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We have analyzed Dyson’s U-matrix theory of solving the Schrddinger equation in the in-
teraction picture and are able to express the U matrix as a dominant term plus an infinite
series involving multiple integrals of time. For a certain rather restrictive class of Hamil-
tonians, our theory is exact for a general time-dependent problem. For other Hamiltonians,
we can only obtain approximate expressions for our U matrix and hence the wave function.
Treating a time-independent problem as a special case of the time-dependent situation with
a sudden-switching process, we have shown that our U matrix is exact. To demonstrate the
working procedures of our theory, we apply it to study the well-known time-independent
charged harmonic-oscillator problem and the more general harmonic oscillator with a time-
dependent driving force. Compared with other methods, our new theory appears to lead to
a result which contains more information than others due to the inclusion of noncommuta-
bility properties of operators in the operator Schrédinger equation. It has been shown that
the classical Feynman path-integral formalism can be deduced from quantum mechanics
with the use of the Green’s-function operator. It is interesting to note that apart from a step
function, the Green’s-function operator is the same as that of our U' matrix, which is the
U matrix obtained within the regime of the Schrodinger picture for a time-independent
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Hamiltonian, as a special case of our general time-dependent treatment.

I. INTRODUCTION

Dyson proposed the basic U-matrix theory in
1949,"2 writing the wave function in terms of a U-
matrix within the regime of the interaction picture.
The U matrix, however, is expressed as a series of
multiple integrals in time, the limits of integration
following a time-order sequence. In solving actual
problems, one can calculate a few terms in this
series, but one does not know exactly how much
these terms represent in the whole U matrix. One
cannot, in general, handle other terms (for example,
a triple integral in the old U-matrix theory) and ex-
press the U matrix in a ready, workable form.
Gell-Mann and Low? applied the U-matrix theory to
study the bound states of nucleons. In order to have
a solution, they used the Feynman diagram tech-
nique to solve for the kernel in the integral equation.
In arriving at Gell-Mann and Low’s solution, the
“adiabatic hypothesis” has been proposed. Snyder*
has found that for a scattering process, the use of
the adiabatic switch-off procedure is unnecessary.
This aspect was confirmed in the work of Moses,’
who, using Friedrick’s perturbative approach,® has
derived expressions for the “outgoing” and “incom-
ing” eigenfunctions and the scattering operator aris-
ing from the time-dependent Schrédinger equation.
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These works can be considered as stages of develop-
ment of the U-matrix (or S-matrix) theory. In fact,
it has long been known that it is difficult to obtain a
solution directly from the basic U-matrix theory.

The Green’s-function method’~'° is rather fre-
quently used. In this formalism, we arrive at a
number of coupled integral equations for the dif-
ferent Green’s functions in general. No exact solu-
tions can be obtained unless we decouple the integral
equations. Here approximations have to be taken
for such decoupling, and these approximations usu-
ally correspond to including only a number of
relevant terms in the usual perturbation technique.
Often, the approximated Green’s-function solutions
are presented in a diagrammatic language closely re-
lated to the result of perturbation method. Taking
for granted that the approximations are good ones,
if we know the answers (observables) beforehand
from experimental data, the Green’s-function
method enables us to explore the dominant perturba-
tion terms responsible for the observed physical re-
sults.

The perturbation theory'!~!® begins with a nonin-
teracting system, and by adding a perturbation term
to the Hamiltonian, one hopes that the correction
due to interaction can be expressed as a convergent
power series of the interaction strength. The work-
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ing procedures are very complicated and the validity
of this method is rather restrictive. The unitary
transformation'# approach is exact, in principle, and
can be simpler than using other methods. However,
success of such a method relies on guessing the right
transformation; the method is therefore indirect and
not workable in many cases. In using the variational
approach, one assumes some trial wave function for
the system with built-in variational parameters.
Taking a variational process, one can obtain an
upper bound of the ground-state energy. The accu-
racy of this method depends on how close the trial
wave function is to the exact wave function.

The path-integral method was introduced to study
quantum-mechanical problems using the classical
least action principle.!” Later, the path-integral
method is bridged to the S-matrix representation in
quantum mechanics.!® A relationship between the
U-matrix and a function of the Lagrangian has been
established.!” A more comprehensive development
and the application of the path-integral approach to
solve quantum-mechanical problems is given in Ref.
18. A comparison between the path-integral formal-
ism and our U-matrix theory is discussed in Sec.
VIL

The above-mentioned methods have been used to
study single- and many-particle quantum-
mechanical problems, directly or indirectly. Recent-
ly, Fung, Wong, and co-workers'’~2! have obtained
the exact wave function for an interacting many-
boson system and a bridge is built between the
basis-correlation function formalism (which may be
considered to be in the trial wave-function regime)
and the Bogoliubov canonical transformation
method.

Despite all the efforts stated above, an exact
workable method to treat a general time-dependent
quantum-mechanical problem still awaits. In this
investigation we intend to develop the U-matrix
theory for the stated reason. We shall start with the
basic formalism of Dyson and express the U matrix
as an infinite series. We are able to reduce the order
of the multiple integral of the U matrix, isolating
what we believe to be the dominant contribution.
Using the interaction picture as before, we can then
express the approximate time-dependent wave func-
tion of a system in terms of the Hamiltonian expli-
citly. We treat a time-independent problem as a spe-
cial case of a time-dependent problem. Employing
the “sudden-switching” model for turning on the in-
teraction, we shall show that for a time-independent
problem our formalism is exact as the U matrix ter-
minates.

In Sec. V, we apply our theory to study the well-
known time-independent charged harmonic oscilla-
tor. Our result is, of course, identical to the estab-

lished one.? To demonstrate the working procedures
of our theory for a time-dependent problem we
study in Sec. VI the time-dependent harmonic oscil-
lator?? with a general driving force, using the same
Hamiltonian as in Ref. 23. For this problem we can
only calculate our U matrix and hence the wave
function in an approximate manner. Peng®® at-
tempted to solve the problem directly using the
Schrodinger equation, and the method is supposed
to be exact. Our approximate result is shown to be
identical to Peng’s, suggesting that our theory leads
to result which contains more information than the
“exact” one. We discuss the sources of this
“surplus” information.

