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%'e have analyzed Dyson s U-matrix theory of solving the Schrodinger equation in the in-

teraction picture and are able to express the U matrix as a dominant term plus an infinite

series involving multiple integrals of time. For a certain rather restrictive class of Hamil-

tonians, our theory is exact for a general time-dependent problem. For other Hamiltonians,

we can only obtain approximate expressions for our U matrix and hence the wave function.

Treating a time-independent problem as a special case of the time-dependent situation with

a sudden-switching process, we have shown that our U matrix is exact. To demonstrate the

working procedures of our theory, we apply it to study the well-known time-independent

charged harmonic-oscillator problem and the more general harmonic oscillator with a timc-

dcpcndcnt drlvlflg force. Compared with othcl' methods, our ncw theory appears to lead to

a result which contains more information than others due to the inclusion of noncommuta-

bihty properties of operators in the operator Schrodinger equation. It has been shown that

the classical Feynman path-integral formalism can be deduced from quantum mechanics

with the use of the Green's-function operator. It is interesting to note that apart from a step

function, the Green's-function operator is the same as that of our U" matrix, which is the

U matrix obtained within the regime of the Schrodinger picture for a time-independent

Hamlltonlan, Rs a spcclal case of our gcncral time-dependent trcatIncnt.

I. INTRGDUCTIGN

Dyson proposed the basic U-matrix theory in
1949, ' writing the wave function in terms of a U-

matrix within the regime of the interaction picture.
Thc U matrix, howcvcr, ls cxprcsscd Rs R series of
multiple lntcgrsls ln time thc limits of integration
following a time-order sequence. In solving actual
problems, one can calculate R few terms in this
series, but one does not know exactly how much
these terms represent in the whole U matrix. One
cannot, ln general, handle other terms (for' example,
a triple integral in the old U-matfix theory) and ex-
press the U matrix in a ready, workable form.
Gell-Mann and I.ow applied the U-matrix theory to
study the bound states of nucleons. In order to have
a solution, they used the Feynman diagram tech-
nique to solve for the kernel in the integral equation.
In arriving at Gcll-Mann snd I.ow'8 solution, the
"adiabatic hypothesis" has been proposed. Snyder'
has found that for a scattering process, the use of
the adiabatic switch-off procedure is unnecessary.
This aspect wss confirmed 1Q thc woIk of Moses,
who using Friedrick 8 pcrturbatlvc approach, hss
dcrivcd cxprcsslons fof thc outgoing Rnd incom-
ing" eigcnfunctions and the scattering operator aris-
ing from the time-dependent Schrodinger equation.

Thcsc works can bc considered ss stages of dcvclop-
ment of the U-matrix (or S-matrix) theory. In fact,
it has long been known that it is difficult to obtain a
solution directly from the basic U-matrix theory.

The Green's-function method ' is rather fre-
quently used. In this formalism, we arrive at R

number of coupled integral equations for the dif-
ferent Green's functions in general. No exact solu-

tions can be obtained unless we decouple the integral
equations. Here approximations have to be taken
for such decoupling, Rnd these approximations usu-

ally correspond to including only a number of
relevant terms ln the usual perturbation technique.
Often, the approximated Green's-function solutions
are presented in a diagrammatic language closely re-

lated to the result of perturbation method. Taking
foI' glarltcd that thc approximations arc good ones
if we know the answers (observables) beforehand
from experimental data, thc Grccn 8-function

thod bl t pl* th d Rntprt b-
tion terms responsible for the observed physical re-
sults.

Thc perturbation theory bcglns with a nonin-
tcracting system, and by adding a perturbation term
to the Hsmiltonisn, one hopes that the correction
due to interaction can be expressed as a, convergent
power series of the interaction strength. The work-
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ing proccdurcs Rrc very coIQplicatcd and thc valid1ty
of this method is rather restrictive. The unitary
transformation approach is exact, in principle, and
can be simpler than using other methods. However,
success of such 8 method relies on guessing the right
transformation; the method is therefore indirect and
not workable in many cases. In using the variational
approach onc assumes some trial wave functioQ for
the system with built-in variational parameters.
Taking 8 VRriat1onal process, onc can obtain RQ

upper bound of thc ground-state energy. Thc Rccu"
racy of this method depends on how close the trial
wave function is to the exact wave function.

The path-integral method was introduced to study
quantum-mechanical problems using the classical
least action principle. ' Later, the path-integral
method is bridged to the S-matrix representation in
quantum mechanics. ' A relationship between the
U-IQatrix and 8 funct1on of thc Lagrang1RQ has bccn
established. ' A more comprehensive development
Rnd thc application of the path-integral approach to
solve quantum-mechanical problems is given in Ref.
18. A comparison between the path-integral formal-
ism and our U-matrix theory is discussed in Sec.
VII.

The above-mentioned methods have been used to
study single- and many-particle quantum-
mechanical problems, directly or indirectly. Recent-
ly, Fung, %'ong, Rnd co-workers' ' have obtained
the exact wave function for an interacting many-
boson system and a bridge is built between the
basis-correlation function formalism (which may be
considered to be in the trial wave-function regime)
and the Bogoliubov canonical transformation
method.

Despite all the efforts stated above, an exact
workable method to treat 8 general time-dependent
quantum-mechanical problem still awaits. In this
investigation we intend to develop the U-matrix
theory for the stated reason. We shall start with the
basic formalism of Dyson and cxp1css thc U Inatrix
as an infinite series. %"e are able to reduce the order
of the multiple integral of the U matrix, isolating
what we believe to be the dominant contribution.
Using the interaction picture as before, we can then
express the approximate time-dependent wave func-
tion of a system in terms of the Hamiltonian expli-
citly. %c tI'cat 8 time-independent problem as 8 spe-
cial case of a time-dependent problem. Employing
thc sudden-switching model for tuImng on the 1n-

teraction, wc shall show that for 8 time-independent
problem our formalism is exact as the U Inatrix ter-
minates.

In Sec. V, we apply our theory to study the well-
known time-independent charged harmonic oscilla-
tor. Our result is, of course, identical to the estab-

lished one. To demonstrate the working procedures
of our theory for a time-dependent problem we
study in Scc. VI t1lc time-dependent hamlonic oscil-
lator 2 with a general driving force, using the same
Hamiltonian as in Ref. 23. For this problem we can
only calculate our U matrix and hence the wave
function in RQ approximate IQRQncl. Pcng at-
tempted to solve the problem directly using the
Schrodinger equation, Rnd the method is supposed
to be exact. Our approximate result is shown to be
identical to Peng's, suggesting that our theory leads
to result which contains more information than the
"exact" one. We discuss the sources of this
"surplus" information.

