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Scaling behavior of diffusion on percolation clusters
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A scaling analysis is performed on Monte Carlo simulations of random walks on percolation

clusters both above and belo~ the threshoM p, . The average difTusion constant is described by

a single scaling function in which the crossover from an algebraic decay (in time) near p, to the

asymptotic behavior above or below it occurs at time t«»s «
I p —p, ~

t~" S+~~. The value of
the percolation conductivity exponent p, is found to be 1.05 +0.05 for two-dimensional systems

and 1.5 20.1 for three dimensions.

Diffusion near the percolation threshold of ran-

domly diluted conducting networks has been of con-
siderable interest in recent years. ' ' In the conduct-
ing phase (p & p, ), the average diffusion constant

D, (t p) = (R'(t) )./t
of a random walk 8 (t) on the network is finite in

the long-time (t ee) limit. Its value in that limit is

proportional, via the Einstein relation, to the dc con-
ductivity a(p) of the network. Indeed, following a
suggestion by de Gennes, computer simulations of
diffusion on percolation lattices have been used" to
determine the conductivity exponent p, via

D,(t-~,p)»o(p) «(p —p, )", p &p, . (I)

However this behavior holds only in the neighbor-
hood of p, and in very long times such that the aver-
age span R, = ((8'(t)), )'t2 of the walks is much
larger than the percolation correlation length g. On
the other hand, when R, (( g one expects a
behavior which is similar to that of a diffusion at the
threshold p„where it was recently shown7 that D,
vanishes algebraically with time,

D ((p ) tt2 Dy/D-
The exponent D' defines the scaling of distances

I

along the walk with time, i.e., RD ~ tat p, . The
result (2) was recently confirmed by Ben-Avraham
and Havlin' through computer simulations of random
walks at p =p„which also yielded the estimate
D'=2.76+0,05 for d =2 and D'=3.9+0.1 for d =3.
In practice the condition 8, && g is hardly achieved
in simulations near p, . This limits the reliability of
determining p, through Eq. (I) and calls for a method
which will incorporate the crossover from a finite dif-
fusion constant above p„Eq. (1), to the behavior at
criticality, Eq. (2).

In this work we present the results of computer
simulations of random walks on percolation clusters
near the percolation threshold. The results are stud-

ied on the basis of a scaling function which, we as-
sume, governs the diffusion properties throughout
the critical regime (~ I —p/p, ~ ((1) for both short
and long length scales. This scaling form has also
been proposed recently by Gefen et al.6 Both the
scaling ansatz and the resulting scaling relations are
obeyed quite well by the numerical data, thus sup-
porting the physical assumptions about the scaling
properties near the percolation threshold. In addi-
tion, since the scaling function is valid in all time
scales, by using all the available numerical data we
are able to extract a relatively reliable numerical esti-
mate of the value of the conductivity exponent p, .

Results are presented for both the diffusion
(8'(t) },wtuch is averaged over all percolation clus-
ters as well as for the diffusion (8'(t) ), which is
constrained to clusters that are much /urger than the
span of the diffusion. It is hoped that this will clarify
the relationship between the diffusion in each of
these averages and other percolation exponents.

%e consider first the average diffusion constant
D, . For p )p, and 8, &) g (i.e. , t ~), Eq. (1) is
expected to hold. for p (p, and t ~, the dom-
inant contribution to (8'(t) ), comes from clusters
whose (linear) size is equal to or bigger than
8» lp —p, l

". In each of these clusters 8'(t)» g2,

but the probability of being on one of these big clus-
ters is, by the usual percolation scaling assumptions, '
proportional to ~p, —p~a. Thus the average diffusion
constant behaves below p, as

D, (t ~,p)» t '(p, —p) '"+a', p (p,

as noted by Stauffer. 8 %e now combine the results
(1)—(3) in the following scaling form,

f,(x-m)»x&, f, (x —~) «(—x) '"+a .
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and

f,(x 0) =const

Consistency with Eq. (3) yields the additional relation

D'=2+
v —P/2

Thus the crossover time from the behavior (1) or (3)
to that of (2) occurs at

= [p —
]

&D'/tn' 2j = [p —p )

" p+&

We now present numerical evidence for the scaling
relation (4) for diffusion which is averaged over all

percolation clusters. The diffusion was performed by
a new efficient Monte Carlo method. Each walk
starts from a site (the origin) which is assumed to be-
long to a cluster. Then the nearest neighbors (NN)
of the origin are chosen to be occupied (empty) with
a probability p (1 —p). The walk diffuses randomly
to one of the occupied NN sites. Then, the occupa-
tion of each of the NN of the latter site is determined
with a probability p, unless of course its occupation
has been already determined in an earlier step. The
random walk is continued in this fashion up to the
desired number of steps. Thus, each diffusion is per-

formed on a different cluster. By this method we
construct and store only those parts of the cluster
which are in the neighborhood of the walk.

We have studied D, (t,p) for about 5 & 10' dif-
fusions in the range ~1 —p/p, ~

& 0.2 on percolation
clusters embedded on square (d = 2) and simple cu-
bic (d =3) lattices. We reached a maximum dif-
fusion time of 1600 steps for d =2 and of 640 steps
for d =3. To increase the statistics, at each walk we
have averaged R'(t) over the distances between all
pairs of sites on the walk which are separated by t
steps. In Fig. 1 we present for the 2d case the best
fit of the data to a scaling function of the form (4)
achieved by varying p, and D'. Figure 2 presents the
same analysis for d =3. The numerical estimates ob-
tained for the exponents are D'=2. 85 +0.05,
p. =1.05 +0.05, for d =2 and D'=3.9 +0.1,
p. =1.5 +0.1, for d =3. These values, together with
the known estimates' for v and P, are in good agree-
ment with Eq. (5) (see Table 1).