II. BASIC FORMALISM
OF THE U-MATRIX THEORY

For a time-dependent quantum-mechanical sys-
tem with Hamiltonian H(?), the Schrodinger equa-
tion is

ia<1>(t)
ot

where ®(t) is the wave function of the system and
units are chosen such that # is one. We express the
Hamiltonian in the following form:

Ht)=H,+0(05(t) , 2.2)

=H(@)®(1) , 2.1)

where the “interaction generating operator” #(¢) has
the property

0 for —w<t<—b
AOD(t)= {Sp()d(t) for —b<t<0 (2.3
®(t) for 0<t < oo

where b is a positive number. We can also rewrite
Eq. (2.3) in the following form:

NOD() =Sy ()P(1) , (2.4)

where the eigenvalue Sy (t) of the above equation is
specified by

Swl—ow <t<—b)=0,
Sw(—b<t<0)>0, (2.5)
Sw0<t<ow)=1.

Separation of the function Sy(t) into the above
three regions means that there is a transient period
—b <t <0 for an interaction to take place and the
interaction is starting from ¢ =0. Gell-Mann pro-
posed that b— — w0, but we leave b a finite quantity
so that both “slow-switching” and sudden-switching
processes can be taken care of with our formalism.
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We shall call Sy the switching function and it will
be seen later that this concept is crucial and will lead
to more contributions to the solution of a physical
problem.

Keeping in mind relations (2.2) and (2.3), our
Schrédinger equation becomes

ad(1)
ot
In order to express (2.6) in a form consistent with

the interaction picture, we make the following
transformations:

=[Hy+Sw()5(0)]®(2) . (2.6)

i

Differentiating Eq. (2.7a), with respect to time, and
using Eq. (2.6) and (2.8), we obtain

YD _ o Pewir)

=H, ()W) . (2.9)

This is, of course, the Schrodinger equation in the
interaction picture. Integrating the above equation,

W =Wto)—i [, By(w)¥w)d . (2.10)

Carrying out an iterative process, we can relate ¥

W()=e"0D(1) , (2.7a) and ¥, through a U matrix:
Ay 0=e"s, (09(0]e = WD =U(1,1)¥(to0) , 2.11)
=SW(t)I7(t) , (2.7b) where
5\ iyt —ifyt R A
V(t)=e Dl(t)e (2.7¢) O te)=1+ 3 O,itto) 2.12)
so that the interaction Hamiltonian becomes n=1
H(=8Sy)P(1) . (2.8) and
J
A t u u, _ A A
U,,(t,to)=(—i)"ftodu1Lolduz . Lo ‘du,H\(u))B (uy) - - Hy(u,) . 2.13)

In view of (2.2) and (2.4), we can express ®(¢) in
terms of ®(¢,):

(1) =S8(1,15)®(t,) , (2.14)
where
S(t,1)=e " O(1,15)e" 0" . (2.15)

Apart from introducing the switching function Sy
as specified by (2.4) and (2.5), the formalism is a
standard U-matrix theory in the interaction picture.
In the past, one could not express the U matrix in a
manageable form. We shall show in Sec. III that we
can reduce the order of the multiple integral in
(2.13) by two, separating out the dominant term for
our U matrix.

III. SERIES EXPANSION OF THE U MATRIX

First, we note that for general operators ﬁ, é, it
is elementary to prove that

=3 L5,61,, 3.1)
where
[P.0l=1,
[P.0),=[B,[B,[--- ,[P,01]--- 11,

where there are r commutator terms. In the same
way, we can write the interaction Hamiltonian as

B,(0=Sw(® |00+ S %f",m . (32
r=1 *
where
£,(0=[Hy,5(], . (3.3)

We shall call f‘,(t) the termination operator on ac-
count of property (i) stated below. We shall see later
that one important step in solving an actual problem
is to study this termination operator. There are
several properties of I', worth noting. They are as
follows.
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()Generally, 1(2), I‘z(t) . f“m(z);eo. But if for a certain integer j,
=j(t)=0 or C, const

then
£, ;(n=0. (3.4)

(ii) It follows that

[Ho+0(0),F,(0]=F, . (0 +TM ) (3.5)

where T (1) =[6(2), T, (0)].
(iii) Then,

LA, 1,01, =1, ,,0+SpO (T, (0 +[A0, T, 0] +[H0, A0, 5011+ -

+[HD, B 0], -4} (3.6)
(iv) Therefore,
(Ao, f21="S BIF,, Br-u+0. 3.7
j=0
(v) Finally,
A, =1, A414"S A3-UHR,, A (3.9
j=0

The proofs are rather elementary and will not be presented here. Since this paper is the first of a series, we
shall keep (3.5)—(3.8) here for further use in solvmg actual problems.

In the process of obtaining a series expression for U we first write a recurrence expression for U based sim-
ply on definition (2.13):

Outtte)=—i [ B0, _y(uto)du , n>1. (3.9)
0
Forn =1,
A t A A
O1(619)=—i [ B, (w0o(u,t0)du . (3.10)
0
Comparing (2.13) and (3.10), obviously,
Uolu,te)=1 for toy<u<t. (3.11)
Notice that in (2.12), n starts from 1 and we take ﬁ_l =(7-2=l7_3= <o =0.
We would note that, in view of (3.2),
N N o (ity) N
[H](tl),H1(12)1=[Sw(t1)mtl),Sw(tz)mtz)]+SW(t1)Sw(tz)2 2 [l/)\(tl),r,(tz)]
r=1
+Sw(t)Swl(ty) 2 I‘ A21),0(25)]
(it )ity ) N
+SytSy(t)S S —‘—SL[F (£1),85(12)] . (3.12)
r=1s= :
Using (3.12), one can readily show that
t A A A t A A
[f, A, (wdu ]H,(z)=H1<t)f, A (wdu +A(tt,) , (3.13)
0 0

where



1764 C.C.LAM AND P. C. W. FUNG 27

Alt,to)=Sp (1) f Sw(w)d(wdu (1)

+21(—:;— 2t0) DO+, S

r=ls=

with
AP (1, 20)= ft;SW(u)u"f‘,(u)du .