II. BASIC FORMAI. ISM
OF THE U-MATRIX THEORY

For a time-dependent quantum-mechamcal sys-
tem with Hamiltonian H(t), the Schrodinger equa-
tion is

H( )4( )'
at

where 4(t) is the wave function of the system and
units are chosen such that A is one. %'e express the
Hamiltonian in the following form:

H(r)=H0+U(t) j(r), (2.2)

where the "interaction generating operator" r)(r) has
the property

0 for —(x) &t & —b

g(t)4(t) = S~(t)4(t) for —b & t &0

4(t) for 0&t& ao

where b is a positive number. &e can also rewrite
Eq. (2.3) in the foBowing form:

q(t)4(t) =S~(t)4(t),
where the eigenvalue Sa (t) of the above equation is
specified by

Sg( —00 &t & —b)=0,

Sp( —b &t &0)&0,

Sg (0&t & ao)=1 .

Separation of the function S~(t) into the above
three regions means that there is a transient period
—b & t &0 for an interaction to take place and the
interaction is starting from t =0. Gcll-Mann pro-
posed that b ~—00, but we leave b a finite quantity
so that both "slow-switching" and sudden-switching
processes can be taken care of with our formalism.
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=[H, + S~(t)ugt)]C (t) ..84(t)
at

(2.6)

In order to express (2.6) in a form consistent with

the interaction picture, we make the following
transformatlons:

%(t)=e '4(t), (2.7a)

Hi(t) =e ' [Sp (t)u(t)]e

%e shall call 5@ the switching function and it will

be seen later that this concept is crucial and will lead
to more contributions to the solution of a physical
problem.

Keeping in mind relations (2.2) and (2.3), our
Schrodinger equation bo:omes

Differentiating Eq. (2.'7a), with respect « time and

using Fq. (2,6) and (2.8), we obtain

i =Su (t)V(t)%(t)'
at

=Hi(t)%'(t) . (2.9)

This is, of course, the Schrodinger equation in the
interaction picture. Integrating the above equation,

4(t)=%to) i f—, Hi(u)%(u)du . (2.10)

Carrying out an iterative process, we can relate +
and 'ko through a U matrix:

% (t)= U(t, t, )% (t, ), (2.11)

=Su (t)V(t), (2.7b)

so that the interaction Hamiltonian becomes
U(t, to)=1+ g 0„(t,to) (2.12)

H, (t)=Sa(t)V(t) . (2.8)
I

and

Qi Q

U„(t,to)=( t)"f—, du& f, du2 . f, du„Hi(ui)Hi(u2) . . Hi(u„) . (2.13)

In yjew of (2.2) and (2A}, we can express 'Nt) ln

terms of iP(to):
e Qe =0+[~,Q]+ 2, [~»l~ Q]l

(2.14)

S(t,to)=e
' ' U(t, to)e (2.15)

III. SERIES EXPANSION OP THE U MATRIX

First, we note that for general operators P, Q, it
is elementary to prove that

Apart from introducing the switching function S~
as specified by (2.4) and (2.5), the formalism is a
standard U-matrix theory in the interaction picture.
In the past, one could not express the U matrix in a
manageable form. %e shall show in Sec. III that we
can reduce the order of the multiple integral in
(2.13) by two, separating out the dominant term for
our U matrix.

where

[~ Q]0=1

[P,Q],=[&,[&,[,[~,Q]]. l],
where there are r commutator terms. In the same
way, me can write the interaction Hamiltonian as

Hi(t)=Su(t) U(t)+ g, 1,(t), (32)

I', (t) =[Ho,v(t)], . (3.3)

%e shall call I „(t) the termination operator on ac-
count of property (i) stated below. We shall see later
that one important step in solving an actual problem
is to study this termination operator. There are
several properties of I, worth noting. They are as
follows.
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(i) Generally, I ~(t), I'2(t), . I'„(t)&0. But if for a certain integer j,
I, j(t)=0 or C, const

then

I r)j(t)=0.
(ii) It follows that

[Ho+ v(t), r, (t) ]=I, ,(t) +r",'"(t),

where I',"(t)=—[v(t), 1,(t) ].
(iii) Then,

[H(t), I „(t)] = I', (t)+S (t) [ r', ,(t)+ [H(t), I, (t)] + [H(t), [H(t), 1 „(t)]]+

(3.4)

(3.5)

(iv) Therefore,

~[H(t), r, (t)]~, I . (3.6)

(3.7)

(v) Finally,

n —1

H"I,=I,H" + g H" '~+ 'I, ,H~ .
j=p

(3.8)

The proofs are rather elementary and will not be presented here. Since this paper is the first of a series, we
shall keep (3.5)—(3.8) here for further use in solving actual problems.

In the process of obtaining a series expression for U, we first write a recurrence expression for U„based sim-

ply on definition (2.13):
r

U„(t,tp) = —i Hl(u) U„ 1(u, tp)du, n ) 1 . (3.9)
0

For n =1,

Ul(t, tp)= —i Hl(u)Up(u tp)du
tp

Comparing (2.13) and (3.10), obviously,

Up(u, tp)—= 1 for tp(u &t .

Notice that in(2. 12), n starts frotn 1 and we take U ~
——U 2

——U 3
—— . ——0.

We would note that, in view of (3.2),

(it2)'
[H, (t, ),H, (t )]=[S (t, )v(t, ),S (t )v(t )]+S (t, )S (t )g, [v(t, ),I'„(t )]

r=l

(it 1
)'

+SIP(tl )Sw(t2) / „[r(tl ) v(t2)]
r=l

(it 1 )r(it2 )'
+S (t, )S (t, ) g g [I,(t, ),I;(t, )] .

r=ls=l

Using (3.12), one can readily show that

f, H, (u)du H, (t)=H, (t) f, H)(u)du+A(t, tp),

where

(3.10)

(3.11)

(3.12)

(3.13)
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r

(it)'
&(t,to)=S8(t) f, Sa( u) Qvu)du, v(t)

0 yf
L

f, SII (u)v(u)du, l, (t)

~ r co oo ' P S

+g, [P„'"(t,to), v(t)j+ g g, , t'[),"'(t,to), I;(t)]
I'. r=1s=l

(3.14)

j&,'~'(t, to) = SII (u)ut'f', (u)du .
fo

Employing (3.9) and (3.13), if we carry out a series of integrations by parts (Appendix A), wc obtain

U„(t,tq)=U&(t, t )OU„ (1t, t )o+i HI(u}UI(u, tz)U„I(u, tz)du+ A(u, tz}U„ I(u„to)du . (3.15)
fo fo

Based on (3.15), after a rather tricky iterative process (Appendix 8), we can express our U matrix as an infinite

U(t, t, )=4 (t,t, )+b,{t,t, ), (3.16)

k(t, to) =exp i —Ht(u)du
O

oo I 1t-2
b(t, tv)= g —,g (r+1)![Ut(t,tv)j" '"+ '8, (t, tv),

n=2 ' r=on!

