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The energy and width of the 102 '3 state of H, are calculated using Feshbach projection
operators and the Stieltjes moment method. The results are compared with an analysis of
the double minima in the potential-energy curves of the ‘2; Rydberg states. The doubly ex-
cited 102 configuration is unstable with respect to autoionization for R < 2.65a,, and the
autoionization rate is sensitive to both the value of the internuclear separation and the ener-

gy of the emitted electron.

I. INTRODUCTION

The 102 12;’ configuration of H, has long been of
interest since it is the lowest doubly excited configu-
ration in the hydrogen molecule. Its existence leads
to the well-known double minima in the potential-
energy curves of the excited 'E; states such as the
EF and GK states. For example, at small internu-
clear distance R the EF-state wave function is dom-
inated by the configuration 10,20, whereas near the
outer minimum the 1o configuration is more im-
portant. At very large separations, a single configu-
ration cannot suffice to describe the proper asymp-
totic limit. At small R the energy of the lai config-
uration is larger than that of the H,* 22; ground
state, so that the doubly excited state is embedded in
an electron-scattering continuum and can decay by
autoionization. Its properties in this autoionization
region are of special interest with regard to a wide
variety of collision phenomena. For example,
recombination of low-energy electrons and H, " ions
in low vibrational states proceeds primarily through
the formation and subsequent dissociation of this
state.

There have been several calculations of the
potential-energy curve and autoionization lifetime,
or width, of the 1o} '=} state. Although there is
good agreement concerning the potential curve, the
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calculated widths differ significantly. One approach
is through the introduction of Feshbach' projection
operators P and Q, chosen so that the spectrum of
QHQ is discrete in the energy range of interest. The
potential curve can then be obtained from the eigen-
values of QHQ, and the width from matrix elements
of PHQ. This technique has been applied by
Bottcher and Docken,? Rai Dastidar and Rai Dasti-
dar,’ and very recently by Sato and Hara.* In the
two earlier papers,>* the open channel component
PV was approximated by a simple product of a
Coulomb wave function and an H,* orbital. The
calculated widths peak near R =1.6a, with max-
imum values of 1 and 10 eV, respectively, and then
decrease to 0.025 (Ref. 2) and 0 eV (Ref. 3) at the
stabilization point R;=2.8a,, where the potential
curve of lo} crosses that of the ground electronic
state of H,*. In contrast to the situation pertaining
to unstable negative ions, the autoionization widths
for neutral states should approach a nonzero limit as
R —R;. The zero limit obtained by Rai Dastidar
and Rai Dastidar® does not appear to arise from any
physical approximation that they made, but is prob-
ably due to numerical inaccuracies, or an inap-
propriate extrapolation. Sato and Hara* have used a
static-exchange approximation for the open-channel
function P¥ and obtained a width which increases
monotonically with increasing values of R. Thus,
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their findings disagree seriously with the results of
the earlier projection-operator calculations.>3

An alternative approach is to study the scattering
of electrons by H,* ions with fixed nuclei. The
103 12; state then should appear as a resonance,
with parameters that can be deduced from the ener-
gy dependence of the eigenphase shifts or S-matrix
elements. Robb® has performed close-coupling cal-
culations for separations of 1.4a,, 2.0a,, and 2.6a,,
and found a resonance at energies close to the pre-
dictions of Bottcher and Docken.? However, the
width increases steadily from 0.65 eV at 1.4a, to 1.9
eV at 2.6a,. A similar behavior was found in alge-
braic variational calculations by Takagi and
Nakamura,® and in subsequent four-state close-
coupling calculations by Collins and Schneider.’

Perhaps the most intriguing and difficult method
available for the calculation of autoionization
widths is the complex-coordinate method. There
has been considerable debate concerning the im-
plementation of this approach for molecular sys-
tems.® Using relatively simple wave functions,
Moiseyev and Corcoran® obtained a width of 1.2 eV
at R=1.4a,, which is approximately a factor of 2
larger than the values obtained in e +H,™ scattering
calculations.’™’

The large degree of disagreement between these
results is disturbing. In view of the uncertainty in
both the magnitude and R dependence of the width
of the 102 '3} state, we deemed it to be worthwhile
to obtain independent estimates of this parameter
before embarking upon calculations of dissociative
recombination cross sections that will be reported in
a subsequent paper.