+§, e [f Swlwdudu (0

(1)

m t[9\(,t0) T (2 )]] (3.14)

Employing (3.9) and (3.13), if we carry out a series of integrations by parts (Appendix A), we obtain
Un(t,to)z U](t,to)U,, _l(t,t0)+i f'oHl(u)Ul(u’tO)Un—2(u’t0)du -+ f'OA(u,to)U,,_z(u,to)du . (3.15)

Based on (3.15), after a rather tricky iterative process (Appendix B), we can express our U matrix as an infinite

series
Ult,to)=2 (1,t0)+Alt,t0) ,

where

U (t,ty)=exp

—if;HAl(u)du] :

—2

Alt,tg)= 2 - 2 (r+D[0,(t,10)]"~"+2B,(1,1,) ,

n=2 =0

and

~ r
B,(t,t))=3,
Jj=0

~l)"f dulHl(u,)f dqu](uz)

wheret>u;>u;>usz> *** u,.

We have thus expressed our U matrix as a series,
the first term_of which involves only a single in-
tegration of H (u). If we consider the interaction
Hamiltonian to be a perturbation to the total Hamil-
tonian, clearly the rest of the series represents a
small contribution to our U matrix. Note that the
summation for n runs from two instead of one in
(2.12). So far, we cannot readily sum nor terminate
the series. However, it is obv1ous from relation
(3.13) that if H 1(u,) and H,(uz) are commutable
for different times u,, u,, namely,

[H,(uy),H (4)]=0 (3.19)

then 2(t,t0)=0 leading to E,(t,to)——-o and our U
matrix is simply exactly given by

O(1,14)=exp ~if:ﬁ1(u)du] . (3.20)

It is not difficult to proye that under the following
three sets of conditions & 1(u;) and A 1(u,) are com-
mutable:

case (i),

[ﬁ(),{)\(u)] =const ’
and (3.21)

(3.16)

(3.17

ftojduj+12(uj+1,t0)ﬁr_j(llj+],t0) , (3.18)

r
[0Xuy),0(u;)]=0;
case (ii),

[Ho,5(u)]1=% (u)

and (3.22)

[0Xuy),0(u;)]=0,

where € (u) is a function of u;
case (iii),

[Ho,0(w)]=B(w)d"™(u)
and (3.23)
[!?(ul ),l/’\(u2)]=0 s

where B(u) is a function of u and » is an integer.

IV. EFFECTS OF SWITCHING PROCESSES
ON THE PROPERTIES OF THE U MATRIX

In our formalism, we have introduced a switching
function to describe how the interaction is switched
on. We have separated the time space into three in-
tervals: the period before the interaction is turned
on, the transient period, and the period during
which the interaction is “steady.” For a time-
independent problem, the interaction remains con-
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FIG. 1. Schematic representation of a smooth-
switching time-dependent problem.

stant during the last (0<?< «) period. If the in-
teraction is time dependent in the U matrix, the
wave function should be continuous functions of
time except at ¢ =0. It would be interesting to study
some relevant properties of the U matrix based on
our proposed properties of Sy as stated in (2.5).

(i) During the interval — o0 <t < —b, H;=0 and
Sw(t)=0 and one sees from (2.7) and (3.1) that

@(t,to)zexp [—iﬂ;ﬁl(u)du ]
=exp [—i [, SwwPwdu |=1 @
for —oo <to<t<—b. As H,(u)=Sw(u)P(u) and

Sw(u)=0, it is obvious from (3.14) that A(£,2,)=0
also for this period and A(t,7,)=0, giving

Ult,t)=1 for —oo <to<t<—b . 4.2)
Therefore
W(t)=W(t;) . 4.3)

It is easy to find that
(1) =exp[ —iHy(t —to)]D(t,) . 4.4)

We observe that in the interaction picture, the wave

function does not change in time before the interac-!

0(0,0~)=%(0,0~)+A(0,07)

_ _il g
exp l’—bl_lﬂ)—

—-b

fo V(u)du—fo dSw(u) “- P(u)du

(a)

(b)

FIG. 2. Schematic representation of the switching
function Sy and Hamiltonian Hina sudden-switching
time-dependent problem.

tion occurs (which must be the case), whereas in the
Schrodinger picture the wave function at time ¢ is
transformed from the basis wave function (at the
reference time t,) by exp[ —iHy(t —19)].

(ii) During the interval —b <t <0, Sy/(¢) and 0(¢)
can, in general, be nonzero. Usually one takes t =0
as the reference point to study the time evolution of
the wave function and other quantities. If Sp/(¢) is a
continuous function during this period and across
t =0, we can simply shift our time of origin to
t = —b to study this time-dependent problem. The
situation is represented in Fig. 1 schematically.
Ijowqer, R there is certain discontinuity in
H=H,+H, in this period and we are interested to
find that

A O A
0(0,~b)=exp [~i [, Sy(w)Pluldu

+A(0,—b) . (4.5)

Suppose we have a sudden-switching process across
the reference time t =0, namely, we consider the
case —b—0~. The switching function Sy (07)=0
but Sy (0)=1 (Fig. 2). The U matrix is

+ lim A(0,—b) 4.6)
—b—0—

du
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after integration by parts. In our formalism, we re-

quire that — b —0 faster than
dSW( u)
du %

such that the second integral in (4.6) is zero. A
similar type of requirement is taken by Gell-Mann’s
formalism® where —b— — . Thus, in our case the
dominant contribution is

20,07 =exp [~ [ Plurdu | . @.7)

A nondlvergent and generally nonzero contribution
to %(0,07) is necessary since in the interaction pic-
ture, the Hamiltonian is HO before t—O Starting
from t =0, there is a sudden change in H and there
should be a finite but sudden change in both the
wave function ¥ and & across ¢ =0.

On inspection of expression (3.18), we notice that
the upper limits of the integrals follow a time-
evolution sequence: t>u;>u; >u3> **° >u,. As
Swlu)=0 except for u =0 and all the u,’s are less
than zero, B,(0,07) is equal to a product of zeros
apart from the integral which has the upper limit 0.
Thus

B,(0,07)=0

and (4.8)
A(0,07)=0.

Hence, from (4.6),

A 0 A
000,07 =exp [~ [ Plurdu | (4.9)

is an exact expression. For this time, one readily

sees that J

H
Qv
Y
Ho /
t
0

FIG. 3. Variation of the Hamiltonian with time in the
situation where the interaction Hamiltonian is zero at
t =0.

A 0 A
§(0,07)=exp [—i [* P ] (4.10)

also.

