I and here we repeat only the properties that we need for the present considera-
tions. The VNLC for the nth mode electromagnetic field are denoted as

I d„}which has the properties

a„ Id„)=d„ Id„}, (d„ Ia„=(d„ Id„', d„=v n(l„+irn„), l„,rn„=O, +1,+2, . . . (2. 14)

and we define

(2.15)

Similarly, the VNLC for the charged harmonic oscillator are denoted as
I
A }which has the properties

B IA)=AIA), (AIB =. (AIA, A=vir(S+iM), SM=O, +1,+2, . . . (2. 16)
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and we also define
I
A, [d}& as

IA [d}&= IA& I [d}& (2.17)

with

I
1((r)&= graf(A, [d};t) I

A, [d}&,
A Id[

where the sum notations are defined as

(2.18)

A s= — M= — III d d

%ith basis states (2.17} for the system we can
make the following ansatz for the state

I f& in the
projection equation (2.1):

The variation &5$ I
m Eq. (2.1) becomes

&5|(I =++ &Id },A'I5f (A', Id }; ).
(2.20)

Substituting Eqs. (2.18) and (2.20) into Eq. (2.1) and
taking into account that 5f~ is a completely arbi-

trary variation, we can obtain the set of coupled
equations

g g & [d'},A'IH;. (r)
I
A [d}&f(A Id} r)+ XX & [d'} A'I A [d}& —, —,f(A [d}'"=0

w Id')
(2.21)

hjk hkj, gk=——CF, and P=RF,
where CF represents complex function and RF
represents real function. Of course, in general, the
above Hamiltonian does not guarantee the existence
of such a coherent state. A special case, which al-
lows such a coherent state solution, is

H = g hjk(r)uj uk~ hjk hkj
j,k

(2.24)

as we shall show explicitly at the end of this section.
As one can see from Eqs. (2.9) and (2.12), our to-

tal Hamiltonian

which must be satisifed for arbitrary
A'=V n(S'+iM') and d„' =v m(l„'+im„'), where
S )if,i„,and rn„are integers.

Equations {2.21) can be greatly simplified as fol-
lows: It is known that if a state, which is initially a
coherent state

I [d}&, remains as a coherent state
during the subsequent time evolution, then the
Hamiltonian must have the form

H = ghjk(t)ajak
j,k

+ g [gk(r)ukt+gk(r)uk]+P(r)

with

H, =Av(8 8+ —, }

(2.25}

which can represent an exact time evolution of the
state with the Hamiltonian (2.25). If we find the
time-dependent coherent states

I
A(t), Id(r)} & for

arbitrary initial conditions
I
A(0), Id(0) } &, then we

can construct any solution for Eqs. {2.21) by linear-
ly superposing those

I
A(t), [d(r) } &.

Substituting (2.26) into (2.21) and UsiIlg Eqs.
(2.12}, (2.14), and (2.16), we find the first term in
the left-hand side (LHS) of Eq. (2.21) to be

is jUst a specific case of the Hamlltonian (2.24).
Therefore, in order to solve the set of coupled equa-
tions (2.21), we consider at first a situation where
for 1=0 the system is described by a specific
coherent state

I
A(0), {d(0)} &. Here A(t) and

[d(t) } are time-dependent eigenvalues of the
coherent states. For such an initial state, we can
write

I
t/t(t) & in Eq. (2.18) as

I
p(t)&= gg f(A, Id};r)

I
A, Id } &

A Id[

=
I
A(r), Id(i)} &,

itic g ~co„[d„—(t)A'~exp[ i(co„v)t—] „d'» A(t—) ex[pi—(co„v)r]}&A', Id'}
I
A(—r), Id(r)} &

n=1

and the second term to be

(2.27)

—
I
A(r)