Q) Q ~

8(t, t v)= g ( i)t du, H—,(u, )f du&HI(uz) . f, duJ+IA(u;+I, to)U„J(u;+I, tq),
j=0 0 0 0

where t g ui & u2 &u3 & u„.
%C have thus expressed our U matrix as a series,

thc fiirst term of which invo1ves only R single 1Q-

tcgratlon of 01(u). If wc cons1dcf the interaction
Hamiltonian to be a perturbation to the total Haimj. -

ton1an, clearly thc 1cst of thc scrics I'cprcscnts a
small contribution to our U matrix. Note that the
summation for n runs from two instead of one in
(2.12). So far, we cannot readily sum nor terminate
the series. However, it is obvious from relation
(3.13) that if Hi(ui) and H](u2) are commutable
for different tines u 1, u2, namely,

[HI(u ) ),HI (ul )j=0

case (ii),

[Hv, v(u )]=4(u)

[v(u1 ),v(uq)] =0,
whcrc 4(u) 18 a fullctlon of u;

casC (111),

[Hq, Au)] P(u)v (u)

[v(u I ),v(uq)] =0,
(3.23)

then A(t, t&&)=0 leading to 8,(t, t )8= Oand our U
matrix 1s simply exactly given by

U(t, to) =exp i f, H1
—(u)du (3.20)

0

It is not difficult to prove that under the following
tllrcc sets of colldlflolls Hl(u I ) alld HI(ul) arc co111-

mutablc:
case (i),

[Hv, v(u)] =const,

and

whCfC p(u) 18 a fllllc'tloIl Of u alld II 18 all 111'tCgCr.

IV. EFFECTS GF SWITCHING PROCESSES
ON THE PROPERTIES OF THE U MATRIX

In our formalism, wc have 1ntioduccd a switch1ng
function to describe how the interaction is switched
on. %C have separated the time space into three in-
tervals: the period before the interaction is turned
on, the transient period, and the period during
which the interaction is "steady. " For a time-
independent problem, the interaction remains con-
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FIG. 1. Schematic representation of a smooth-

switching time-dependent problem.

FIG. 2. Schematic representation of the switching
function Ss and Hamiltonian 8 in a sudden-switching
time-dependent problem.

stant during the last (0&t & oo) period. If the in-
teraction is time dependent in the U matrix, the
wave function should be continuous functions of
time except at t =0. It would be interesting to study
some rdevant properties of the U matrix based on
our proposed properties of Su as stated in (2.5).

(i) During the interval —Qe e t & b, H& ——0 an—d
Sn (r) —=0 and one sees from (2.7) and (3.1) that

+(t, t0) —=exp —i H~(u)du
to

=exp i f Ss—(u) V(u)du =I (4.1)
to

for —00 &t0&t & —b. As H~(u)=S~(u)V{u) and
Sar(u)=0, 1t ls obvious from (3.14) that A(rIre) =0
also for this period and 6(t, t0) =0, giving

U(t, t0)=1 for —Qo &tQ&t & —b . (4.2)

Therefore

tion occurs (which must be the case), whereas in the
Schrodinger picture the wave function at time t is
transformed from the basis wave function (at the
reference time ro) by exp[ —iHo(r ro)]-

(u) During the interval h(t &0,—Ss (t) and U(t)

can, in general, be nonzero. Usually one takes t =0
as the reference point to study the time evolution of
the wave function and other quantities. If S„(t}is a
continuous function during this period and across
t =0, we can simply shift our time of origin to
t = —b to study this time-dependent problem. The
situation is represented in Fig. 1 schematically.
However, there is certain discontinuity in
H =HQ+H& in this period and we are interested to
find that

0
U(0, —b) =exp i f Ss—(u) V(u)du

It is easy to find that

C(r}=exp[ iHo(t —to)]Tp(to—) .

We observe that in the interaction picture, the wave
function does not change in time before the interac-

+5{0,—b) .

Suppose we have a sudden-switching process across
the reference time t=0, namely, we consider the
case b —NO . The swit—ching function Ss(0 )=0
but Ss (0)= 1 (Fig. 2). The U matrix is

U{0,0 )=+{0,0 )+5(0,0 )

0 0 dS~(u)=exp i lim f—V(u )du —f f V(u)du du + lim 6(0, b)—
—b~Q— du -$~0—
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after integration by parts. In our formalism, we re-
quire that —b ~0 faster than

dSg (u)

du

such that the second integral in (4.6) is zero. A
similar type of requirement is taken by Gell-Mann's
formalism where —b~ —co. Thus, in our case the
dominant contribution is

4'(0, 0 )=exp i f—V(u)du

A nondivergent and generally nonzero contribution
to 4'(0, 0 ) is necessary since in the interaction pic-
ture, the Hamiltonian is Ho before t =0. Starting
from t =0, there is a sudden change in H and there
should be a finite but sudden change in both the
wave function '0 and 4 across t =0.

On inspection of expression (3.18), we notice that
the upper limits of the integrals follow a time-
evolution sequence: t g u ~ ~ u2 p u3 & - . ~ u, . As
Sa (u) =0 except for u =0 and all the u„'s are less
than zero, 8,(0,0 ) is equal to a product of zeros
apart from the integral which has the upper limit 0.
Thus

8,(00 )=0

d (0,0-)=0.
Hence, from (4.6),

T

U(0,0 )=exp i f V(—u)du

is an exact expression. For this time, one readily
sees that

FIG. 3. Variation of the Hamiltonian arith time in the
situation where the interaction Hamiltonian is zero at
t =Q.

r

S(0,0 )=exp i f —V(u)du (4.10}

also.
%e should remark that the above discussion for

the suddeII-swltcllIIlg process ls valId fof U(t)+0 at
t =0. If U(t) =0 at t =0 and develops from then on,
(4.9) is automatically zero and, in this case, the
switching is essentially smooth for H is continuous
all the way (see Fig. 3).