We should remark that the above discussion for
the sudden-switching process is valid for #(#)40 at
t=0. If §(#)=0 at t =0 and develops from then on,
(4.9) is automatically zero and, in _this case, the
switching is essentially smooth for H is continuous
all the way (see Fig. 3).

(iii) During the time interval O<?y<?< oo,
Sw(ty)=Sw(t)=1, so that

Ot,10)=exp [—ift; V(u)du]+3<t,zo)|sw=, .
@.11)

Bridging the wave function just before interaction to
the wave function at time ¢, we have from (2.15), for
a sudden-switching process,

(1) =e ! exp [—ifotl//\(u)du}-{-& (2,0) ] [exp [—lf V(u)du ] ]tb(O ) (4.12a)
—xHo LIPN -
~e  Yexp fo P(u)du |exp V(u)du ®(07) . (4.12b)
Generally, A(,0)£0
I
V. CHARGED HARMONIC OSCILLATOR A o=w(a@ T('f +3 )
The charged harmonic-oscillator problem has o)=H 1=7L(a +a), (5.1b)

been studied using the displacement transformation
method® and the Green’s-function approach.”> We
take this problem as an example for demonstrating
some working procedures of our method. The Ham-
iltonian of this system in the time-independent situ-
ation is well known:

A=o0@'e+1)+ra"+a)=By+H,, (5.1a)

where

and w and A are constants. In this case the termina-
tion operators are [see (3.3)]

F,—Am(a —-a),
I‘zzsz(a +a), (5.2)

T, =r0Té +(—18] .
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A 0 A
Leaving the problem as a time-dependent one for the U(0,07)=exp [—i f V(u)du ]
time being, from (3.2) and (5.2),
) =exp —}L(ﬁ—ﬁT) , (5.4)
H(0=Sp () |6(6)+ 2 it A1) ®
r! taking into account relation (5.3). We will need to
calculate (H, +H,)0(0,07). First, we need to put
orat R (5.4) in a proper order of 4" and 4. a. In Appendix C
=ASp(1)(e'd" +e—i21g) . (5.3) we have shown that for operators 2,0,
exp{*r[a(r)P +B(1')Q]]
Since this is a time-independent problem, we consid- — & AN
er our solutions at ¢t =0. Based on (4.10), we need to {exp[ra(n)P]} {exp[7B(NQ 1K (T, (5.5a)
calculate | where
A . PN ) l n—2 T A n—(r+2)
K(1)=exp lfo % (u)du ]+"§25r§0(r+l)l [fo @(u)du] .@,(7,0) (5.5b)
with
Y =[aln+ra'(] S @]—ﬁ, (5.5¢)
r=1 *
and
t, A A
# (7,0)2 N dt,@/(z,)f d,¥(1,) - f dtj 41 [fo’*‘ (D0, D, 0)dr |¥,_j(t41,0) (5.5d)
with
A A t A rIl— A
Tor0= [ @) [ dn @) - [ A3, (5.5¢)

R,= [Q:P ]r ’
while the prime symbol indicates differentiation with respect to 7. Applying (5.5) to (5.4), one finds that

ﬁ(0,0‘)=exp _LjA exp Lﬁ exp -—)i{z‘T (5.6)
2 @ @
and
A A 2
HU(0,07)=exp —% ﬁ— exp %é‘ exp ———2—&‘ © &‘Té‘——:;-(&‘f+&\)+?’
2
+AG 48+ t0— 2
©
25 Afta 1 }\2
=U(0,07) |w(d a+7)—; (5.7

Now we are in a position to calculate the ground-state energy, using (2.15) and (5.7), the fact that HO and 414
are commutable, and U*0=1.

(E)=(®(0)| H | 9(0))
lim [(®(—b) | $*(0,—b)HS(0,—b) | D(—b))]

It

et ] A A A _‘A
lim [ —b)|e™°G*0, —b)AD(0, —b)e ~

—b—0—

| ®(—b))]

2
=oln +%)—% , (5.8)
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where

86| d(—b))y=n|Dd(—b)) .

Using our direct method, we have obtained the exact wave function and ground-state energy for a charged har-
monic oscillator. Our result is identical, of course, to the exact solutions using other methods (see; e.g., work

listed in Ref. 8).

VI. TIME-DEPENDENT
QUANTUM HARMONIC OSCILLATOR

In this example we shall study a time-dependent
quantum harmonic-oscillator problem with our new
method. This problem has, of course, been studied
by a number of workers (see, e.g., Refs. 23—25). For
convenience in comparison, we follow the form of
the Hamiltonian used by Peng®

2
(. C

5 1 1
H= P2 2 Ct/2m
= + X —Xf(t)e >

(6.1)

where m is the mass, X and P are, respectively, spa-
tial coordinate and momentum, f(¢) the time-
dependent driving force, and C,K are constants. Us-
ing operator notation,

Hy=0@'d++),

N =M@ +a) ,

where (6.2)

172

T l F(ecm.
2mo

We shall use our sudden-switching model to describe
the appearance of the driving force, the explicit
form of which is yet to be specified. There are,
however, two general cases for which f(f) must
satisfy, as discussed in Sec. IV:

|

0(t,0-)=0(1,000(0,0")=[ 2 (£,0)+ A(£,0)10(0,0™)

~2,0)0(0,0 ) =exp [—i [ Plurdu

In view of (6.6) we get
0(0,0-)=exp[ —i(G'a" +Ga)] , (6.9)

where

t<0, f(1)=0,
t>0, f()=£0, (6.3a)
t<0, f(1)=0,
t>0, f()£0. (6.3b)

The switching function then satisfies

Sw(t)=0 for —b<t<0

Sw(t)=1 for 0<t< (6.4)
dSy(t) 0 0
i except at t=0.