In Sec. II, we will describe calculations within the
Feshbach formalism' in which the widths are calcu-
lated using Stieltjes moment theory.'®~!? This tech-
nique can be applied to the calculation of any matrix
element between a discrete state, represented by a
square-integrable (L?) function and a continuum
function. It involves the replacement of the contin-
uum by a large set of L? functions whose energy
spectrum is distributed reasonably uniformly over
the energy range of interest. It is applied here to the
calculation of the matrix element (¥ |QHP |V¥),
which determines the autoionization width.

In Sec. III, we will analyze the shape of the dou-
ble minima in the potential-energy curves of the ex-
cited '2; states of H, and will attempt to deduce
the energies of the Rydberg and nonRydberg config-
urations and the strength of the coupling between
them. This will give us information about the 10?2
configuration at internuclear separations around
3ay. The requirement of continuity of the proper-
ties of this state at R =R, will then guide us in the
choice of a potential curve and width in the autoion-

izing region (R <Rg), which will be used to calcu-
late the cross sections for dissociative recombination
and vibrational excitation in e-H,™* collisions in a
subsequent paper.'?

II. APPLICATION OF STIELTJES
MOMENT THEORY

We have used configuration-interaction (CI) wave
functions and the Stieltjes moment theory tech-
nique'®~!? to calculate the potential-energy curve
and the autoionization width of the 102 12;“ state at
internuclear distances where it is unstable with
respect to electron ejection. The method is based on
projection-operator techniques and a golden-rule
definition of the resonance width.! Discrete,
square-integrable, many-electron basis functions
(configurations) are used to expand the wave func-
tions of both the resonance and the nonresonant
scattering continuum. The Stieltjes moment theory
is employed to extract a continuous approximation
for the width I'(E) from the discrete representation
of the background scattering. The present calcula-
tions of the 12; state are similar to those reported
previously'"!? for 10,20, '= and 1o, 17, 'II, dou-
bly excited states.

The molecular-orbital basis set contained two
groups of orbitals. The first group consisted of 70,,
60,, 4m,, and 4, orbitals which were linear com-
binations of contracted Cartesian Gaussian func-
tions located on the two nuclei.'* The lo, and lo,
orbitals corresponded to the two lowest states of
H,", whereas the other orbitals were chosen to
represent the other low-lying excited states of H,™.
For R =1.4a, and 2.0a, the calculated and the ex-
act energies of the 1o, orbital differed by less than 1
mhartree, whereas the difference was about twice as
large for R >2.5a,. The orbital basis set was suffi-
ciently flexible to produce reasonable descriptions of
the laé and 10?2 12; states. The difference between
our calculated and the exact energies'® of the 'S}
ground state varied from 13 mhartree at R=1.4q,
to 2 mhartree at R =4.0a,. This is reasonable,
given that the orbital basis was optimized for the ex-
cited states of H,. For internuclear distances less
than 2.8a,, the lo? state can autoionize into the
logko, ‘2; continuum. Since the ejected electron
has o, symmetry, the second group of orbitals was
chosen to contain 6s and 10do, Gaussian functions
located on the center of the molecule. These func-
tions had a geometric sequence of orbital ex-
ponents'® (s=0.06, 0.03, 0.008, 0.004, 0.002, 0.001;
d=0.52, 0.26, 0.128, 0.064, 0.032, 0.016, 0.008,
0.004, 0.002, 0.001), and they were Schmidt orthogo-
nalized sequentially to the other seven o, orbitals.

The total CI space (resonant plus nonresonant



parts) contained all the 337 '2; configurations
which could be constructed from the full basis of
230,, 60, 4m,, and 4, orbitals. We have carried
out two series of calculations with this configuration
list but with different definitions of the resonant
subspace Qp. Since the laﬁ '2;' state autoionizes
into a single electronic channel corresponding to
H,* 3} +e~(kay), the configurations lognog,
n=1,...,23, were chosen to define the initial non-
resonant subspace P,. The 102 resonance was ob-
tained as the lowest eigenstate of the Hamiltonian
matrix constructed in the basis of the remaining 314
configurations (Q, space). Since the basis gave a
reasonably good description of the three lowest
members of the 12; autoionizing Rydberg series
converging to the lo, 2=} state of H,*, we chose
all three resonances to define the resonant subspace:

3
Q= E l¢ir>(¢ir[ .

i=1

The fully correlated nonresonant scattering solutions
were obtained by diagonalizing the Hamiltonian in
the 334-dimensional subspace orthogonal to Q.
These calculations will be denoted as CI-A.