I

'+A' —A«)+ X —
I d.«) I'+d" d.«) &A' Id'}

I

—A«» [d(r) } & .
2 Bt Bt „ i 2 Bt Bt
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We introduce (2.27) and (2.28) into the LHS of Eq.
(2.21) and organize them as polynomials of A'~ and

d„. Since the equation must hold for arbitrary
values of these variables, each coefficient must van-

ish.
Thus we obtain

~ 00—
~

A(t)
~

2 ——g —
~
d„(t)

~

~=0, (2.29)
2 at 2

d„—(t) =@~co„A(t)exp[i(co„v)t] . —a
at " (2.31)

It is straightforward to show that Eq. (2.29) can
be derived from Eqs. (2.30) and (2.31). Therefore,
we have to consider only Eqs. (2.30) and (2.31).
That Eq. (2.29) follows from the other equations is,
in the present case, the direct proof for the fact that
a coherent state

~
A, {d] ) remains a coherent state

during the time evolution with the Hamiltonian
(2.25), because it shows that these equations do not
contradict each other.

III. HARMONIC OSCILLATOR
WITH RADIATION DAMPING

00—A(t) =—e g ~co„d„(t)exp[ i (c—o„v)t]—,
n=i

(2.30)

t
d„(t)=a~co„ f A(r)exp[i(co„—v)r]dr

(3.2)

we obtain

00—A(r)= —e g co„ f A(r)exp[i(co„v)(—r t)]—dr,

A(t)= —e'A(t) p—.
"c}t „&i(co„—v)+

(3.4}

The discrete sum g„ in (3.4), as usual, can be sub-

stituted by a continuous integral as

f dco .
n=1

Then we obtain

00 0=—e g co„ f A(r'+t)exp[i (co„v)r—']dr'' .
n=1

(3.3)

In order to evaluate the integral in the right-hand
side (RHS) of (3.3), we use the fact that the cou-
pling constant e is so small that A(t) changes very
slowly with that t compared to exp[i(co„—v)t].
With this in mind and also introducing the conver-
gence factor e+ (P~O+), which physically means
that adiabatic switching on the electric charge of
the oscillator at t=0, we obtain, for vt ~~ 1,

A(0)=As=
i Ao i

e'~, (3.1a)

d„(0)=0 . (3.1b)

These conditions mean that, as far as the expecta-
tion values are concerned, at t=0 the charged har-
monic oscillator is excited with its energy propor-
tional to

~ A&&~ and no external electromagnetic
field is present. We shall see this later again by cal-
culating the expectation values for the relevant ob-
servables.

First, we eliminate d„(t) by integrating (2.31) and
inserting the result into Eq. (2.30). With

If we solve Eqs. (2.30) and (2.31) to find A and d„
as functions of time, then we can construct ihe
time-dependent coherent states that describe the
time evolution of the system and can also calculate
the tine-dependent expectation values for any ob-
servables of the system. In this section we consider
the oscillation of a charged harmonic oscillator
under the inAuence of its own radiation damping.
For such a case, we have the following initial condi-
tions at t=o:

M e co QP
ddt,

, i(co„—v)+P nc& . i (co —v)+P

I.v il. f "d co

C ETC 0 N —V

e v ~ coAv=
2

H f dco
3mc 77 o co —v

(3.'7)

is very small. Introducing

where 9' means the principal value of the integral.
Of course the above sum diverges. But the im-

portant fact is that the sum can be split into a finite
real part and a diverging imaginary part in a unique
manner. The imaginary part of (3.6) is proportional
to the frequency shift and contributes for instance
to the very small Lamb shift. The real part of (3.6)
is proportional to the radiation damping.