Using (6.2), our termination operators are
t(0=0re)E"—a),

0 =0?Mt)E +8) , (6.5)

B (=00[a" +(—17a]

so that
=0+ S YR
=1 r!
=Me)e@gT e —iotgy | (6.6)

Now we can write the interaction Hamiltonian as
H,(t)=Sy ()P (1)
=MOSy (e @Gt Lo —ivg) . (6.7)

We separate our time interval into two parts,
(07,0) and (0,?) so that the U matrix is

i [*Pludu | . (6.8)

I
0 .
GT=f Mu)e'““du ,

0 ‘ (6.10)
G=[ Mue'*du

and
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@(t,0)=exp[-i(G:é‘ T+G,c’1‘ )], (6.11) Taking the approximation stated in (6.8), the wave
function at time ¢ is
e S (6.162)
. P(¢)=S(1,07)P(07) .16a
G!= [ Muweiordu ,
¢ _ (6.12) with
G,= [ Mu)e~""du .
~ A At A
Using Appendix C, we can show that S(t,0m) =02, ~Ho, ~iG]a e iGe
0(0,0~)=e0e ~16"3"g -G8 (6.13) e
. _itst —ica Xe~i0'a g—iGa (6.16b)
L(1,0)=e%e e O, (6.14) R
where At t =07, the Hamiltonian is H, so that
—_letgad oG YaG ~tyn
Zy=—+G'G+1 [dr [a G-G 2, q)(o_)_(a) 10,0-) |
4'- aG’ aG’
Z= —G, G+7 f dr where n is the number of states, as represented by

the number of quantum particles in the system. Us-
T=—i. (6.15) ing (6.13), therefore,
J

®(0)=0(0,07)(0~) = ¢ —i6"d"¢ —i6a 4 ) "j—), 10,07)

© ~T PN
1 ez°2 M(af)p(aT_iG)"e—'G“lo,O')
p=0 P!

V!

|ez°2 (—'? Y S (—iGr—icraty+r)0,0-) , (6.17)
p=0 P j=o

I
.5\“

where C}' is the usual permutation coefficient. Let j +p =s and, operating (8" on |0,07), we can write
(6.17) as
®(0)=Fa,[5,07), (6.18)
s

where a, is a complicated algebraic function involving G '.G and the ways of counting when an operator acts
on a state. At this moment, there is no point to waste space in writing out an expression for a;. We note, how-
ever, that a; must satisfy the normalization condition

(®(0)|@(0))=3 afa;=1.

Using (6.14) and (6.18) we can find ®(¢):

—ifig —iclat —ig, @'y _
O()=eZe Vet T ago VT [0,07)
_IHOI x as (_lG S . s AT +] _
(—iG,~IC{(@"y¥*7|0,07) . (6.19)
oS0 Vst p! j !
=0s= =0
Setting ¢ =p +j, as before,
© ® Sa iG]y .
=3 3 3 \C:!_‘ ez(—iG,)‘“IC}\/E!exp[—iw(q+%)t]|q,0‘)
p=0s5=0j=0
o0 @ s a
=3 3 3 S espl—iolg+7)1407), (6.20)
¢=0s=0j=0 V5"
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where £, Y is a complicated algebraic function, as
before.

So far we have used the approximated form for
our U matrix: U=% +A~%. If we take the exact
form, we have found after a very lengthy process of
calculation that the wave function appears exactly in
the same form as given by (6.18), with .# ; replaced
by S, i+Qg ;. The detail of the working procedure
is elementary but too lengthy to be presented here.
In order to compare our result with Peng’s, we cal-
culate the average displacement:

(X(0))=(D(1) | X | (1))

i 172
o [_ =
2mow

@' +a) | ®(1)) . (6.21)

In order to compare our results with Peng’s we also
use the first line of expression (6.19) for ®(¢) [in-

where
I’)\ze—mxfe—imé\f ,
O=e Creiotg . (6.23)
Then
172
X)) = ’0— * —Ct/2m
(X(1))=(v ]?%avas | e
e M Gepr(at 44180~ | 5.0-) .
(6.24)

Noticing that
@' +a)P=P@&" +a—iGle—io)
@' +a)0=0(6"+a+iGei

(é\T+6\)ﬁé=}3\Q(6\T+6‘+thelwl_thfe —imt) ,

stead of (6.20)] and express it as (6.25)
Hotnt —iHgt _ jorat
Ca At A e %d'e =eloig" |
D(1)=eZe 0l T, ’G'az a;|s,07)
s e'ﬁ°‘z’z‘e —iﬁot=e ~iotg
AA _'ﬁ
=eZPQe " 012 ag|s,07), (6.22) we arrive at, from (6.24),
s
|
L
(X(t))= py ] e=Cm ity ot Vs +lag+e TS af _ Vs ay
s s
t
+ [== | [ expl—C(t —u)/2m]f (w)sin[eo(t —u)]du . (6.26)

Our approximate result is seen to be identical to that found in Ref. 23, where the method has been supposed to
be exact. Our other contribution, of course, comes from the series A, to). Let us now just write out the first

few terms for A(z, to) First, we recall that

0

Alttg)=3 —

n=2 =0

where

A r ) t A ul
Br(t’t0)=i§0(—1)1LOHl(ul)dlllj"o

2 (r + 1 0,(t,t)]~"+PB.(1,1,) ,

HA,(uz)duz R

u.
J A A
fto Aluj,t0)du; U, j(uj 4 1,t0) .

We have shown that 3(0,0‘):0, so we need to calculate K(t,O) only. With the use of the fact that

Uy(t,t5)=1 (see Sec. II),

A t A t uy .
Bo(t,00= [ Auy,0duy=i2 [ Muy)duy [ Muy)sin[a(u; —up)ldu, , 6.27)

since in this case

A,0)= [ 1A, B\ (0)du=i200) [ Mwsin[o(t —u)]du . (6.28)
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Also,

A N o tat N

Ul(t,0)=—tfOH,(u)du=—z(G,a +G,8) (6.29)
and

B\(1,0)=2 [fo'dul [k(u,)fo "duyMuy)sin[o(u; —up)] f| "dusMus)e 6T e T8)

+foldulk(ul)(eiw"‘¢?*+e_im‘c?)
u u
X fo ‘du3x(u3)fo > duyMuy)sin[w(usy —uy)] ] ] . (6.30)

Using the above expressions for ﬁo, U 1, and B 1, we can calculate the first three terms of K(I,O):

A(1,0)=5Bo(1,0)+ $[ U,(1,00B,(1,0)+2!B,(1,0)] + - - - (6.31)

Generally, ﬁo, i 1, and B | are not zero, so there is finite contribution to the U matrix due to noncommutability

properties of the operators in the Schrédinger equation.

VII. CONCLUSION

In this investigation we have developed the previ-
ous U-matrix theory in the interaction picture. We
would like to remark on the following main features
of our study.