There is one difficulty with the definition of the
subspaces P, and Q, in CI-4. The single configura-
tion 102, where lo,—(1s, —1sp) asymptotically,
does not dissociate properly at large internuclear
separations. Formally, a two-configuration wave
function containing laé and lo? is required for
correct dissociation.!” Since the configuration 1o
was included in the nonresonant subspace in calcula-
tion CI-4, the resulting 'S resonance may not
behave correctly at large internuclear distances. To
remedy this difficulty, we performed a second set of
calculations, denoted CI-B, in which lag was in-
cluded in the resonant subspace Q,, i.e., the sub-
space P, consisted of only logno,, n=2,...,23.
In this case, the 10,2, resonance was obtained as the
second lowest eigenstate of the 315X 315 matrix
QoHQ,, the lowest being an approximation to the
X 12;' ground state. We then used the same pro-
cedure as in CI-4 to determine the nonresonant
scattering solutions.

The calculations were done at five internuclear
separations R between 1.4a, and 4.0a,. At a given
value of R, the energy-dependent resonance width
I'(E,R) was computed from the matrix elements
coupling the 'S; doubly excited state to the
discrete, nonresonant solutions using the Stieltjes
moment theory technique. We employed both the
original prescription of Langhoff'® and the algo-
rithm of Hazi and Rescigno'® to obtain internally
consistent approximations to I'. The latter pro-
cedure involves fitting a histogram representation of
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the indefinite integral f Er (E',R)dE' to a power
series in E ! and differentiating the result analyti-
cally to obtain I' as a continuous function of the
ejected electron energy E. Figure 1 shows some typ-
ical results for I'(E,R) obtained with CI-4A at
R=1.4a,. The width is plotted as a function of the
total energy relative to the ground vibrational state
of H, X 12; . The ejected electron energy can be ob-
tained by subtracting the energy of H,* 22; , 16.18
eV at R=1.4q,, from the total energy.

In a one-center expansion of the ejected electron
wave function kog, the /=0 (s-wave) and /=2 (d-
wave) components are the most important’ with a
non-negligible contribution from higher partial
waves at larger R values. While it was possible to
compute fairly accurate values of the total width,
the present o, basis set was not large enough to ob-
tain accurate values for the partial widths. Howev-
er, a crude estimate of the d-wave/s-wave branching
ratio gave approximately 5/1 at R =1.4a, and 15/1
at R =2.5a,. This is the trend one would expect
with increasing internuclear distance. The “noise”
in the discrete Stieltjes data of Fig. 1, which is typi-
cal of what we have found in all the calculations, is
due indirectly to this large branching ratio. Some of
the discrete eigenfunctions representing the lo ko,
continuum have large s-wave components and others
large d-wave components. Since these two types of
solutions are intermingled in the pseudospectrum,

1.0 —

0.8

06—

04—

Width (eV)

0.2 — —

10 15 20 25 30 35
Total energy (eV)

FIG. 1. Energy dependence of the fixed-nuclei reso-
nance width I'(E,R) calculated with CI-4 at R =1.4a,
for 102 'S}. Total energy is the sum of the ejected-
electron energy E and the energy of H,* 3} (16.18 eV at
1.4 bohr) relative to the ground vibrational state of H,.
Points represent Stieltjes data and solid line denotes
analytical approximation to I'(E,R) (see text).
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and because the 1o state couples preferentially to
the d-wave portion of the continuum, the width ma-
trix elements fluctuate between large and small
values with increasing energy. As Fig. 1 shows, the
moment theory procedure was only partially suc-
cessful in averaging over these fluctuations which
resulted in a +10% uncertainty in the final widths.

