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Dynamical structure factor of dense gases
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Recent neutron inelastic scattering experiments on dense krypton gases are analyzed using a
dynamical theory of simple fluids which includes the correct static susceptibilities but approxi-
mates the generalized wave-number- and frequency-dependent transport coefficients by the
hard-sphere Enskog-theory values. The full width at half maximum of the dynamical structure
factor is found to depend strongly on the thermal pressure coefficient, which is evaluated and
discussed for a Lennard-Jones pair potential using the Kirkwood superposition approximation.

In the development of a kinetic theory of dense
gases considerable progress has been achieved in ob-
taining solutions for the thermal fluctuation spectra
in the case of hard-sphere fluids and in demonstrat-
ing the validity of such calculations by comparison
with computer simulation data."? Also, it was
shown? that the generalized Enskog theory of a
hard-sphere fluid evaluated within the so-called
QFRT (wave-number-dependent four-relaxation-time)
model* ’yields dynamical structure factors in excel-
lent agreement with light-scattering experiments on
xenon gas at low and intermediate densities. Howev-
er, recent neutron inelastic scattering experiments®
on dense krypton gases revealed significant devia-
tions from hard-sphere results’ derived from the gen-
eralized Enskog equation.

In this Brief Report, we present a first step towards
a dynamical theory of dense gases by evaluating the
static susceptibilites of the conserved variables using
a Lennard-Jones potential while approximating the
generalized transport coefficients by their hard-core
Enskog values (evaluated within the QFRT model).
It is found that in addition to the static structure fac-
tor S(q), which for dense krypton gas near the criti-
cal density differs markedly from the hard-sphere ap-
proximation, especially for ¢ < go, where g is the
position of the first peak in S (g), the wave-

number-dependent thermal pressure coefficient also
|

has an important effect on the dynamic structure fac-
tor S(q, w).

A dynamical theory of a simple fluid may be con-
veniently expressed in terms of the time correlation
functions® of the three conserved variables, number
density 4,(q), longitudinal current density 4,(Q),
and temperature density 43(q),
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orthogonalized with respect to the thermal average,
(84,*(q)84,(q)) =8, at temperature T (we set
kg =1 throughout this paper). Here
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is the energy density, S (g ) is the static structure fac-
tor, and C,(q) is the wave-number-dependent
specific heat at constant volume. Then the 3 X 3 ma-
trix equation® for the correlation function of these
variables is
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where ©12(¢) = [gvo/vS(g)] and Qy3(q)

= [qvo/~/C,(q)1B(q) are characteristic frequencies
of the fluid, vo=~T/m is the thermal velocity, and
B(q) is the wave-number-dependent thermal pres-
sure coefficient. Furthermore, D;(q,z) and A(q,z)
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are generalized kinematic longitudinal viscosity and
heat conductivity, while u(q,z) is a transport coeffi-
cient coupling temperature fluctuation and longitudi-
nal current (for further details, see Refs. 4 and 5).
The static correlations entering explicitly in the calcu-
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lation of the dynamic structure factor S (g, »)
=7718(g) Im¢, (g, w), therefore, are S(g), C,(q),
and B(q), which in the long-wavelength limit ap-
proach the thermodynamic derivatives'® nT« r,
(1/n)(3e/dT),, and (1/n)(dp/dT),, respectively,
where k 7= (1/n)(3n/dp) r is the isothermal
compressibility, p is the pressure, and e the energy
density. The molecular expression for C,(¢q) in-
volves up to four particle correlations and will not be
given here,* while 8(g) is given in Eq. (4).

In the present calculation the dynamical properties
embodied in the wave-number- and frequency-
dependent transport coefficients D;(q,z), A(q,z), and
w(g,z) will be approximated by their corresponding
hard-sphere expressions, calculated within the gen-
eralized Enskog theory (QFRT model) and given in
Eq. (36) of Ref. 5. The static correlation functions,
on the other hand, will be treated correctly for a fluid
with a realistic interaction potential. This means the
resulting description will give the correct Landau-

Placzek form of S (g, @) in the hydrodynamic limit
|

with exact positions of the Brillouin peaks at + c,q, ¢,
being the adiabatic sound velocity. The correct
large-g behavior is also assured since the generalized
transport coefficients are obtained from a Kinetic-
equation description.’