(1) Previously, the U matrix was expressed as a
multiple integral of the interaction Hamiltonian,
governed by a proper time sequence. It is difficult
to handle this multiple integral and one can hardly
obtain a workable, explicit wave function using the
basic formalism. We are able to derive the U matrix
as an infinite series. The first term is simply
represented by

t A
exp [—iftOHl(u)du

’

which is identical to solving the operator equation
i00 /3t=H l(t)U without considering the commuta-
bility properties of the operators involved in U and
H (1). The other terms of the U series are > multiple
mtegrals of the interaction Hamiltonian H,(u). If
H | Tepresents a small perturbation to the original
Hamiltonian H,, the rest of the U series may be
considered as a perturbation to the solution usmg
the first term of U alone. In that case, our approxi-
mated wave function is a good representation of the
system, and is simply given by

(I>(t)=exp(—iﬁ0t)exp —ifr;ﬁl(u)du ]

X exp(iHoto)®(t,) .

For a class of Hamiltonians such that either set of
the conditions (3.21)—(3,23) is satisfied, the operator
function 4 and hence B is zero. In that case the
perturbation NS ty) to Ult,to) is zero also [see

(3.16)]. For this class of Hamiltonians again the
solution for Uz, ty) is exact. The above-mentioned
class of Hamiltonians may not be exclusive, in gen-
eral. It would therefore be worthwhile to study
what types of Hamiltonians would lead to exact
solution for the U matrix. Such research is in pro-
gress.

(2) We have used a switching function Sy to
describe how the interaction Hamiltonian is turned
on. The interaction can be turned on from ¢t =—b
(b is. a positive number). From ¢ =0 onwards, the
interaction becomes effective. If —b—0", we have
either (i) a sudden-switching process or (ii) a gradual
switching process. In the former case H 1(2)5£0 at
t =0, while in the iatter case Hl(t)-—O at t=0. In
case (ii), the main contribution to U is given by

Ot,10)=exp [—if,; l?'(u)du] :

where 1=0. In case (i), however, the dominant con-
tribution to U(t,ty) is

—i J,, Pwdu |

X exp [—ifoﬁ(u)du] .

ﬁ(t,t0)=exp

The second factor
0 A
exp [—if V(u)du]

on the right hand side describes the sudden finite
change in the Hamiltonian across ¢ =0. In short,
U(O 0~ )=1 for case (ii) and U(O 07 )41 for case (i).

(3) We have treated the time-independent problem
as a special case of the time-dependent solution of
the Schrodinger equation in the interaction picture,
evaluated at ¢=0. According to our sud-
den-switching model, the matrix U (0,07) across
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the “time origin” ¢ =0 must not be equal to 1, in mated U matrix U =@+.&z@ in our treatment
the sense that it must contain information about and all the terms obtained by Peng are identical to
the change in Hamiltonian. Based on our discussion the major part of our result. If we include the con-
in Sec. III, the ¥ matrix for the time-independent tribution of A to U in our treatment, we should of
problem is exactly given by course obtain more information. This feature has
A 0 A been discussed in (1).
U(0,07)=exp [—i f o-H ,(u)du] (5) The recent development of the deduction of
0 A the path-integral formalism'® is based on writing the
=exp |— f V(u)du ] . Schrodinger equation in the form
This result is equivalent to the solution of the equa- A—i 9 éau, to)= —ilss 1), (1.1)
tion ot
—idU/dt=H (v, where 1 is a unit matrix, and the wave function at

time ¢ is obtained by operating the Green’s-function

without taking into account the noncommutability operator é( t,t,) on the initial wave function ®(zo).

of the operators in H\(u) and U. It is true that as
the time interval tends to zero as a limit (for a time- <I>(t)=G(t, to)®P(ty) . (7.2)
independent problem), one observes that it is neces-
sary that the operators in H 1(u) and U commute.
The validity of our result has been checked in Sec.

For a time independent I?, an operator solution to
(7.1) according to Ref. 15, is

V, with the well-known charg_ed harmonic-oscillator G(1,15)=0(t —t5)exp| —ifl(t —10)], (1.3)
example. In fact, one can easily apply our theory to
study other standard time-dependent problems, ob- where © is a step function, taking fi=1. To com-
taining results which are identical to those found by pare this formalism with our new theory, suppose
other exact methods. we solve the Schrdodinger operator equation in the
(4) We have applied our theory to study the time- Schrodinger picture with our method; we would ar-
dependent harmonic-oscillator problem and com- rive at
ared our result (the averaged displacement) with A~(s)
?hat obtained from the Schrédinger equation which (1) =UT1,10)P(20) (7.4
is supposed to be exact. We have used an approxi- in which
J
(s = (‘A & 17§ /(s n—(r+2)gs)
0 t,t9)=exp [—z J, Awdu ] +3 - 3 D[0P )] B 1,1) (1.5)
n=2 """ r=0

where the superscript (s) stands for the result obtained via the Schrodinger picture rather than the interaction
picture which has been used throughout our paper. In (7.5),

ﬁ,‘”(t,to)- -—t)’f du H(u,) f duyA(u,)- f d“1+1A (“J+1"0)U —1(“1+1’t0) (7.6)

_o
02,10 ———zf du H(u UL (uyto) (1.7)
At 1) = L [AGw),H(t)]du . (1.8)

0

—

For a time-independent Hamiltonian, we can write (this is known as the sudden-switching model in our
H)=Sy(H , (7.9) paper). In fact, Sy (¢) plays the role in a manner

similar to © in (7.3).
Substituting (7.9) into (7.8) we arrive at the special
case

where H is not a function of time and Sy(¢) is a
switching function (if we use a gradual switching
function, instead of a sudden-switching model, the
Hamiltonian is then changed basically to a time-

(s) -
dependent one before reaching ¢ =t), satisfying A™(t,10)=0

I for to<t<eo leading to B{*(t,t,)=0 in (7.6), so that the series in

Swin)= (7.5) is accordingly zero, giving

0 for t<to (7.10)
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t A
UNt,ty)=exp [_'LOH(“M“]
=exp[ —iH(t —1,)] (7.11)

using (7.10). Relation (7.11) is identical to (7.3),
apart from the step function ©, meaning that, for a
time-independent Hamiltonian, our U matrix is
similar to the Green’s-function operator in the
path-integral formalism. It is interesting, however,
to note that the usual meaning of a step function is
that

O(t <ty)=0
and (7.12)
e(t>ty)=1.