(iii} During the time interval 0 & to & t & ao,
Sa (to) =Sp (t}—= 1, so that

U(t, to)=exp i —V(u)du +ih(t, to)
~ s

0

Bridging the wave function just before interaction to
the wave function at time t, we have from (2.15), for
a sudden-switching process,

t
4(t) =e ' exp i f V(u)—du +Z(t, O) exp i f V—(u)du 4(0 )

—lHof O~
=e exp i f Y(u)—du exp i f V(u—)du 4(0 ) .

0

Generally, b (t, O)&0

(4.12a)

(4.12b)

The charged harmonic-oscillator problem has
been studied using the displacement transformation
method and the Green's-function approach. %e
take this problem as an example for demonstrating
some working procedures of our method. The Ham-
iltonian of this system in the time-independent situ-
ation is well known:

H=co(a a+ —,)+lI(a +a}=HO+HI, (5.1a)

where

Ho ——a)(a a+ —,),
U(t)=H, =A(a +a), (5.1b)

I,=ho'[a +(—I)'a) .

and u and A, are constants. In this case the termina-
tion operators are [see (3.3)]

I i=f9(a —a ) s

I 2
——A.cu (a +a), (5.2)
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U(0, 0 }=exp —i f V(u)du
L

=exp —(a —a ) (S.4)

taking into account relation (5.3). We will need to
calculate (Ho+H~ )U(0,0 ). First, we need to put
(SA) in a proper order of a and a, In Appendix C
we have shown that for operators P, Q,

exp[ad[a(r}P+P(r)Q] J

= [exp[ra(r)P]) [exp[rP(r)Q])E(r), (5.5a)

Leaving the problem as a tine-dependent one for the
time being, from (3.2) and (5.2),

~ r
H~(&)=Sa(r) U(r)+j, I', (r)

r=i

( $)(e iRIEa~t+ e
—I EI(arL) (S.3)

Since this is a time-independent problem, we consid-
er our solutions at t =0. Based on (4.10), we need to
calculate

k, (r,o) (5.5b)

I

1~ 2

K(r)=exp f 9'(u)du + g —g (r+1}! f 9'(u)du
n=2 ' r=O

k(r) =[a{r}+ra'(r)]g, R,
pf

(5.5c)

f.
k, (r,O)g f dr, S(r, )f dr, +(r, ) f 'd~&+, f [+(t),+{re+i)]« ~, J(rj+i,o} (S.Sd)

with

Y„(r,o)= f dh, k(t, )f dr, S(r, ) . f, dt„9'(rH) I

R, =[Q,P], ,

while the prime symbol indicates differentiation with respect to r. Applying (5.5) to (5.4), one finds that
'2 r r

1 A, A, A,
U(0,0 )=exp ——— exp —a exp ——a

2 M GP CO

(S.Se)

A A 1 A,
HU(0, 0 )=exp

2 N

r

exp —a exp ——a u u a ——(c +a)+ 2
CO CO 67

2A,
2

+)1,(a +a)+ —,r0—

A,
2

=U(0,0 ) co(a a+ —, )——
QP

Now we are in a position to calculate the ground-state energy, using (2.1S) and (S.7), the fact that Ho and c u

are commutable, and U*U=1:

(z) =(e(0) iH i
e(0))

lim [(4( b)
~

S*(0, b)HS(0—, b)
~
4( —b) )]— —

Ag

lim [(4( b)
~

e ' U (0,—b)HU{0, b)e —
~

—4( b))]-—Ip-+0—

1 A,
=co(n +—)——

CO

(S.8)
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where

a a ~4( b—))=n ~4( —b)) .

Using our direct method, we have obtained the exact wave function and ground-state energy for a charged har-
monic oscillator. Our result is identical, of course, to the exact solutions using other methods (see; e.g., work
listed in Ref. 8).

VI. TIME-DEPENDENT
QUANTUM HARMONIC OSCILLATOR

In this example we shall study a time-dependent
quantum harmonic-oscillator problem with our new

method. This problem has, of course, been studied

by a number of workers (see, e.g., Refs. 23—25). For
convenience in comparison, we follow the form of
the Hamiltonian used by Peng

t&0, f(t)=0,
t&0, f(t)~0,
t&0, f(t)=0,
t&0, f(t)~0.

The switching function then satisfies

S~(t)=0 for —b & t g 0

(6.3a)

(6.3b)

H= P +—E — X Xf(t)e —'~1 C
2m 2 4m

(6.1}

where m is the mass, X and P are, respectively, spa-
tial coordinate and momentum, f(t) the time-
dependent driving force, and C,K are constants. Us-
ing operator notation,

dSs (t)
dt

=0 except at t=0.

Using (6.2), our termination operators are

1,(t) =~X(t)(at —a),
I'q(t)=co A,(t)(a +a),

H0 ——~(a a+ —,),

u(t)=l(t)(a +a),
so that

(6.2)

1/2

k(t) =— 1 f(t}eCll2NI

2Ptl N

=A,(t)(e'"'a +e ' 'a) . (6.6)

Now we can write the interaction Hamiltonian as

%e shall use our sudden-switching model to describe
the appearance of the driving force, the explicit
form of which is yet to be specified. There are,
however, two general cases for which f(t) must
satisfy, as discussed in Sec. IV:

Hl(t) =Ss (t) V(t)

=A,(t)S (t)(e' + ' 'a) . (6.7)

%e separate our time interval into two parts,
(0,0) and (O, t) so that the U matrix is

0(t 0-)= U(t, O) U(0,0-)=[4 (t 0)+~(t,O)]U(0,0 )

+(t,o)U(Q, O )=exp l f V(tl)dll—exp —l J V(u)du

In view of (6.6) we get

U(0, 0 ) =exp[ i(Gta +Ga)], —

where

(6.9)

and

0
G~= A,(u)e'""du,

0
G = J A(u)e '""du,

(6.10)
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4'(t, o) =exp[ —i(G, a +G, tt )],
where

(6.11) Taking the approximation stated in (6.8}, the wave

function at time t is

t
6 = A,(u)e' "du,

p

G, = J }},(u)e '""du .