We now turn to the diffusion constant D~ of walks
on clusters which are much larger than the span of
the walks. Since the probability of being on clusters
with sizes which are equal to or bigger than (
behaves as ~P

—P, ~s both above and below Pr,t it is
expected that (a) for p )p, and R, = ( (R') j) ' '

2. 2 2. 4

0
Cj

f)
X

Lj

Cj

CU

1.4—
CL

C3

C)

I

CU

(j
X

4
V

n
+Cj

~79

gV
0

&Q

Lj
V

0 2 I

-O. 8 Q. 4 -0.6

D
pX~

Q. 4
-12 00 0 Io I 2

(D'-2)// D'

FIG. 1. Monte Carlo results of diffusion on percolation
clusters in a two-dimensional square lattice. Results are
presented in the scaling form Eq. (4). The symbols mark
different time lengths as follows: 0 corresponds to 300
steps; + to 500; 0 to 700; '7 to 900; b, to 1100; and & to
1300 steps. Concentrate p varies in the range Ip/p, —1I
& 0.15 and p, =0.593.
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FIG. 2. Monte Carlo results of diffusion on percolation
clusters in a three-dimensional simple cubic lattice. Results
are presented in the scaling form Eq. (4). The symbols
mark different time lengths as follows: 0 corresponds to
100 steps; + to 200; 0 to 300; '7 to 400; 5 to 500; and x to
600 steps. Concentration p varies in the range I p/p, —1I

& 0.2 and p, =0.311.
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TABLE I. Critical exponent of diffusion on percolation.

D'
Present work

D

2.85 +0.05

3.9 X0.1

2.7 +0.05

3.35 +0.1

1.P5 + P.P5

1.5 +0.1

1.00 +0.05

1.2 +P. l

0.9 —1.5'

1.6 —1.95'

0.14 +0.02"

0.4 +0.05"

1.33 +0 05'

0.85 +0 05b

'From Table I in Ref. 5. bFrom Ref. 8.

)) g, Dt (x (p p, )"—p; (b) for p & p, and t

Dt a: t 'I p —p, ~
"; and (c) for Rt && ((:, D, &r t'/D

The scaling function of DI which is consistent with
these properties is

D (t p) t2/D —(f ((p/p I) t(D —2)/(P-P)D) (6)

where

f(x +~) -x" P,
f(x-—~) —( —x) '",
f(x 0) =const

and consistency requires

(7)

The result (7) was first given by Alexander and Or-
bach. 4 It yields together with (5) the ratio D/D'
= I —P/2v which was also derived by Ben-Avraham
and Havlin. 7 Note that the crossover time

(p p) (~ PD(D 2

of Dt is equal to that of D, since (p, P)D/(D —2)—
= p,D'/(D' —2) =2v —P+p, .

The scaling form (6) was checked by computer
simulation of diffusion on clusters (prepared by the
cluster growth method) '0 which were much larger
than the span of each walk. We have studied Dt(t p)
for about 10 percolation clusters, performing 10 dif-
fusions of length of 640 steps on each cluster, for the
square (d =2) and the simple cubic lattice (d =3).
The results are quite similar to those of Figs. 1 and
2. It should be noted, however, that below p, it is
difficult to create large clusters and therefore the
statistics are poorer in this region. The best scaling
fit is obtained using the numerical values
D =2.7+0.05, p. —P=1.00+0.05 for d =2, and

D =3.35 +0.1 p, —P=1.2 +0.1 for d =3. The
results for p, —P are consistent with the value of p,

obtained by averaging over all clusters and using the
known values of P.' These results are also in good
agreement with Eq. (7). Table I summarizes our
results for the critical exponents of the diffusion on
percolation. The present values of D' and D which
are obtained by a scaling analysis are close to those
obtained previously' from the measurements at p =p,
by the relations [R,(t)]D —t, (R)(t)]D- t Our.
results for p, are close to those obtained by other
Monte Carlo studies of conductivity" or diffusion' on
percolation, but are lower than the estimates obtained
from series expansions. "

In conclusion, we have shown that random walks
of different lengths on percolation clusters with con-
centration p both above and below p, are well

described by a single scaling function which is con-
tinuous at p =p, . The crossover from an algebraic
decay of the diffusion constant with time near p, to
the asymptotic behavior above or below it occurs at

t ~ ~p p ~-(2v —P+g)

It should be noted that the fit of the data to the scal-
ing form was found to be quite sensitive to changes
in the values of the exponents p, and D. On the oth-
er hand, even in the longest walks (t —1600 steps)
we could not fit the data to the asymptotic forms (1)
or (3). The reason for this is that the spans JR' of
our walks are never much bigger than the percolation
correlation length (, and the crossover regime is rath-
er wide. This was confirmed by a direct study of the
properties of the percolation clusters generated in our
simulations.

The authors wish to thank D. Movshovitz and I.
Dayan for helping in the computer programing.
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