Using (7.12), ®(t <t3)=0 in (7.2) (namely, in view
of the path-integral approach), whereas ®(z<t)
=®(¢ty) in our approach. In other words, our wave

function is continuous across ¢, and ® in (7.2) has a
discontinuity at ¢, .

(6) We have been able to express the U matrix as
an infinite series, the first term of which, we believe,
represents the dominant contribution. The rest of
the series, again, consists of a series of complicated
multiple integrals. Using the same techniques as
presented in Appendix B, it might be possible to
“isolate” another term which is of second impor-
tance to the U matrix. Such a step looks much more
complicated than the first step we have taken and
awaits for further careful analysis. Apart from a
rather restrictive class of Hamiltonians specified in
(3.21)—(3.23), we have not been able to solve the
general time-dependent problem exactly, but we be-
lieve to have already moved one step towards obtain-
ing a more accurate wave function (than what we
have done so far in this investigation) expressed as a
convergent series.

APPENDIX A
We wish to prove the relation
A A A A A A ‘ A A
U,,(t,t0)=Ul(t,to)U,,_1(t,t0)+ift;du H (u)U(u,tg)U, _o(u,ty)+ Lodu Au,tg)U, _o(u,ty) . (A1)
First, we start with (3.9), namely,
A t A A
U,,(t,to)=—ifrodu AT, _(u,to) (A2)
and note that
EEA _ M_ AEZ
[ oS du=Ff deudu ,
then making the substitution I?(,")=dﬁ/du, F= fdu ﬁ,(u), f(u,to)=ﬁ,,_1(u,t0), and
df /du=d0, _(u,ty)/du=—il,(u)T, _,(u,t,) ,
we obtain
t
ﬁ,,(t,to)=——i{ [ [f du ﬁ,(u)][ﬁ,_l(u,to)]]
fo
t A A A
+if‘0du [f dqu(u)]Hl(u)U,,_,(u,to)]
A A t A A
——i[ [ [ du ) |0, st10)— [ au By |10, t10,10]
+if‘;du [f du ﬁl(u)]ﬁl(u)ﬁ,,_z(u,to)] : (A3)

Based on (A2), obviously U, _;(to,t0)=0; therefore,
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Onttsto)=—i | | [du Bu(w) |10, _i(t0)1+i [, du | [ du By () | i) 0yt to) |

=i [ [ [t |10 st — [ a0 |10, -t
[ [ |10, o) 4 ] | du ) ]ﬁl(u)ﬁ,_z(u,to)]
= [—ift;dulfl\l(u)][ﬁn_l(t,to)]

+L;du [ [f du ﬁ,(u)]— [ftodu ﬁl(u)]]ﬁl(u)ﬁn_z(u,to) . (A4)
~ t A
As U,(t,to)=—iﬁodu H,(u),
ft;duHAl(u)= [ftduﬁ,(u)]-— [ftoduﬁl(u)J ,

expression (A4) becomes

ﬁn(t,t0)= ﬁl(t,to)ﬁ,,_](t,to)“f- f‘;du [ft:dvf{\l(v) ]ﬁl(u)ﬁn_z(u,to) . (AS)

Using (3.13), expression (A5) becomes
A A A t A A ~ A
Oalt,10)=01(1,0)0, 1,10+ [, d [H;(u)L:del(v)+A(u,to) ]Un_zw,zo)

A A t A u A A t A A
=01(600)0, _1(tt0)+i [, du Botw) (i [ B0 | Oy _atunto) + [, du Aw00)0, su,t0)

= 016000, _i(tt0)+i [, du B ()01(,10)0, s(usto)+ [, du Alu10)Ty _alusto) (A6)
APPENDIX B

We start from
On(t,00)=01(8,00) 0, 1(10)+i [, durBi@)T (1,000, sty t0)+ [, duiAlu,10)0y _aluyyto) .

(B1)
Replacing n by n —1,
A A A u A A A
U;(ul,to)U,,_z(ul,lo)=U,,_](ul,to)—-iftoldqul(uz)Ul(uz,to)U,,_3(“2,10)
u A A
——j;olduzA(uz,to)U"__3(u2,to) . (BZ)
Substitute (B2) back to (B1),
U,(t,t0)=0,(1,t0)0, _(1,t5)
.t A A u, A A A
+i [, du By (uy) [U"_,(u,,to)—iﬂ duyH (uy) U1 (us,t0) 0, _3(us,to)
0 0
u A A
—--f, " duyA(u3,10) 0, 33, t0)
0
t A A
+ f, durAluy,10)0, oty to) . B3

As
. t A A A
i [ duH ()0, _(uy,t0)=—0,(8,10)
0
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[from (3.9)], obviously (B3) can be written as

A A A t A u A A A
2U,(t,80)=U,(t,t0) U, _1(t,20) + f,ﬂ duH(u; )ftol duyH ((u3)U (u3,10) U, _3(uy )

. t A "1 A A t A A
—tftodulHl(u,)fto duyA(us,t0) 0, _5(us,t0) + LodulA(u,to)U,,_;_(ul,to).

Replacing n by n —2 in (B1), we have

A

A A A u A A
U (uy,t0)U, _3tug,tg)=U, _5(us,tg)—i ftozdu3H1(u3)U1(u3,to)U,, _4lus,tp)

u ~ A
— [ dusA(us,t0)0, _ylus,to) -
0

Substituting (B5) to (B4), and after simple rearrangements,
30, (t,10)=0,(1,10)0, _\(1,t)

t A u A l‘2 A A A
—i [, dwB(uy) [, duaBiu) [, 7 dusH () 013, 00) 0y _olusyto)
t A “1 A “2 ~ A
——ftodulHl(u,)ftO dqu,(uz)fto du;A(u3,t0)U,,-4(u3,t0)

. t A u[ A A t A A
—1 j'todulHl(ul)Lo duzA(uz,to)U,,_3(u2,t0)+ftodulA(u1,t0)U,,_2(u1,to) .

