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Free-space wave propagation beyond the paraxial approximation
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Wave propagation in free space is considered without invoking the paraxial approximation.
An explanation is provided for the discrepancy which arises when the general formalism is ap-

plied to the case of a Gaussian beam.

In optical propagation problems the paraxial ap-
proximation is almost invariably made in order to
simplify Maxwell's equations. It is known that the
paraxial solution is reasonably accurate if the beam
half-width wp remains larger than the radiation
wavelength A, throughout propagation. In some ex-
perimental situations it may be necessary to go
beyond the paraxial approximation. Starting from
Maxwell's equations, Lax et al. ' have developed a

general method to obtain corrections to the paraxial
solution by expanding the electric field as a power
series in terms of a small dimensionless parameter

f = (kwp) ' where k = 2m/k is the wave number.
They treat the vector problem in its full generality
and their solution is applicable even to the case of a
nonlinear medium. More recently, Davis' presented
a vector theory of free-space wave propagation after
assuming that the electromagnetic vector potential is
linearly polarized. When expanded in powers of f,
his result agrees with that of Lax et al. ' when the
latter is specialized to the vacuum case.

Several authors have considered free-space
Gaussian-beam propagation within the framework of
a scalar theory but without invoking the paraxial ap-
proximation. For this case, the solution of the scalar
Helmholtz equation subject to the appropriate boun-
dary conditions is required. Agrawal and Pattanayak'
solved this equation in the positive half-space z ) 0
together with the boundary condition that the scalar
field E(x,y, 0) is a known function which they took
to be a Gaussian. An angular-spectrum method was

used to obtain E( r ) which was then expanded as a

power series in the expansion parameter f to obtain
corrections to the paraxial solution. Couture and Be-
langer, on the other hand, obtained corrections to
the paraxial solution using the perturbation-expan-
sion procedure adopted in Refs. 1 and 2.

Couture and Belanger recently pointed out that
the first-order corrections to the paraxial solution ob-
tained in Refs. 2—4 are not identical. They suggested
that an additional condition should be imposed to ob-
tain a unique and self-consistent correction by the
method of Lax et al. ' The condition imposed by
them is an ad hoc assumption that the paraxial solu-

E= nE]+zEg (2)

where the transverse unit vector n can, in general, be
complex. It is assumed that the optical beam has a
uniform polarization so that n is independent of the
coordinates x and y. For simplicity we restrict our
discussion to the case of linear polarization and
choose n =x.

Following the formulation of Lax et al. ,
' we intro-

duce the dimensionless coordinates

(=x/wp, q =y/wp, (= z/I

where l = kwp is the diffraction length and wp is the
beam half-width at some plane z ~0. A consistent
solution of Eq. (I) is obtained by expanding E, and

E, as a power series in small dimensionless perturba-
tion parameter

f = w p/I = ( kw p) (4)

Only alternate powers of f are found necessary:
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tion is an exact solution to Maxwell's equations along
the axis of propagation. Although they were able to
reconcile differences between their and Davis's
results, ' the discrepancy remained with respect to the
results obtained by Agrawal and Pattanayak. ' The
purpose of this note is to clarify the situation by pro-
viding an alternative explanation for this discrepancy.

For the sake of generality, let us consider the vec-
tor theory of electromagnetic wave propagation in

free space. It requires the solution of the vector
Helmholtz equation

(V'+k')E( r ) =0

subject to the appropriate boundary conditions. Here
k is the wave number. The electric vector E can be
separated in its transverse and longitudinal com-
ponents
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The paraxial solution p' ' and the successive correc-
tion terms are obtained by solving the following set
of partial differential equations:

r

2i—+ 2+ 2 Q =0. 8 8 8 (0)
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(8)

n«1

The longitudinal components P' "+"are obtained
in terms of the transverse components using'
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This is the viewpoint adopted by Agrawal and Pat-
tanayak. ' One may readily verify from their general
solution [Eq. (20) of Ref. 3] that all corrections to
the paraxial field vanish at z =0. Note that they used
an angular-spectrum-representation method. Their
method is, however, equivalent to solving the infinite

It should be noted that the evaluation of the longitu-
dinal components does not require any additional
boundary conditions once the transverse components
have been obtained after solving Eqs. (7) and (8).
The vector field E is thus completely known if E, is

specified on some surface which for a plane boundary
may be taken to be the plane z =0. Since the
transverse components evolve along z independently
of the longitudinal components, further consideration
can be restricted to the transverse part of the electric
field only. In other words, the free-space vector
problem can be reduced to a scalar problem if the
boundary field has uniform polarization in the plane
z =0.