In the present work we are interested in the radia-
tion damping of the charged harmonic oscillator.
Therefore we simply assume the frequency shift
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2e vI=-
3pic

we can write (3.4) in the following form:

' 1/2

(gee IVt+ge —IVf) (3.12)

—5(I;)= A(I;)+i hvA(t) .
—I

Bt 2
(3.9)

can be calculated by using (2.16), (2.26), (3.10), and
(3.1a)

Here it should be noted that this is essentially the
Wigner-Weisskopf approximation. This equation
can be solved immediately and we obtain

( td(t) ],A(t)
~
R, (t)

~
jd(t}],A(t))

=de' ~ "cos(vt+P}, (3.13)

where we have introduced

A(t) =Aoexp ——t +i Avt
r
2

1/2

I Aol (3.14)

where Ao is given by the initial condition (3.1a). In-
serting (3.10) into (2.29) and integrating it we find

' 1/2
e vn

d„(t)=- Ao
c 3mL

e r~"exp[i (to„v+hv—)t] 1—
X t(~„—v+ Sv) —r/2

where we have used the initial condition (3.1b).
Using (3.10) and (3.11),we can now construct ex-

plicitly the time-dependent coherent state

~
A(t), td(t)] ) of (2.26) and evaluate the expectation

values for various observables, which determine the
physical properties of the charged harmonic oscilla-
tor with radiation damping. The expectation value
for the oscillator amplitude,

and neglected the frequency shift hv for simplicity.
Such a neglection of hv does not change the essen-

tial structure of our formulas. We shall also put
/=0 from now on in this section to simplify the
equations.

From (3.13) we can see that the expectation value

(R, ) shows the motion of the classical charged
harmonic oscillator with the classical value of the
radiation damping factor given by (3.8). As al-

ready discussed in I, for very high excitations of the
oscillator, i.e., I ~o I

&&1, the root-mean-square re-
lative deviations ~, of (R, ) become very small.
In this limit, the fully quantum-mechanical descrip-
tion of the radiation damping of the charged har-
monic oscillator approaches the classical descrip-
tion. We shall come back to this point later.

The expectation value for the electromagnetic po-
tential A can be obtained from (2.5) and (2.26) as

1/23' sin(k„r)
(A(r, t) ) = g c trans e„(Id(t) I,A(t)

~
(a„e " + a„e "

)
~
A(t), Id(t)] ) .

2'~ I lf

Using (2.14), (2.15), and (3.11) and replacing the discrete sum by the corresponding integral, we find

sin[(to /c )r ]trans +C.C.,r

where the polarization unit vectors e& are the unit vectors in the z direction [see remark to Eq. (2.5)]. We are
interested in the expectation value (A(r, t) ) for large r and for very large t for which all switching-on effects
have died down, i.e., [t (r/c)]co »2m. F—or that purpose, we need the asymptotic behavior of

sin[(co/c)r]
r

for r~ 00. From (2.7), by retaining only ihe 1/r terms, we get



sin[(co /c )r ]trans 6'g
r sin[(co /c)r]

eg ——cos8
I'

where r cos8= r e, . Taking into account that [t (r/—c}jt0 &y2m, I' « v, and r «et, the t0 integral in (3.16)
with (3.17) can be asymptotically evaluated by integration in the complex m plane:

—vP I r sin[v(t r/c—)r] r 1(A(r, t)) = —exp ——t —— g, ——cos8 +0
c 2 c f 2

(3.18)

(3.19)

The expectation value (A) has the usual form of the classical electromagnetic dipole-radiation field created

by a damped charged oscillator.
It should be noted that (3.16) contains the incoming wave terms with the factor exp[+iei(t+r/c) j, which

cancel each other in the integration over ~. This must be so, because the initial conditions (3.1) allow only

outgoing electromagnetic waves. Furthermore, again by integration in the complex m plane, it can be shown

that for t —rlc &0 the expectation value (A(r, t)) vanishes. This is also obvious from the iiutial conditions

(3.1), which state that at I;=0 no electromagnetic field is present.
Next, we examine how the expectation value for the energy of the harmonic oscillator, as well as the radia-

tion field, changes with regard to large times, i.e., I: gy1/I . In order to find the expectation value for the en-

ergy of the oscillator a,s a function of time, we have to calculate

(H, ) =vh(A(t), Id(t) J i
(B B+—, ) i

A(t), Id(t) I ) . (3.20)