1775

(B4)

(BS)

(B6)

We can repeat the above iterative process by letting n =n —3,n —4,. . ., in relation (B1) and substitute the re-
sult to equations similar to (B6), obtaining

40, (t,t)=U,(1,t0)0, _ (1,1

and then

A u A u A u A A A
-—(—i)‘ft;dulH,(u,)ftoldqu,(uz)Lozdu;Hl(u3)ftosdu4H1(u4)U1(u4,to) 0, _slug,to)
t ~ u A~ Uy A~ i3 ~ A~
+(=i [, dw iy [, dualiuy) [, "dusHiws) [, dusd(ugt0)U, s(uato)
A u A u A A
+(=i? [, dur B [, durBiun) [, 7 dusBlus, 0000, _lus,t0)
t A uy A A
+(=i) [, duHywy) [, " duzd(u,10)0, sz to)

t A A
+ [ duAluy,10)0, _au,t0)
0

(n —=1)T,(t,t0)=U,(t,10)0, _ (1,1

u

on— ¢ Ty 4y A n—2 A A
_(_l)'l 1f¢0du1H‘(ul)f'0 dqul(u2)- . j:o dun—lHl(un—l)Ul(un-—th)
Xﬁn—(n—l+l)(un—1’t0)
o\ pp— t A Il] A un—-l A
+(—i) 2f,0du,H1(u1)_flo duyH(uy) - - - f,O dup 1 AUy _1,t0)
Xﬁn—n(un——lato)
o — 4 "3 ¥y A u,_3 A A
+(=ir =2 [ dw By [, sy o [, duy o (21005 i)
X(up_p,t0)+ -~

t A u A A
+<—i)ﬁodu,H1(u1)ﬂo‘du2A<u2,t0>U,,_3(u2,to)

t A A
+ L dulA(ul,to)U,,_z(u,,to) .
0

(B7)

(B8)
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Using the boundary condition (3.11) Uy(u, _,,¢9)=1, we obtain from (B8) after simple rearrangement
(== [ du By tay) [, duafg) - [ it 1) 01ty 1,10) O o1t 1)

(== [ dun ) f ) [ dy Bty ) 011t

=i [ Byt [ duaBiu) - [ g By [ )

=U,(1,ty) . (B9)
Substituting (B9) to (B8),
nU,(t,t5)=0, (1,20)0, _1(1,10)

n—2 ot A U, A Y; A A
+ 2 (—i)’ftodulHl(ul)fz du,H(uy) - - f‘o duj+1A(uj+1,t0)U,,_(j+2)(uj+1,to) .
j=0

(B10)
Replacing n by n —1 in (B10) and resetting the result back into (B10)
A 1 A A
U,,(t,to)=mU%(t,to)UH_z(t,to)
+~—l— U (t,tp)
n(n—1) 0
X 2 —1)’f du,H, u,)f du,H,(uy) f d“1+1A(“1+1’to)Un J+3(t10)
ln —2 "j A A
(—z)ff dulH u, f dqu,(uz) f‘o duj  A(ujy1,t0) Uy (128 41500) - (B11)

With the use of (B10) again, replacing n by n —2, and substituting the result back into (B11)

~ 1
U,(t,ty)= =D —2) (tto)U,, 3(t,20)
1 ~a
o —n—2) U100

S iy [ du B [ du, A
xjgo(—l)]fto u (ul)fto U, 1(“2)
Uy A u; A ~
Xfto dusH,(uj)--- f,o duj 1 A(uj o 1,t0) Uy (a8 41500)
N n—3 ot A
O,(tt0) S (—i)’ftodulﬂl(ul)
j=0

+n(n——1)

Xf dqul(uz f duj+1A(uj+1,t0)U,, (]+3)(ll]+1,to)

n—-2 .ot A u A u; A A
12(—i)’frodulH,(ul)f'OIdqul(uz)--- ftolduj+lA(uj+1,t0)U,,_(j+2)(uj+,,to), (B12)
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We can continue this process until we have expressed the high-order operator U,, 3(t,t0) in terms of i 1(t,20)

(as a first linear term plus others), arriving at

A 1 All—— T
Onttt)= 7 01 (100)Up - nltrto)+ s

1

+ 077 (4,60)By _(n_342t,20)+

(n—=1)---[n—(n-=3)]
ﬁn—z(l"to) ’

where

ﬁ,(t,to)—z —l)‘,f du,Hl(ulf dqu (U2

j=0

Obviously, (B13) can be written as

++ [n—(n=2)]

Ap 2 a
Ul 7" (1,80)By _(n —242)(,t0)

1

n_(—n_zl—) (t to)B,,_3(t,t0)

(B13)

f du]+1A(u1+1,to)U _J(u1+1,t0)

t>u;>u;>uy - >u, . (Bl4)

0, (tto)——U, hio)+ 2 (r+ DO, (1,6)1 =" +2B,(1,1,) . (B15)
r
APPENDIX C Obviously, when 7=0, K(0)=1. Differentiating

We shall show some properties of the operator
function in (C1), relevant to calculations presented
in Secs. V and VI. Suppose we express

exp{rla(r)P+B(1)Q1}
=exp[ra(r)PIK (1)exp[rB(1){]
=f(f)exp[7a(T)ﬁ]exp[TB(T)é]
=exp[ra(1’)ﬁ]exp[rﬁ(r)é K(r), (C1)

where the operator function K(r) is assumed to
satisfy the commutation rules

[K(r),P]=[K(r),0]=0. (C2)

We want to find the explicit form of K(r). From
inspection of (C1), we know that

(C3), and after a simple process of rearrangement,

dK (1)

=f(r)[a(7)+ra'(f)]
dr

i 1—”1 R, , (Cc4)

where the prime symbol signifies differentiation
with respect to 7, and

é\r=[é»ﬁ]r . (C5)
Let

Y (n=[a(n)+m2(P]3, I———J-TB::-) R, .
r=1 M

Solving for K(7) in (C4),

K (1) = — P o
K(r)=exp[ —ral(r) 1 A K=K |1+ 2 . (1,0) (C6)
X exp{r[a(r)P+B(T)Q]} n=1
X exp[ —7B(1)0] . (C3) in which
]
4 A
f dn 9t f dL(t,) - - fo""dz,,@/(t,,) : (e1))
It is easy to see that K(0)=1, and we can readily arrange (C6) in the following form:
~ A © 182 N n—(r+2) o
Rin=exp [ [ @(u)du]+ 33 | [ Fwdu] #,(,0, (C8)
n=2 """ r=0

where

# (r,0>_2 f dtl@(t,)f dt, @ (1;) -

[ dz,+,|f”‘[@m Dt ))dr | ¥, _(t;41,0) . (C9)
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