Let us consider the solution of Eqs. (7) and (8)
when E, (xy, 0) is specified. The knowledge of the
boundary field E, (x,y, 0) = Eb(x,y) should provide a
unique E, (x,y, z) for all z ) 0. The boundary field it-

self may arise due to sources present in the region
z ( 0, but its origin is of no concern since Eq. (1) is

solved only in the positive half-space.
It is clear that Eb(x,y ) should determine the boun-

dary values p' "'(x,y, 0) for all n in a unique manner.
A basic requirement is that the total field E, (x,y, z)
should reduce to its boundary value Eb(x,y ) as
z 0. This requirement holds for arbitrary values of
f. Since Eb is, in general, independent of f, the
paraxial solution p(0) itself should reduce to Eb as
z 0. Using Eq. (5) with z = 0, the boundary condi-
tions are

(z &
~ lEr, (x,y ), if n = 0

0, ifn«1

set of partial differential equations (7) and (8) with

the boundary condition given by Eq. (11).
We now discuss the solution obtained by Couture

and Belanger. They do not solve Eq. (1) from the
boundary-value viewpoint as discussed above. A

solution of the scalar Helmholtz equation is sought in

the entire space. The boundary conditions are used
at infinity by requiring that the field E, (x,y, z)
behaves as an outgoing spherical wave for large z.
Equation (7) is known' to have Hermite-Gauss
functions as its solutions. This countably infinite set
of paraxial solutions (often called the "free-space
eigenmodes") is complete and has proven to be a

useful basis in optical-resonator problems. ' The
question addressed in Ref. 4 is how this set of eigen-
modes is modified when the corrections arising from
Eq. (8) are incorporated. In order to be able to solve
Eq. (8) an additional condition on 1I

""' is needed.
Couture and Belanger introduce an ad hoc assump-
tion that along the z axis

y"")(0 0 z) =0, n 1 (12)

where

R, = [x +y + (z +il )'1'"

([((+ )2+f2((2+ 2) ]1/2 (14)

is the complex source point. When Eq. (13) is ex-
panded in powers of f the zeroth-order term corre-
sponds to the lowest-order Hermite-Gauss eigen-
mode.

It is clear from the above discussion that Refs. 3

and 4 solve different problems. Nonetheless, it is of
some interest to investigate what boundary condition
at the plane z = 0 is required to obtain the solution
given by Eq. (13). We note that Eq. (13) can be
separated into a paraxial part and a nonparaxial part
for all z. In particular, it is possible to expand the
derived boundary field E, (x,y, 0) in powers of the
dimensionless parameter f = (kw0) '. We obtain [cf.
Eq. (18) of Ref. 4]

E, (x.y, 0) = Xf'"Et, " (x,y )
n 0

—= ce ' $ (fp)'"L„"(p')
n 0

(15)

where L„"(p')is the associated Laguerre polynomial,
C is a constant, and this expansion converges for

p =( +q (f . When we putz=0in Eq. (5) and
use Eq. (15), a term-by-term comparison yields the

holds for all values of z. [This replaces Eq. (11).]
They then show that when all corrections are incor-
porated the lowest-order free-space eigenmode corre-
sponds to the field'

E, (x y, z ) —exp(ikR, )/R,
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prescription

gt "'(xy, 0) =Et, "
(x y ) = Ce e p "L„"(p) (16)

for all n. It is not difficult to verify that, when Eq.
(8) is solved using the boundary condition (16), the
various corrections p

'"' do indeed turn out to be
those given in Ref. 4, which simply shows the self-
consistency of the scheme. It should be noted from
Eq. (16) that Et,

'" (0, 0) =0 for n «1. This is, how-

ever, a consequence of the ansatz, Eq. (12), under
which Eq. (13) was derived. The fact that the ex-
pression [Eq. (13)] for E, is singular when (=0 and

p = 1/f indicates a nonphysical character to the boun-
dary condition used by Couture and Belanger.

We can now summarize the situation as follows.
References 3 and 4 both solve the problem of free-
space propagation of a Gaussian beam beyond the
paraxial approximation. The different results ob-
tained correspond to solving Eqs. (7) and (8) with
the differnt boundary conditions given by Eqs. (11)
and (16), respectively. Note that, in contrast to the
remarks made in Ref. 4, Agrawal and Pattanayak's
result is different not because of different approxi-

mations or because of mixing of different-order
Hermite-Gauss modes but because they solve a dif-
ferent boundary-value problem, namely, one in
which the field is specified on an input plane.
Another important point to note is that the solution
obtained in Ref. 3 is a unique solution of the
Helmholtz equation (1) once the boundary field has
been specified. On the other hand, the complex-
source-point spherical-wave solution, Eq. (13), is ob-
tained under the ansatz (12). This ansatz does not
appear to be unique. A different ansatz will give rise
to a different solution of the Helmholtz equation. In
any case, the claim made by Couture and Belanger4
that the condition (12) must be added in order to ob-
tain a unique answer by the method of Lax et al. ' is
not generally true because a unique answer is always
obtained by using the boundary condition given by
Eqs. (6) without requiring their ansatz.
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