Using the properties of coherent states given by (2.16) and the explicit form of A(t) given by (3.10) and

neglecting the zero-point energy, we obtain

(3.21)

froIQ which wc f1n«i thc cncrgy «iccrcasc pcr sccoIld„

The expectation value of the energy of the nth mode radiation f1cld, whose Hamllton1an is

0„=Ac@„(a„a„+—,),
can also be calculated similarly. Neglecting the zero-point energy and using (2.14) and the explicit form of
d„(t) given by (3.11), we find

(H„)=Ra)„
i
d„(t)

i

e2vkco„'
~
Ao

~

1+e "' e' ~ "[e—xp[i(t0„—v}tj+exp[ i(co„—v)t]]-
3mc L (~„—v) +I" /4

FoI' lalgc t, fo1 which all switching-on cffccts dlsappcRI, thc cncIg1cs 1K'„of thc d1ffcrcnt modes can bc put
approximately equal to fiv. Of course, if we do not replace Ace„ in the overall factor of (3.23) by hv, the sum
over n diverges. This divergence, which appears in higher-order terms in power of the coupling constant, has
the same origm as the divergence discussed earlier [see remarks to Eqs. (3.6) and (3.7)] and therefore can be
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disregarded again. For such a case we can calculate the expectation value for the entire energy of the radia-
tion field as a function of t. By making use of complex ~ integration, we obtain

tO I ~ NlV d(H,))= g (H„)= I dh0(H(ro))=vs~AD~ (1—e "')= (1 e—"'),
n=i VC 2

from which we immediately find

d (H )
e2v~dl r,

dt
(3.25)

From (3.22) and (3.25), we see that the expectation value for the total energy is conserved, as it should be:

(H„,) = (H ) + (H,i ) =const . (3.26)

Furthermore, we can see that for large t, for which the energies %co„ofthe different modes can be put approx-
imately equal to ftv, the energy-conservation law in the form of dE/dt=0 becomes equivalent to the validity
of (2.29).

The expectation value for the average radiation energy per second can also be calculated by using the Poynt-
ing vector S. Using (3.18) and (3.24) we find for large oscillation amplitudes, where contributions from the
noncommutability of the operators E and 8 can be neglected,

—„(H„) = J[(S)]„„„ndn„=' f[(E)X(B)]„„„ndQ„
time av

(3.27)

This is in agreement with (3.24) except for the factor e' ~"". This factor describes the retardation of the radi-
ation field at large radius 8 pg2n. c/m, where the surface integration is carried out.

Now let us consider some essential properties of the electromagnetic radiation field. From (3.18) and the
discussion following it, we find the time space part X(r, t), i.e., the part that has (t r/c) dep—endence, of the
dectromagnetic potential for large t as

I r r
cxp — t — cos vr, t =. c

I

0 for r gct,

where the switching-on effects have been neglected.
A Fourier analysis of this X(r, t) immediately gives
the frequency width of

(3.29)

—(H (t))
dt

r(H (t)) . (3.30)

which is independent of the excitation amplitude of
the oscillator.

It is interesting to calculate the number of pho-
tons which are emitted during one oscillation of the
charged oscillator. Through the use of (3.22) such a
number X can be calculated as

Through tllc usc of (3.21), this call bc wflttcll as

2
' '2

4n e 1 vd

3 Ac2 c
(3.31)

Of course, this result can also be obtained from the
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classical I.armor's formula. From {3.31) it is obvi-
ous that for a harmonic oscillator with the change e
(electron charge) it is necessary to make many oscil-
lations to emit one photon even if the amplitude of
the oscillator is very large. In other words, if we
consider an atomic electron, even a highly excited
electron must make many circuits in order to emit
one photon. That is, even for such a highly excited
electron, the kinetic energy is so small that a
quantum-mechanical treatment is necessary to
describe the electromagnetic emission process. Only
for electrons with large relativistic energies, such as
electrons in synchrocyclotrons, is an appropriate
classical treatment allowed. In the nonrelativistic
region, the classical limit can be reached for a
charge larger than -50 e.