The physical width of the 102 'E; autoionizing
state was determined at each R value by evaluating
I'(E,R) at the resonance energy, which, in turn, was
calculated from the relationship'

E,—Ep—A(E,)=0. (1)

Here, Eg is the “unshifted” resonance energy, i.e.,
the eigenvalue of QyHQ,, and A(E) is the energy
shift of the resonance due to its coupling to the non-
resonant background. Since the loZ resonance is
quite broad for R > 1.4a, it was necessary to evalu-
ate A(E) explicitly to obtain an accurate resonance
energy E,. For a neutral molecule A(E) is given by

|{¢,|H | P¥,) |?
E —¢,

A(E)= 3,

n

(2)

where the sum over n runs over the bound solutions
of PHP, each with a wave function P¥, and energy
€,. In the present case, these solutions represent the
X '3} ground state and the 'Z; Rydberg states con-
verging to the ground 23/ state of H,*. The second
term in Eq. (2) involves a principal-value integral
provided E is greater than the ionization threshold
€ion- Of course, all of the quantities appearing in Eq.
(2) depend on the internuclear distance. The matrix
elements (¢, | H | P¥, ) and the eigenvalues €, were

taken directly from the CI calculations. The
principal-value integral was evaluated by quadrature
using Simpson’s rule and a technique that Heller
and Reinhardt®® devised for the proper handling of
the singularity. For I'(E) we used the analytic rep-
resentations'® of the widths in terms of inverse
powers of E. Since our orbital basis was chosen to
provide reasonable approximations to the widths
only for ejected electron energies less than 15 eV, we
used an arbitrary, but reasonable, asymptotic form
I['(E)=C/E for larger energies. The constant C was
determined by requiring I'(E) to be continuous at a
suitable value of E.

Tables I and II summarize our calculated reso-
nance energies and widths of the 107 '3} state and
compare them with some of the previous results.
Figures 2 and 3 show more completely the internu-
clear distance dependence of the potential-energy
curves and of the resonance widths obtained in the
various calculations. A comparison of the present
results obtained with CI-4 and CI-B shows that in-
cluding the loré configuration in the resonance sub-
space significantly raises the potential-energy curve
of the 102 doubly excited state at large internuclear
distances, e.g., by 2 eV at R-=4.0a,, if the energy
shift is neglected (see Table I). However, the two
different choices of projection operators give the
same resonance energy within 0.001 hartree when
the shift is included. This result provides direct nu-
merical verification of the formal assertion' that the
true resonance energy is independent of the defini-
tion of the resonant subspace, provided P and Q are
internally consistent and the shift is properly
evaluated. Thus, the nonuniqueness of the resonant
subspace does not lead to any uncertainty in the fi-
nal resonance position. Furthermore, as Table II
shows, changing the choice of projection operators

TABLE 1. Comparison of calculated energies (in hartree) of the 102 ‘2;' state of H,.

R (ay)
Calculation 1.4 2.0 2.5 3.0 4.0

Present

CI-4 (without shift) —0.1046 —0.3975 —0.5404 —0.6308 —0.7251

CI-B (without shift) —0.1013 —0.3859 —0.5165 —0.5899 —0.6429

CI-A or -B (with shift) —0.102 —0.399 —0.545 —0.651 —0.702

Rydberg-state analysis —0.5601 —0.6435
Bottcher and Docken® —0.0999 —0.3900 —0.5320 —0.6223 —0.7175
Moiseyev and Corcoran® —0.0967

2Reference 2.
bReference 9.



TABLE II. Comparison of calculated widths (in eV) of
the 107 '3} state of H,.

R(ao)
Calculation 14 2.0 2.5
Present CI-4 0.69 1.32 1.74
Present CI-B 0.65 1.25 1.68
Bottcher and Docken® 0.97 0.98 0.44
Moiseyev and Corcoran® 1.21
Robb® 0.65 1.34 1.83¢

*Reference 2.
®Reference 9.
‘Reference 5.
dValue interpolated to R =2.5a,.

changes the calculated widths by at most 6%, which
is smaller than the overall 10% uncertainty arising
from the Stieltjes procedure.