The theory described above is applied to dense
krypton gas at the two thermodynamic states investi-
gated by neutron scattering in Ref. 6: (a) n;=0.0106
A3, (b) n,=0.0138 A3, and T =297 K correspond-
ing to n;03=0.482, n,0°=0.628, T/e=1.47, using
the Lennard-Jones parameters o =3.57 A; €e=201.9
K of krypton.!! The hard-core diameter 4 was chosen
as in Ref. 6 to be d =3.53 A. Furthermore, the ex-
perimental structure factor S (g ) is used for the charac-
teristic frequency Q1,(q). We approximated the wave-
number-dependent specific heat C,(q) by its hard-core
(and free-particle) value C,(q) = %, since we noticed
that the full width at half maximum (FWHM) of
S (g, w) in the intermediate wave-number regime
does not depend strongly on C,(q). This fact becomes
plausible from the observation that, on the one hand,
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does not depend on C,(q) explicitly and, on the oth- .
er hand, in the ¢ regime of interest the Lorentzian-
like shape of S (g, w) is essentially determined by
S (g, w=0) and its area S (g ). In contrast, as is also
clear from Eq. (3), S (g, 0) is quite sensitive to the
thermal pressure coefficient 8(q ). Its explicit expres-
sion* in terms of the pair potential v(r) and the two- 3
and three-particle correlations is
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which we approximate by using the Kirkwood!? su-
perposition approximation (KSA). To evaluate the
integrals and S (q ), entering 8(q) we use a Len-
nard-Jones potential and take the pair correlation

g (r) from available computer simulations'® of a L-J
fluid for two thermodynamic states with (I) no?
=0.50, T/e=1.360 and (II) no3=0.65, T/e=1.584,
which are closest to the krypton states (a) and (b).
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FIG. 1. Wave-number—dependent thermal pressure coef-
ficient B(q) for density n =0.0106 A=3. Full line: present
theory; dashed line: hard-sphere result; crosses: fit of 8(q)
adjusted to yield experimental FWHM, error bars being
based on the experimental uncertainty, as shown in the data
of Ref. 6.
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FIG. 2. FWHM of S (g, w) for density (a) n =0.0106 A~3;, (b) n =0.0138 A~3. Full line: present theory; dashed line: hard-
sphere theory (QFRT); straight line: perfect gas; crosses: krypton experiment. All theoretical results have no resolution

correction.

The calculated 8(g) given in Fig. 1 shows consid-
erable wave-number dependence. This is, however, a
general feature of dense fluids since the hard-sphere
result indicates similar behavior. The FWHM of
S (¢, w) obtained in the present work is compared
with the neutron data in Fig. 2. Relative to the
hard-sphere results an improvement has been
achieved at small ¢ due to the use of the correct
S(q). Effects of B(g) are quite pronounced at
q = q¢/2, and agreement in this region is still not
satisfactory. If we were to fit the FWHM data by ad-
justing B8(q), we would then obtain the results also
shown in Fig. 1. It is remarkable that S (g, o =0) is
then also in good agreement with experiment. Notice
that the resonant structure in the fitted curve of
B(q) is not given by either the hard-sphere theory or
the present approximate calculation.

The use of KSA introduces some uncertainty in
our calculation of 8(¢). The inadequacy of the KSA
for B(g =0) has been reported for a dense liquid.'*
An estimate of the possible error involved may be
obtained by comparing the approximate 8(q =0)
with values obtained by differentiating Monte Carlo
results'S for the compressibility factor p/nT, indicated
by an arrow in Fig. 1. Aside from a direct computer
simulation of 8(q ), there appears to be no other way
of obtaining more accurate numerical results. Figure
3 shows the evaluated integral /3(¢g ) and the corre-
sponding results from the fitted 8(q ) assuming the

same values of /,(q) and I,(q). One sees that the
calculation produces the correct qualitative features,
particularly the oscillations in /3(g ), in contrast to
the comparison in Fig. 1. Thus, strong cancellations
occur among the three components of 8(g) and it is
the quantitative difference in Fig. 3 that gives rise to
the differences seen in the FWHM. It remains to be
determined whether a more accurate evaluation of
B(q) will give better agreement with the neutron-
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FIG. 3. Three particle contribution /3(g) to B(q) for
density n =0.0106 A~3. Full line: present theory using the
Kirkwood superposition approximation; crosses: /3(q)
determined from fitted B(q ) in Fig. 1.
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scattering data. One should also keep in mind that
the fitted B(q) was obtained assuming that the gen-
eralized transport coefficients of the dense Lennard-
Jones fluid are well approximated by the generalized
Enskog theory, which takes into account only un-
correlated binary hard-core collisions.

In conclusion, improved agreement with neutron
scattering data of S (g, ) compared to a pure hard-
sphere theory is obtained, but discrepancies still
remain. Although some of the discrepancies may be
attributed to the superposition approximation in
evaluating B(q ), it seems clear that further progress
will require the treatment of binary collisions dynam-
ics for a realistic pair potential, as indicated by the
present analysis of the neutron scattering data.
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