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Nonlinear propagation of kinetic Alfven waves in a plasma
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A finite-amplitude long- (short-) wavelength kinetic Alfven wave is found to be modulational-

ly stable (unstable) in a plasma with P (ratio of particle pressure to magnetic pressure) much

smaller than electron-to-ion mass ratio.

Recently, Alfven waves, propagating at an arbitrary
angle to an external magnetic field, have received a
great deal of attention. ' The dynamics of the shear
Alfven wave cannot be described with the aid of the
classical magnetohydrodynamic equations. " The
reason is that the shear Alfven wave accompanies an
electrostatic electric field component, and that the
mode is a mixture of the electromagnetic and electro-
static fields.

The linear dispersion relation of the shear Alfven
wave is given by'
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where y - cu/kov„, c» is the wave frequency,
r» « Q„Q, is the ion gyrofrequency. In Eq. (I), ko
and ki are the wave numbers parallel and perpendic-
ular to the external magnetic field i80, u& is the
Alfven speed, v„ is the electron thermal velocity, T,
(T, ) is the electron (ion) temperature, W(y) is the
plasma dispersion function as defined by Ichimaru. 4

Furthermore, in deriving (1), ki pf' && 1 is assumed,
where p, is the ion Larmor radius.

Equation (1) consists of two branches. When the
parallel phase velocity of the wave is much smaller
than the electron thermal velocity, but is of the order
of the Alfven speed, then we have m, /m; « P « 1

[P=8rrnpT/Bo is the ratio of the plasma to magnetic
pressure, m, (m;) is the electron (ion) mass]. In this
case, Eq. (1) yields the linear dispersion relation of
the kinetic Alfven wave':
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The kinetic Alfven wave is employed for the heating
of the fusion plasma with m, /m; « i3 « 1. Non-
linear effects associated with the kinetic Alfven wave
have been investigated in detail.

On the other hand, for y )) 1, the electron inertia
dominates over the electron pressure. When
cu & kpv„, then we have P « m, /m;, and Eq. (I)
reduces to the linear dispersion relation of the kinetic

Alfven wave at a different range of P, We have
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vp = Seal /Bkpp= —c»pkph, /(1 + kp X )

vp = Bvp/Bkp —o»pX'(I ———2kp X')/(I + k,'X')',
b = SB,/Bp « 1, W - Bn/n p (& 1

v3o- Bo'/4n nom;

no is the average plasma density, Sn (58,) is the
slowly varying density (magnetic field variation paral-
lel to Bo) perturbations due to nonlinear interaction,
Bi is the perpendicular component of the kinetic
Alfven wave magnetic field. In deriving (4), we let

where X = c/r»~ is the electron inertial length, and p»~

is the electron plasma frequency. The second kind
[given by Eq. (3)] of kinetic Alfven waves play a vi-
tal role in space plasmas, 3 where 13 &( m, /m;. There-
fore, it is of interest to inquire the stability of a
finite-amplitude kinetic Alfven wave. In this Brief
Report, we consider the quasistatic slow plasma
response to the latter. The problem of modulational
instability is analyzed.

Consider the propagation of a large-amplitude
kinetic Alfven wave in the presence of an external
magnetic field i80. We consider a plasma with

P &( m, /m;. Nonlinear interaction of the kinetic
Alfven wave with the slow plasma motion gives rise
to envelope of waves. The dynamics of the latter can
be described within the framework of the WKB ap-
proximation. That means that the Alfven wave mag-
netic field varies on a time scale associated with the
slow plasma motion. Thus, following Karpman and
Krushkal, ~ we introduce two time and space scales.
Accordingly, an evolution equation can be written as

i ~'8i n2
i Bi+—v—

p
— (2b —b/)Bi= 0, (4)
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where we used the relation cop2(1+ kp X') = Q'
= k $p vjp. In Eq. (1),

27 1702 1983 The American Physical Society



BRIEF REPORTS

al - too + i 8/i}t, kg = k o+ i 9/8(, (= x —
vg t, n = tt o

+ Sn, 8 -Bo+88, in Eq. (3), and assumed
too'[8/gt( « 1, and ko' [g/()f) « l. We also re-
tained the lowest-order leading terms.

For the slow plasma motion, we use the notion of
'*frozen in field lines. " Thus

%e obtain b from the pressure balance equation

gP (H')
g2 8~

where H = B~/Bo, SP is the perturbed pressure, and

the angular bracket denotes averaging over the period
of the kinetic Alfven waves, Since SP = 2y TSn

(y = —for a collisional plasma, and y = 2 for a col-

lisionless plasma), we readily obtain from (6)
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Combining (4), (5), and (7), we get

tgH+P +QIH~'8=0,'at
where the time and space variables are normalized by
~, ' and h. , respectively. In Eq. (g), we have defined

g = fi '/4toot and

P = (2ko g —I)/2(1+ k g )t

Since the second and third terms on the left-hand

side of (8} would have opposite sign for ko X' & —,, a

finite-amplitude long-wavelength kinetic Alfven wave
is modulationally stable. However, the nonlinearity
due to the ponderomotive force produces the enhance-
ment and a spreading of the kinetic Alfven wave
accompanied by a flattening of the density profile.

On the other hand, for kot A.
' & —,, Eq. (g) exhibits

a modulational instability. "The maximum growth
rate ensues for a modulational wave number

= IQ/PI'~'8&o/XBo, and is given by
ym=~ogB~o/Bo, where B,o («Bo) is the ampli-
tude of the kinetic Alfven wave pump. Possible final
state of this instability can lead to a bell shaped Alfven
wave magnetic field profile, together with a self-con-
sistent inverted bell shaped density perturbations.

In conclusion, we have demonstrated that a finite-
amplitude long- (short-) wavelength kinetic Alfven
wave is modulationally stable (unstable). Our results
can be useful to the understanding of nonlinear
kinetic Alfven wave propagation in space plasmas
where P « ttt, /m;. Finally, we mention that we
have not yet investigated the possibility of three-wave
decay interaction. Here, a kinetic Alfven wave can
parametrically decay into a daughter and an ion-
acoustic wave. This work is in progress.
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