Using Appendix C, we can show that

U(0 0—
) 0~ —iG a e

—iGa

where

(6.12)

(6.13)

(6.14)

4 (t) =S(t,0-)4(0-)

with

Zo+Z —iHot —tGt a iGta
. t-f

S(t,o }=e e e

X
—tG a —tGae e

At t =0, the Hamiltonian is Hp, so that

(6.16a)

(6.16b)

(At)ne(0-)=' '
~0,0-),

T= —l (6.15)

where n is the number of states, as represented by
the number of quantum particles in the system. Us-

ing (6.13), therefore,

tt

4(0)=U(0,0 )4(0 )=e e ' ' e ' '
~0,0 )n!

e ' g (a P(a iG)"e ' '
~

0—0 )
7l .

p p P.l

iG) jC(a t-)j~+~ ,00), (6.17)

where Cj" is the usual permutation coefficient. Let j+p =s and, operating (a )' on
~

0,0 ), we can write
(6.17) as

4(0)=pa, ~s,o ), (6.18}

where a, is a complicated algebraic function involving G,G and the ways of counting when an operator acts
on a state. At this moment, there is no point to waste space in writing out an expression for a, . We note, how-
ever, that as must satisfy the normalization condition

(CKO)
~
e(0)&=pa,'a, =1.

Using (6.14) and (6.18) we can find 4(t):

s=p S '[

z IHof s

p=ps=p s '

Setting q =p +j, as before,

( iG,P—
y ( iG, ) jC,'(u'} +J—

~
O, O )-. -

I
J —p

(6.19)

a, ( iG, )i'—
@(t)=g g g '

e ( iG, )' jcj—~q!exp[ iso(q+ —,)t—]!q,o )
p =os =0j=0

m ra s
1

We jexp[ io}(q+—, )t]!—q, o ),
e=os=oj=o s'

(6.20)
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where Jt'&& is a complicated algebraic function, as
before.

So far we have used the approximated form for
our Umatrix: U=++5= k. If we take the exact
form, we have found after a very lengthy process of
calculation that the wave function appears exactly in
the saIne form as given by (6.18), with We& rePlaced
by W~ J+Q& J. The detail of the working procedure
is elementary but too lengthy to be presented here.
In order to compare our result with Peng's, we cal-
culate the average displacement:

(x(r) ) =(Wr)
i
x

i e(r) &

lGP =e 'e '"tu

(6.23)

'
]./2

(X(r))=(U,O igga'„a, e
2m 6)

Xe 'Q~P*(a +a)PQe ' is, O ) .

=(C(I}
i

1

2mN

1/2

e
—Ct/2m

X(a +a)
i
&(&)) . (6.21)

Noticing that

(
~t ~)P P( ~t+ ~ G t I~I)

(6.24)

In order to compare our results with Peng's we also
use the first line of expression (6.19) for 4(r) [in-
stead of (6.20)] and express it as

@(I)=e e 'e ' e ' ga, is, O )

=e PQe 'gn, is, 0 ),
S

(a +a)Q=Q(a +a+iG, e'"'),

(a +a)PQ=PQ(a +a+iG, e'"' iG, e '"—'),

l@ot~g lHot iNte Qe =e 0

laot~ —laot le~Qe =e ' g,
we arrive at, from (6.24),

(6.25)

{x(r)}=
2m Q)

e ct/2m eiu—tg &+ ~ + 1 + Ia&ty—

1+ f exp[ C(r —u)—j2m]f(u)sin[co(r —u)]du .

mcus

Our approximate result is seen to be identical to that found in Ref. 23, where the method has been supposed to
be exact. Our other contribution, of course, comes from the series 8,(t, to). Let us now just write out the first
few terms for i),(t, to}. First, we recall that

5 —2

5(r,ro)= g —,g (r+1)![UI(r,to)]" '+ '8„(r,ro),
8=2 l =0

j8 (t,ro)= g ( —I) HI(uI)duI HI(uI)dug ' ' ' ~(uj+I ro)duj+IUr j(uj+I ro)-
I =0 0 0

We have shown that 6(0,0 )=0, so we need to calculate Z(r, O} only. With the use of the fact that
U, (r,r, )=1(s~ S~. 11),

t Q(
80(I~O)= f A(u I~0}du I =I 2f }((uI }du I f }((u2)sin[CO(u )

—u2)]du2 (6.27)

since in this case

A(I,O)= f [H ( )I,Hu( )]Idriu2}( )f(rA(u)sin[co(t —u)]du . (6.28)
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Also,

U, (t,O)= —i f H, (u)du= i—(G, a +G,a) (6.29)

(6.31)

tf )

B((t,0)=2 f du, A(u)) f du2X(up)sin[t0(u( —u2)] f du31(u3)(e 'a +e 'a)

+f du~A, (u&)(e 'a +e 'a)

Q) Q3

f du3A(u3 )f duqA (u2 )sin[t0(u3 u2 )]
0 0

(6.30)

Using the above expressions for Bo, Ui, and Bi, we can calculate the first three terms of 5(t,0):

Z (t,O) = , Bo(t,O—)+—,[U)(t,O)80(t, O)+2%)(t,O)]+

Generally, Bo, Ui, and Bi are not zero, so there is finite contribution to the U matrix due to noncommutability
properties of the operators in the Schrodinger equation.

VII. CONCLUSION

In this investigation we have developed the previ-
ous U-matrix theory in the interaction picture. We
would like to remark on the following main features
of our study.

(1) Previously, the U matrix was expressed as a
multiple integral of the interaction Hamiltonia,
governed by a proper time sequence. It is difficult
to handle this multiple integral and one can hardly
obtain a workable, explicit wave function using the
basic formalism. We are able to derive the U matrix
as an infinite series. The first term is simply
represented by

exp i f H—t(u)du
to

which is identical to solving the operator equation
iBU/Bt =Hi(t) U without considering the commuta-
bility properties of the operators involved in U and
Hi(t). The other terms of the U series are multiple
integrals of the interaction Hamiltonian H&(u}. If
Hi represents a small perturbation to the original
Hamiltonian Ho, the rest of the U series may be
considered as a perturbation to the solution using
the first term of U alone. In that case, our approxi-
mated wave function is a good representation of the
system, and is simply given by

A
4(t)=exp( —&Hot)exp —I, H] (u)du

)& exp(iHoto)4(to) .

For a class of Hamiltonians such that either set of
the conditions (3.21)—(3.23) is satisfied, the operator
function A and hence B, is zero. In that case the
perturbation Z(t, to) to U(t, to) is zero also [see

(3.16)]. For this class of Hamiltonians again the
solution for U(t, to) is exact. The above-mentioned
class of Hamiltonians may not be exclusive, in gen-
eral. It would therefore be worthwhile to study
what types of Hamiltonians would lead to exact
solution for the U matrix. Such research is in pro-
gi ess.