Previous theoretical studies of the 1o} '3} au-
toionizing state fall into two groups: Those which
used discrete basis-set techniques to calculate the
resonance parameters directly and those which ex-
tracted these parameters from the results of scatter-

J( ! 1 T T T T
0.0 Fy

\

=

Energy (hartree)

1.2 2.0 2.8 3.6
Internuclear distance (a)

FIG. 2. Comparison of the calculated potential-energy
curves of the 102 'S; doubly excited state of H,. ( )
present Stieltjes results, (X) present Rydberg-state
analysis, (— —) Bottcher and Docken (Ref. 2), and Collins
and Schneider (Ref. 7), (— - —) Robb (Ref. 5), (---) Taka-
gi and Nakamura (Ref. 6); (O) Sato and Hara (Ref. 4);
the ground ?2;} state of H,* is also shown.
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FIG. 3. Comparison of the calculated widths of the
102 '2;’ doubly excited state of H,. (@) present CI-4,
(V) present CI-B, (A) Moiseyev and Corcoran (Ref. 9),
(——) Bottcher and Docken (Ref. 2), (— - —) Robb (Ref.
5), (——) Takagi and Nakamura (Ref. 6), (O ) Sato and
Hara (Ref. 4), () Collins and Schneider (Ref. 7).

ing calculations on the e ~+H,* system. The first
group includes the work of Bottcher and Docken,?
Moiseyev and Corcoran,” and Sato and Hara*
whereas the unpublished study of Robb® and the re-
cent calculations of Takagi and Nakamura® and of
Collins and Schneider’ are in the second group.
Bottcher and Docken® used the same definition of
the projection operators, and of the resonance sub-
space, as we did in the CI-4 calculations. As Table
I and Fig. 2 show, our unshifted energies obtained
with CI-A are very close to, but slightly lower than,
their values.2 On the other hand, both the magni-
tude and the R dependence of the widths obtained in
the present work (as well as in the electron-
scattering calculations®™’) differ significantly from
those reported by Bottcher and Docken? (see Table
II and Fig. 3). This discrepancy is probably due to
numerical errors .and/or the use of undistorted
Coulomb waves to represent the ejected electron in
the earlier calculations.” Moiseyev and Corcoran
employed the method of complex scaling to com-
pute the complex energy of the 102 resonance at
R =1.4a,. Their resonance energy is 0.2 eV higher
than our CI-A4 value, and their width is almost a fac-
tor of 2 too high. These differences can be attribut-
ed to the relatively small orbital basis set and CI
space (only 45 configurations) employed in the
complex-scaling calculations.” As Fig. 2 shows, our
calculated potential-energy curve is in good agree-
ment with that obtained by Sato and Hara.* [We
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plotted the energies that Sato and Hara obtained
without the shift because their calculated shift is
much too negative dve to the neglect of the bound,
Rydberg-state contribution to Eq. (2).] The reso-
nance widths also agree quite well, although our
I'(R) increases somewhat more slowly at larger R
values (see Fig. 3).

With respect to the electron-scattering calcula-
tions, our resonance widths agree very well with the
values of Robb,” who studied the elastic scattering
of electrons from H,* 22;’ using a two-state close-
coupling approximation and a spherical partial-wave
expansion (see Table II and Fig. 3). Equally good
agreement was found earlier'"'!? in the case of the
lo,20, I3+ and 10,,177'g ', doubly excited states.
Takagi and Nakamura®?' have also done elastic
scattering calculations but used the Kohn variation-
al method and a spheroidal partial-wave expansion
instead. Because they included a large number of
discrete, two-electron configurations in their trial
wave functions, their potential-energy curve is com-
parable in accuracy to those obtained in purely L2
type calculations, as shown in Fig. 2. The widths
determined by Takagi and Nakamura® also agree
with Robb’s and our values between R =1.2a, and
1.5a,, however, their results are significantly higher
than ours at larger internuclear distances as shown
in Fig. 3. Very recently, Collins and Schneider’ per-
formed two- and four-state close-coupling calcula-
tions of the e +H,™ system using a linear algebraic
approach. Their resonance energies fall between our
results and the earlier data of Robb.’> For
R <2.4a,, the potential-energy curve obtained by
Collins and Schneider is the same, within graphical
accuracy, as that of Bottcher and Docken,? and
hence it is not shown separately in Fig. 2. The
widths calculated by Collins and Schneider’ are
quite close to those of Takagi and Nakamura® but
are 20% higher than the Stieltjes results at R > 2a,,.
Since all of the recently calculated widths*~" agree
closely at smaller internuclear distances, the
discrepancies observed at large R values are puz-
zling. These differences may be due to the different
treatments of partial-wave (primarily s-d) or channel
coupling and of electron polarization effects in the
present work and in the electron-scattering calcula-
tions employing spherical’ and spheroidal® angular
expansions.