As we have seen in this section, the difference be-

tween the classical and the quantum-mechanical
description of the radiation field including the in-
termediate description can be jointly expressed by
the coherent states

~
[ti }). In the classical limit the

corresponding coherent states
~ [1}) with large [d }

values, i.e., g„~d„~ && 1, describes (relatively

well-localized classical) wave packets with relatively
mell-defined light quanta number for each mode,
which are therefore relatively little influenced by a
measurement of the electromagnetic field. On the
other hand, for small [d } values, i.e.,
g„~d„~ —1, the corresponding coherent states

have relative root-mean-square deviations for the
field expectation values which are of the same order
or even larger than these expectation values them-
selves. Consequently, all coherence effects vanish.
In other words, a measurement of the electromag-
netic field inAuences this field very strongly. This
shows that in such a case, i.e., the quantum-

I

mechanical case, the electromagnetic radiation can
only be described by probability distributions of the
emitted light quanta.

IV. INDUCED HARMONIC OSCILLATOR
WITH RADIATION DAMPING

In this section we consider the charged harmonic
oscillator under the inAuence of an external elec-
tromagnetic field. %e assume that at t=0 the ex-
pectation value for the amplitude of the oscillator is
zero and the expectation value for the mode of the
electromagnetic potential A has a nonvanishing
value. %e assume that the expectation values for
all the other modes of A are zero at t=O. Thus, as
in Sec. III, the corresponding time evolution of the
state of the system can be obtained by solving Eqs.
(2.30) and (2.31) to find A(t) and the d„{t)'s. Then,
the only differences from Sec. III are the initial con-
ditions

A(0) =0,
dj(0) =tio+0,

d„(0)=0, nQj .

(4.1)

(4.2)

(4.3)

In order to solve Eqs. {2.30) and (2.31) for the ini-
tial condition (4.1)—(4.3) we modify the approxima-
tion scheme introduced in Sec. III as follows: First,
we treat the jth mode separately from other modes.
Second, we assume that all other modes (n+j)
contribute to the 'damping factor I defined by (3.8).
The second step can be justified because the omis-
sion of a single mode dJ from the sum (3.6) does not
affect I . Thus, we have the following set of equa-
tions:

A(t) = ——A(t) —e—v cod (t)exp[ i (to v)t], — —r
J (4.4)

—dj(t) =ev toA(t)exp[i(to —v)t] .J (4.5)

In Eq. (4.4) we have already eliminated the modes d„~J, analogously to {3.9), which satisfy the following equa-
tion [see Eq. (2.31)]:

d„(t)=@~a)„A(—t)exp[i(to„v)t] . —
Bt

The solutions of these equations for the initial condition (4.1)—(4.3) can be easily obtained:

(4.6)

dJ.(t) =d(t) =do
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where

fa( ((I
The results (4.7) and (4.8) show the appearance of

two different damping modes. One is characterized
by I and another is characterized by x. %C shall
call them the I" mode and the x mode, respectively.
The I mode comes from the interaction between
the charged harmonic oscillator and its own radia-
tion field. The x mode comes essentially from the
interaction between the charged harmonic oscillator
and the external electromagnetic field, whose energy
is stored in the normalization volume with the ra-
dius L. In contrast to I, which is independent of L,
the damping factor x depends on L. For large L
values, x becomes very small. If L is increased
keeping the energy density of the external field con-
stant, then the "relative damping" of the external
field energy decreases proportionally to L . Here
the relative damping is the ratio of the absorbed
field energy per second to its total energy. This is
understandable because in the case of constant ener-

gy density the energy of the external field increases
with L .