(2) We have used a switching function Ss to
describe how the interaction Hamiltonian is turned
on. The interaction can be turned on from t = —b
(b is. a positive number). Prom t =0 onwards, the
interaction becomes effective. If —b~0, we have
either (i) a sudden-switching process or (ii) a gradual
switching process. In the former case H&(t)&0 at
t =0, while in the latter case H, (t)=0 at t =0. In
case (ii), the main contribution to U is given by

U(t, t() ) =exp —i V(u)du
0

where to ——0. In case (i), however, the dominant con-
tribution to U(t, to) is

U(t, to) =exp —i V{u)du
'o

0 ~
&& exp i f V(u)d—u

The second factor
0 r

exp i f V(u—)du

on the right-hand side describes the sudden finite
change in the Haxniltonian across t =0. In short,
U(0,0 )=1 for case(ii) and U(0, 0 )&1 for case(i).

(3) We have treated the time-independent problem
as a special case of the time-dependent solution of
the Schrodinger equation in the interaction picture,
evaluated at t =0. According to our sud-
den-switching model, the matrix U(0, 0 ) across
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the "time origin" t =0 Hlust not be equal to 1, in
the sense that it must contain information about
the change in Hamiltonian. Based on our discussion
in Sec. III, the U matrix for the time-independent
problem is exactly given by

U(0,0 ) =exp i f— H~(tr)du
0
0 ~=exp —f V{u)dtr

Th18 result 18 cqu1valcnt to thc Solution of thc equa-
tion

—i&UIBt =H ( (u) U,

without taking into account thc noncomHlutability

of the operators in H&{tr) and U. It is true that as
the time interval tends to zero as a limit (for a time-

independent problem), one observes that it is neces-

sary that the operators in H&{tr) and U commute.
Thc valid1ty of ouf 1csult has bccn checked in Scc.
V, %ith the well-known charged harmonic-oscillator
example. In fact, one can easily apply our theory to
study other standard time-dependent problems, ob-

tain1ng results which arc identical to those found by
Other exact mcthodS.

(4) We have applied our theory to study the time-

dependent harmonic-oscillator problem and com-

pared our result {the averaged displacement) with

that obtained from the Schrodinger equation which

is supposed to be exact. %C have used an approxi-

A P A A
mated U matrix U=++6= k in our treatment
and 311 the terms obtained by Peng are identical to
the major part of our result. If we include the con-
tribution of 5 to U in our treatment, we should of
course obtain more information. This feature has
been discussed in (1).

(5) The recent development of the deduction of
thc path-integral formalism 18 based on writing thc
Schrodinger equRt1on in thc form

H i —G—(t, ro) = i l—5(r t,—), (7.1)
Bt

4 (t)=U"{t,t, )C (t, )

in which

(7A)

where I 18 a Unit matrix, and thc %ave function at
time t is obtained by operating the Green s-function
operator G(t, t,) on the initial wave function 4 (t, ).

&(t)=G(t, t, )&(to) . ('7.2)

For a time independent H, an operator solution to
(7.1) according to Ref. 15, is

G(t, r, )=6(t t, )exp—[ iH(t —t,)],— (7.3)

where e is a step function, taking 8=1. To com-
pare this formalism with our new theory, suppose
we solve the Schrodinger operator equation in the
Schrodinger picture w1tI1 oUr mcthcd; wc would ar-
rive at

U"'(t, to)=exp i f, H(—u)drr + g —,g (r+I)![U~'(t,to)]" '+ '8, '(t, to),
0 n —2 'r —0n&

where the superscript (s) stands for the result obtained via the Schrodinger picture rather than the interaction
picture which has been used throughout our paper. In (7.5),

8,"(t,to}=g ( i}tf du—)H( tr) f du2H(u2) f dut+(A"'(trj+), to)U„"J(ut+„to),
j=0

U„'(t, to) = i f, du~—H(tr &)U„'*',(tr „to},
A '(t, to)= f, [H(tr), H(t)]du .

(7.6)

For a tiHlc-indcpcndcnt HRHliltonian, %'c can write

H(t) =Ss,(t)H, (7.9)
where H is not a function of time and Srt.(t) is a
switching function (if we use a gradual switching
function, instead of a sudden-switching model, the
Hamiltonian is then changed basically to a time-
dcpcndcnt onc bcforc reaching t = t0)» satisfying

1 for t0gt g (x}

S~"}='0 fo. «t (7.10)

(this 18 kno%'Q as thc sudden-switching Inodcl 1Q OUI

paper). In fact, Ss (t) plays the role in a manner
similar to e in (7.3).

Substituting (7.9) 1nto (7.8) wc arrive at thc spcc1al
case

A"'(t, t, )=0

leading to 8„"'(t,to) =0 in (7.6}, so that the series in
(7.5) is accordingly zero, giving



U"'(t, r, )=exp i f H(u}du
tp

=exp[ iH—(t —to)] (7.11)

using (7.10). Relation (7.11) is identical to (7.3),
apart from the step function e, mcuxing that, for a
time-independent Hamiltonian, our U matrix is
similar to the Green's-function operator in the
path-integral formahsm. It is interesting, however,
to note that the usual meaning of a step function is
that

e(«to}=o
(7.12)and

e(t & ro}=1
Using (7.12}, 4(t &ro)=0 in (7.2) (namely, in view
of the path-integral approach), whereas 4(i&to)
=4(io} in our approach. In other words, our wave

function is continuous across to and 4 in (7.2) has a
discontinuity at to .

(6) We have been able to express the U matrix as
an infinite series, the first term of which, we believe,
represents the dominant contribution. The rest of
the series, again, consists of a series of complicated
multiple integrals. Using the same techniques as
presented in Appendix 8, it might be possible to
"isolate" another term which is of second impor-
tance to the U matrix. Such a step looks much more
complicated than the first step we have taken and
awaits for further careful analysis. Apart from a
rather restrictive class of Hamiltonians specified in
(3.21)—(3.23}, we have not been able to solve the
general time-dependent problem exactly, but we be-
lieve to have already moved one step towards obtain-
ing a more accurate wave function (than what we
have done so far in this investigation) expressed as a
convergent series.