II. '3} RYDBERG-STATE
PERTURBATIONS

The interaction between Rydberg and non-
Rydberg configurations among excited molecular
states leads to level perturbations, autoionization,
and predissociation of many high-Rydberg levels.

In the '3} manifold of H,, this interaction is seen
even in the first excited state. Unfortunately, these
states are not easily accessible by single-photon ab-
sorption from the ground state. Although some ex-
perimental evidence is available from emission spec-
troscopy and from multiphoton absorption, these
data are sparse in comparison with those available
for other symmetries. Thus, our analysis is based on
the ab initio potential-energy curves for the EF and
GK states from Wolniewicz and Dressler.”? Com-
parison of their predicted energy levels?> with exper-
iment shows that the EF and GK curves are of very
high accuracy, with errors of a few meV. The same
paper?? also reported calculations of the HH curves
which were apparently less accurate than the EF and
GK potentials.

Let us suppose that the electronic wave functions
describing the excited 12; states can be expressed as
linear combinations

1
¥(g,R)= NGB I¢d(q,R)+ %a,,l(R)v,b,,,(q,R)

(3)

in which ¢d(qz,R) represents the doubly excited con-
figuration lo, and the ,;(q,R) represent Rydberg
configurations logno,. We will assume that the
contributions from the higher doubly excited config-
urations and from the ground state X ‘2; are negli-
gible. The symbol q is used to indicate the coordi-
nates of both electrons. The potential-energy curves
are then obtained as eigenvalues of the electronic
Hamiltonian

[Hy—E(R)J¥(q,R)=0. (4)
Let us define the matrix elements

E4;(R)=(¢4(q,R) |Hg | $4(q,R)) , (5)

Va(R)=(64(q,R) | Her | ¥n(q,R)) (6)

and let us assume that H, is diagonal with in the
subspace spanned by the Rydberg states, i.e.,

<¢nl(q!R) I Hel I '/’n’l’(q’R)) =EnI(R)6nn’8H' . (M

The mixing coefficients a,; can then be obtained by
premultiplication of Eq. (2) by ¢3(g,R) or ¢}, ;(g,R)
and integration over the electronic coordinates. This
gives

E,(R)+ 2 Vau(R)a,(R)=E(R) (8)
n,l
and
Vi(R)+E,(R)a,(R)=E(R)ay,(R) . 9

The potential curves for the mixed states are then
given by



E(R)=E4R)+ 3, | Vy(R) | [E(R)—E,(R)]™".

n,l
(10

If V,;(R) and E,;(R) are known, the eigenvalues
can be located rapidly by a numerical search pro-
cedure, since the position of the singularities on the
right-hand side (rhs) gives both upper and lower
bounds for most of the roots. Our problem is to in-
vert this procedure and deduce the values of these
matrix elements from the potential-energy curves
E(R) calculated by Wolniewicz and Dressler.?? In
order to do this, we must parametrize the matrix
elements.

Since the 1o, orbital is dominated by the p-wave
component and we are primarily interested in the
lowest three excited states, it seems reasonable to in-
clude Rydberg configurations with /=0 and 2 and
to neglect those with / >4. The n dependence of the
matrix elements can best be expressed through the
quantum defects u;(R). Denoting the potential
curve for the ground state of H,™ by E*(R), we
write

.

2[n —pu(R)P
Since the configuration mixing elements ¥,;(R) are

dominated by short-range interactions, their n
dependence is given approximately by

E, (R)=E*(R) (11)

v, A
" - RP?
The quantum defects u;(R) were taken as quadratic

functions of R, with arbitrary coefficients, and the
energy of the 102 configurations was set as

E;(R)=AR exp(—BR)—R~'-0.5094 .  (13)

(12)

This form was chosen so that the curve joins
smoothly to that of H*-H™ at large R, but this
long-range behavior is of no consequence to our con-
clusions.