For the case where the stored energy in the exter-
nal field is very large and where all switching-on ef-
fects disappeared, i.e., t p~1/I, we can neglect the
I mode ln (4.7) and (4.8) to flind

d(t) =doe

Kdo
A(t) = — exp[ —at i (t0 v)t]—. —

ev co

Using the results (4.7) and (4.8) or (4.10) and (4.11)
for A(t) and d (t), we can construct the correspond-
ing state vector of the system in the form of (2.26),
from which cxpcctation values for various obscrv-
ables can be evaluated.

First, we examine the relation between the expec-
tation value for the displacement of the charged os-
cillator and the expectation value of the electric
field for r=O. For that purpose we have to consid-
er only the complex electromagnetic potential com-
ponent A, P'(r =O, t) and the complex position
operator 8," P'(t) that are defined as

g COmPl( 2'
a e™,at—=at (4.12)

3L

1/2

g COmPl(t) gg Iyf

2ptl 'v
(4.13)

where we consider only the jth mode of A, . The ex-
pression (4.12) can be obtained from (2.5) using
(2.10). The expectation values of these complex
operators correspond to the absolute values and the
phase shifts of the classical observables involved.

For I tpp1, using (4.10) and (4.11) for d(t) and
A(t), we find the expectation values for the opera-
tors A" ' and R" "' as

(4.14)

(8," ~'(t) ) = —PDexp[ (a» i—to)t]—, (4.1S)

where

K
' 1/2

Po=
252 V EV to

' 1/2

=e~cd
0

2m@ I /2+i(m —v)
(4.16)

The expectation value for the complex electric field
is then

1/2

(A," ~'(r =O, t)) = d0exp[ (a.* ice)t—]-
3L

' 1/2—1 2%co
10(ice —a*)exp[ (a» iN )—t] . —c, 3L

(4.17)

From (4.15) and (4.17) we find

(~compl(t) )
(E™1(t)) 2m' [(v —co)+iI'/2]
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This is just the result obtained in the classical treatment of the charged harmonic oscillator excited by an
external field and with radiation damping.

In order to evaluate the expectation value (A(r, t)) of the radiation field it is necessary to And explicitly
d„(t) [nQj] which satisfy (4.6). Substituting the explicit form of A(t) given by (4.8) into (4.6), we readily find
(hcfc aga10 we Qcglcct Av)

E do't/co„co
d„(t)= I"/2 —i(co —v)

r
exp —t +—i (co v) t——1tt

exp[ —«t +i (co„co—)t] 1—
+

« —l (co„co)—

' I/2
1 1 exp[ «t i—{co——co„)t]

+I'/2 —i(co„—v) «+i (co. co„)— «+i (co —co„)
(4.19)

for t gal/I .
Now the asymptotic behavior of (A" "'( r, t) )„d for the radiation field can be evaluated through the use of

(3.15) and (4.19) as

;„,sin[(co„ /c )r ](&™'(r,t)) q= g c d„'(t)e " e, — cos8—
21u„ P

1/2
3R= —&OK Lc

2LN
exp[ (tc* —ico )(t —r/c)] r— r

cosH
C

' r (4.20)

for roc/~ and t&p1/I. In obtaining this, the
terms of order x/P are neglected. The function
0(t —r /c) is defined as

(4.19},the time derivation of the energy expectation
value of the radiation field can be found as

d—(a„,) =—g e „~d„(t) ~'

(4.21)

Through the use of {4.15), (4.20) can be written as

(p COIBpl(~
) ) g COIOpl

Cf' C

which is nothing else but the classical result.
Next, lct us examine thc cncI'gy tfansfci pcf

second f1 os thc initially stofcd clectroIHagnetic
field, i.e., the external field, of the frequency ~ to
the scattered radiation field produced by the oscilla-
tor for tel/I. Through the use of (4.10) and

/
«do

/
exp[ —2(Re«. )t]

{Rac)co„
Xg, , (4.23)

I&+l(co coo)I—
where the summation over n diverges. Here again
we neglect the divergence terms which appear in the
higher-order terms in power of the coupling con-
stant [see the remark to (3.6)] and obtain

2ficor.
dt (&cod)= —

~
«0

~
exp[ —2(Roc)t] .