APPENDIX A

We wish to prove the relation

U„(r,ro)=U~(r, ro)U„~(t, to)+i du H~(u)U&(u, to)U„2(u, to)+ du A(u, to}U„2(u,to) .
tp

First, we start with (3.9), namely,

U.(t ro)= i, du Hi(—u)U„,(u, ro}
p

and note that

(A2)

then making the substitution H~" dF /du, E=——f du H~(u), f(u, to) =U„~(u, ro), and

df /du =dU„,(u, t, )/du = iH, (u) U„—,(u, r, },
we obtain

U+(f, ro)= i f—du H~(u) [U+ ~(u, ro)]
'o

+i f du f duH, (u) H, (u)0„,(u, t, )
p

r

= —i f duH)(u) [U„)(r,ro)] — f duH)(u) [U„)(ro,ro)]

+i f, du f du H )(u) H, (u )U„2(u, to) (A3)

Based on (A2), obviously U„~(to,to) =0; therefore,
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2

U„(t,tp) = —i du H~(u) [U„,(t, tp)]+i du du H~(u) H~(u)U„q(u, tp)
o

i— f duH~(u) [U„,(t, tp)] — f du H~(u) [U„~(t,tp)]

+ f 'duH, (u) [U„,(t, tp)]+if du f duH~(u) H~(u)U„2(a, tp)
0

r

i f—, du H~(u) [U„,(t, tp)]
0

+ f, du f duHi(u) — f duH&(u) H, (u)U„2(u, tp) .

As U~(t, tp)= —i, du H&(u),

f, duHi( u)= f duHi( u)
—f duHi( u)

expression (A4) becomes

U„(t,tp)=U&(t, tp)U„&(t, tp)+, du, du Hi(U) Hi(u)U„2(u, tp) .

Using (3.13), expression (A5) becomes

U„(t,tp) =Ui(t, tp)U„ t(t, tp)+ du H&(u) du Hi(u)+A(u, tp) U„2(u, tp)
'o fo

=U[(t, tp)U„)(t, tp)+i da H/(u) i d—uH/(U) U„2(u, tp)+ du A(u, tp)U„2(u, tp)
fo Eo '0

= U~(t, tp)U„~(t, tp)+i du H~(u)U~(u, tp)U„2(u, tp)+ du A(u, fp)U+ 2(a, tp) . (
fo fo

APPENDIX 8

%e start from
t

U„(t,tp)= U)(t, tp)U„)(t, tp)+i du, H, (u, )U, (u, ,tp)U„,(u„tp)+ du, A(u„t, )U„,(u„t, ) .
fo $0

Replacing n by n —1,

1

U, (u „tp)U„2(u (,tp) =U„,(u „tp)—i da2H((u2) U((u2, tp)U„3(u2, tp)
fp

~]
du2A(u2, tp) „U(3', t )p.

to

Substitute (82) back to (81),

U (t tp) =Ui(t~t p) U„ i(titp)
t 1

du, a, (u, ) U„,(u„~,)—~ du20&(u2)U&(u2, ~0)U„3(u&,~o)Pl — &
g

A
du2A(az, tp)U„3(u2 tp)

'0
t+, du, x(u„&,)U„,(~„g,) .

(82)

(83)

i, du)H)(u()U„)(a), tp)= —U„(t,tp)



[from (3.9)], obviously (83) can be written as
t I

2U„(t,to)=Ui(t, tp)U„)(t, tp)+, duiHi(ui) duzHi(uz)Ui(uz, to)U„3(uz to)
o fo

i —du&H&(u&) duzA(uz to)U~-3(uz tp)+ duad(u tp)U» —z(ui tp) .
fo fo fo

Replacing n by n —2 in (81},we have

"2
Ui(u»to)UN-z(u»to)=U. z(uz to) —i, duzHi(u3)Ui(u»to)U. 4(u»to)

du3A(u3, tp)U„4(u3, tp) .

Substituting (85) to (84), and after simple rearrangements,

3U„(t,tp)=U)(t, tp)U, )(t, to)
Q)

i f—du&H, (u&) f duzH&(uz) duzH~(uz)U~(uz, tp)U„&(u3, tp)
fo

—f, du~H~(u~) f duzH~(uz) f, du3A(uz, to}U„4(u& tp)

Ql f
i —du )H)(u ) ) duzA(uz, tp }U„3{uz,tp) + du )A(u (,to) U„z(u), to) .

fo to t(}

~e can tepeat the above iterative process by letting n =n —3,n —4, . . ., in relation (81) and substitute the re-

sult to equations similar to (86), obtaining

4U„(t,tp) =U)(t, tp)U„)(t, tp)
QI 412

—( —i) f du, H~(u, }f duzH~(uz) f du3H~(u3) du4H~(u4)U~(u~, to) U„5(u~, to)
to

' to fo to

tg I N2

+(—i) f du~H~(u~) f duzH~(uz) J du3H~(uz) duad(uq, tp)U, q(u&, tp)
fo fo

+( i)'f —du&H&(u~) J duzH~(uz) f du3&(u3, to)U„4(uz, to)
fo fo to

+( i} du—,H, (u& } duzA(uz, tp)U„3(uz, tp}

+J du~A{u~, tp)U„z(u~, tp) (87)

@Ad f,lMQ

(tt —l )U„{t,to) =U( (t, tp) U„)(t,tp }
NI 5—( i)" ' f—du~H&(u, )f duzH~(uz). du„~H~(u„q)U~(u, &, tp)

+( i)" J—du~H~(u~) f duzH~(uz) du„~A(u„„tp)

x U„„(u„„to}

+( i) du~—H~(u~) duzA(uz, tp)U„3(uz, tp)
fo fo

+ du&A(u&, to)U„z(u„tp) .
fo
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Using the boundary condition (3.11) Up(u„(, t p) = 1, we obtain from (88) after simple rearrangement

t Ql js —2

( —t)" ' du)H)(u) ) duzH)(u2) du. (-H((un (-)U((ue (-to}U.-(. )-+))(uw )-to)
to fo fo

=( i)" 'f dg)H)(g) }f dg2H((g2) . du„)H((g„))U((u„), t())
fo fo fo

=( i—)"f du, H, (u, )f du, H, (u, ) f " du„,H, (u„,) f, du. H, (u„)

= U„(t,tp) .