Our best fit to the EF and GK states is shown in
Fig. 4. For separations between 2.5a, and 3.5a, the
largest discrepancy is ~6Xx107* au. (15 meV).
This fit is obtained with vy=0.048, v,=0.08,
A=5.7936, B=1.49,

polR)=—0.1335—0.0675(R —2.5)
+0.019(R —2.5)?, (14)

and
p2(R)=0.055+0.048(R —2.5)

+0.05(R —2.5)2. (15)
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FIG. 4. Potential curves for the EF and GK states of
H,: ( ) Dressler and Wolniewicz, (— — —) best fit
as described in Sec. III, (— - —) calculated using the CI
matrix elements obtained in Sec. II.

After this fit was completed, we learned of more
accurate ab initio calculations by Wolniewicz and
Dressler’* on the HH potential. In Table III, the
new results are compared with the values given in
Ref. 22 and the energy predicted by Eq. (10). The
close agreement between the improved ab initio cal-
culation and our predictions increases our confi-
dence in the model, especially in the region of strong
configuration mixing, 2.5 <R <3.25a,.

Knowledge of the variation of the quantum de-
fects with R is important for studies of vibrational
autoionization of the high-Rydberg states, as dis-
cussed in a subsequent paper.!* Here our major pur-
pose is to study the energy and width of the 102
state. As can be seen from Fig. 2, the potential
curve E;(R) agrees well with an extrapolation of the
algebraic variational results of Takagi and Nakamu-
ra,’ but it has a slightly different slope than our ab
initio curve including the energy shift. The stabili-
zation point R; is found to be close to 2.65a,.

The autoionization width can be estimated, since
the wave functions describing the scattering of low-
energy electrons by H,* molecules are very similar
in shape to those of the high-Rydberg states. Using
a zeroth-order quantum-defect extrapolation, we
find

I'=2m(v3+v3)=0.055 a.u. (1.5 eV) .

The corresponding value obtained from the Stieltjes
moment calculation of Sec. II is 0.053 a.u. Howev-
er, the agreement with respect to the partial widths
is not so good. Our Rydberg-state analysis suggests
that the ratio of the d- and s-wave contributions is
~2.8, which seems to be significantly smaller®® than
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TABLE II1. Potential curve for the HH state of H,.

R (ao)
2.5 2.75 3.0 3.25 35
Ab initio® —0.6437 —0.6329 —0.6276 —0.6224 —0.6162
Model eigenvalue —0.6454 —0.6376 —0.6306 —0.6248 —0.6190
Ab initio® —0.6450 —0.6373 —0.6305 —0.6244 —0.6178

#Reference 22.
YReference 24.

the value suggested by the Stieltjes method. In order
to illustrate this difference, we have computed the
EF and GK potential curves that result when the
matrix elements V,;(R) describing the configuration
interaction are replaced by the values computed in
Sec. II. As can be seen from Fig. 4, the two adiabat-
ic curves approach more closely due to the reduction
in the strength of the coupling between the doubly
excited configuration and the logz2so, Rydberg
state.

IV. SUMMARY AND CONCLUSIONS

By using the Stieltjes moment theory method, we
have shown that the electronic matrix element
which controls the autoionization width of the
102 '=} state of H, is sensitive to the energy of the
ejected electron as well as the internuclear distance.
When the energy dependence is taken into account,
the strength of the CI responsible for autoioinization
is consistent with the values deduced from an
analysis of the double minima in the potential-
energy curves of the 'S} Rydberg states of H,.
However, there remains some uncertainty in the rel-
ative magnitude of the coupling between the 103
configuration and the so and do manifolds.

These calculations suggest that the use of energy-
dependent, nonlocal widths is worthwhile in subse-
quent theoretical studies of resonance scattering in
e-H,* collisions. The local width, obtained by
evaluating the autoionization matrix elements at the

resonance energy, is a monotonically increasing
function of the internuclear separation. Our values
for the local width are consistent with those ob-
tained independently by Robb,’ Sato and Hara,*
Takagi and Nakamura,® and Collins and Schneider.”
There remains some discrepancy between the widths
obtained with bound-state techniques*!°~'? and
those extracted from electron-scattering calcula-
tions® for R >2.0a,.

By evaluating the shift of the 102 configuration
from the energy-dependent -autoionization matrix
elements, we have shown that, within our numerical
accuracy, the resonance energy is independent of the
particular projection operator used to define the res-
onance. The potential-energy curve of the 102 state
appears to cross the ground state of H,™ between
2.6ay and 2.7a,. Our Rydberg-state analysis sug-
gests a crossing point close to 2.65a,.
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