Fof thc chafgcd osc111atof, using (4.11) %'c im-
mediately find
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(—H ) = A—
i
A(t)

i

d d 2

dt dt

~

sd
~

' exp[ —2(Res)t] .

(4.25)

From (4.24) and (4.25) we find that d /dt(H~)
and d/dt(H„&) are connected through the relation

2r
d ~ 2 1 c d
dt ' l/2L dtI

2

coherent state during the subsequent time evolution.

Corrections to such an approximation may be
evaluated by treating kH':—H;„,—H„, perturba-

tionally, with A, as a dimensionless expansion
parameter. If we write the state vector for

Hint Hrot +A,H' as

~
t((t)) = y y ~

A(t), Id(t) ) )f(A(0), [d(0));t),
A(0) Id(0)I

where the indices A(0) and Id(0) I denote the initial
condition of the superposed coherent states and

~

A(t), (d(t)I ) satisfies

(4.26)

Because L/c &&1/I, this means that the energy
change of the charged oscillator is negligibly small.
It is also interesting to observe that the classical
equation of motion for the charged oscillator can be
derived straightforwardly from {4.4) and (4.5) by ex-
pressing A(t) and d(t) in terms of (R,(t)) and

(E,(t)). One obtains

d2 d
, (R,(t) ) + I'—(R,(t) ) +v (R,(t) )

dt2 dt

=—(E,(r =O, t) ) . (4.27)
m

V. DISCUSSION AND
CONCLUDING REMARKS

We have shown explicitly how the limiting case
of the classical description of the charged harmonic
oscillator with radiation damping can be obtained
from the fully quantized theory. The present for-
malisrn is based on the Schrodinger equation writ-
ten in projection form using VNLC as basis states
for the oscillator and the electromagnetic field.
This makes it possible to solve the problem in a
very comprehensive manner. Furthermore, the ex-
pressions obtained in terms of time-dependent
coherent states describe a continuous transition
from the quantum-mechanical region to the classi-
cal region, although the physical interpretations for
the absorption and radiation processes in the two
limit regions are completely different.

The rotating-wave approximation (2.12) to the in-

teraction Hamiltonian (2.11) is essential to obtain
the basic equations (2.29)—{2.31). That is, the ap-
proximated interaction Hamiltonian H;„,=H„, is a
special case of the form (2.24) that allows a state,
which is initially a coherent state, to remain a

ih
~
A(t), Id(t)] ) =H... ~

A(t), {d(t)I ),at

then we can immediately find from the projection
equation (2.1)

I (((),
~

AH'
i
A(t), Id(t) I )f(A(0), jd(0) j;t)

A(0) Id(0)I

a
ih (P—, (

A(t), fd(t) I )—f(A(0), Id (0)I;t) J =0
at

which must be satisified for arbitrary
~

(('i, )'s. This
equation may be perturbationally solved by expand-

ing

f(A(0), Id(0) ];t)

in powers of A, . For
~
t(, )'s any complete sets of

vectors in the Hilbert space can be used.
Concerning the nontrivial discrepancy of the fre-

quency width of the radiation pointed out in Sec. I,
we have shown explicitly in Secs. III and IV that
the correct treatment of the classical limit of the
fully quantized theory gives the right frequency
width

a~=r .

It should be noted that these coherence effects are
similar to the coherence effects appearing in laser

systems.
' Although we have treated a well-known

system to illustrate the method, it should be
remarked that the method is general and can be ap-
plied also to more complex problems.
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