Substituting (89}to (88),

n U„(t, t() ) = U ( ( t, tp )U„((t, t() )

5 —2 f j+ y ( —)} du(H)(u) ) du2H)(u2) ' ' ' d jul~( ju+1)4)Un —{j+2)(uj+)~4)
fo 2 toj=0

(810)

Replacing n by n —1 in (810) and resetting the result back into (810)

U„(t,t, )= U, (t,t, )U„,(t,t, )

A
U((t to)

1l —3 f Q J
)j dg(H)(g) ) du2H)(u~) ~ ~ ~

q j+) (uj+) p)Uq (j+3)(t t())
j=0

lt —2 f
+—g ( i}j d—u, H, (u, ) duqH)(u2) duj+)A(uj+), to) U„(j+2)(uj+), p)

n
O

'o fo toj=0

With the use of (810}again, replacing n by n —2, and substituting the result back into (811)

1 A3 A
U„(t,to)= U, (t, t, )U„,(t, t, )

1

+n(n 1)(. 2)U"'"'

e —4 f N)

X g ( i}jf du—(H(u) )f du2H)(u2)
j=O fo fo

Q A N ~

J
X d Hu))( )u'3' duj+)A(uj+(, t()) U„( +4)(g ~ +),tp)

8 —3

+ U)(t, to}g ( i}jf, du—)H)(u))
n(n —1} J= 0

j+) ("j+» o} () —('+3)(u +(~4)

] 8 —2 f
+ g ( —t ) du(H((u) ) du2H) (u2) ' duj+)A(uj+(, tp ) U+ (j+g)(uj+)~to),n. fo fo foj=0



&heref +Q1+Q2+Q3+ ' ' pfo.
%c call colltllluc this process lllltll wc have cxpfcssed thc high-order opcfatof U„p(t, to) in tcfllls of Ui(t, to)

(as a first hnear term plus others), arriving at

I ~
pg0}+

( 1} ( 2}
Ui (I to)~ -( -1+Ii(t to

P1. n(n —1) . n —(n —2)

1 A 3 A
+ Ui (I to»n in I+&i(I*to)+ ' + Ui(t. to»n-S«to)

nn —1. n —n —3) n n —1)

+—&.-2«. to&
5

(813)

J
P~(t, to)= g ( —t} duilfi(ul ) dull/ l(ug) duj+IA(uj+I, to)U~ I(uj+I, to),

j=o 0 0

t&ui &uq&uq . &u„. (814)

Obviously, (813) can be written as

5 2

U„(t,t, )=—,U", (t,t, )+—,g (f + I)![UI(t, to)]"-'+"8„(t,to) .5 n!,

%e shall shoe& some properties of the operator
function in (Cl), relevant to calculations presented
in Secs. V and VI. Suppose me express

exp[ad[a(r)P+P(r)Q]]

=exp[ra(I )P]K(r)exp[fP(f)Q)

=K(r)exp[ra(r)P]exp[rP(r)Q]

=exp[ra(r)P]exp[re(r }Q]K(I"), (Cl)

where the operator function K(r) is assumed to
satisfy the commutation ndcs

[K(r),P]=[K(r),Q] =0 . (C2}

We want to find the explicit form of K(I.). From
inspection of (C1), we know that

K(I ) =exp[ —fa(r)P]

X exp[ad[a(r)P+ p(f)Q] I

Xexp[ —rp(r)Q] . (C3)

4 [rP«)l'g
r=1 P.

(C4}

where thc plilnc syiilbol slglllf les dlffcfclltlRtioli

&1th respect to 7', and

R, =[Q,P]„. (C5)

S'(r) =[a(r)+ra "(r)]g, R, .
p!

Solving for K(r) in (C4),
r

K(~)=K(0) 1+ g F„(r,0)

[

Obviously, when r=O, K(0)=1. Differentiating
(C3},and after a simple process of rearrangement,

dK(r) =K(r)[a(r)+&a'(&)]
df'

I'„(r,0)=f, dt, S'(I, )f, dtl $'(t, ) . . f, dt„8'(t„) .

It ls easy to scc that K(0)= 1, R11d wc call fcadlly Rffa11gc (C6) 111 thc following fofl11:

oo I N —2 '
n —(r+2)

K(f)=exp f 9'(u)du + g —,g (r+ I)! f 5'(u)du Af, (r,0),.=2 &!.=O

N, (rO)= g f dt, k(t, )f dtIS'(tl} f 'dtj+I f [k(t},9'(tj+, )]dt 1'„j(tt+„0}.



1778 C. C. LAM AND P. C. W. FUNG 27

F. J. Dyson, Phys. Rev. 75, 1736 (1949).
zA. S. Davydov, Quantum Mechanics (Pergamon, New

York, 1969).
M. Gell-Mann and F. Low, Phys. Rev. 95, 1300 (1954).

4H. S. Snyder, Phys. Rev. 83, 1154 (1951).
5H. E. Moses, Nuovo Cimento 1, 103 (1955).
K. O. Friedrichs, Comm. Pure Appl. Math. 1, 361

(1948).
7A. Abrikosov, L. Gorkov, and I. Dzyaloshinski, Quan

turn Field Theoretical Methods in Statistical Physics

(Pergamon, London, 1965).
G. D. Mahan, Many-Particle Physics (Plenum, New

York, 1981),Chaps. 2, 3, and 6.
T. T. Matsubara, Prog. Theor. Phys. 14, 351 (1955).
D. ter Haar, Lectures on Selected Topics in Statistical
Mechanics (Pergamon, New York, 1977), Chap. 2.

"G.C. Wick, Phys. Rev. 80, 268 (1950).
'2K. A. Brueckner, Phys. Rev. 100, 36 (1955).
' N. M. Hugenholtz and L. Van Hove, Physica (Utrecht)

24, 363 (1958).
'4N. N. Bogoliubov, A New Method in the Theory of Su

perconductiuity (Consultants Bureau, New York, 1959).
tsR. P. Feynmann and A. R. Hibbs, Quantum Mechanics

and Path Integrals (McGraw-Hill, New York, 1964).
' C. L. Hammer, J. E. Shrauner, and B. DeFacio, Phys.

Rev. D 18, 373 (1978).
C. L. Hammer, J. E. Shrauner, and B. DeFacio, Phys.
Rev. D 19, 667 (1979).

t L. S. Schnlman, Techniques and Applications of Path In
tegration (Wiley-Interscience, New York, 1981).

'9K. W. Wong and P. C. W. Fung, Nuovo Cimento B 25,
595 (1975).

P. C. W. Fung, H. K. Tsang, and K. W. Wong, Nuovo
Cimento B 28, 313 (1975).
K. W. Wong, P. C. W. Fung, and C. C. Lau, Phys. Rev.
A 22, 1272 (1980).
P. G. L. Leach, J. Math. Phys. 18, 1608 (1977).
H. W. Peng, Acta Phys. Sin. +2, 1084 (1980).
L. F. Landovitz, Phys. Rev. A 11, 67 (1975).

25D. C. Khandekar and S. V. Lawande, J. Math. Phys.
20, 1870 (1979).


