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The Milne problem is considered with the Boltzmann equation without approximation to
the collision operator. The general solution is given as the sum of spatial transient and

asymptotic functions. Solutions of the Boltzmann equation with a hard-sphere cross sec-

tion are obtained by expansions in Burnett functions. Convergence of the distribution func-

tion and associated quantities, such as spatial eigenvalues, extrapolation length, diffusion
coefficient, and density profile is studied. It is found that convergence can be achieved

with the expansion in Burnett functions. In particular, the importance of retaining a large
number of polynomials in angle is demonstrated. The dependence of the solution and asso-
ciated quantities on the mass ratio y=m &/m is examined, where m ~ and m are the mass of
medium and test particles, respectively. Wherever possible, comparison with the results of
previous researchers is given.

I. INTRODUCTION

The Milne problem investigated in this paper
concerns the stationary velocity distribution of an
ensemble of test particles dilutely dispersed in a
medium or moderator composed of a different con-
stituent that acts as a constant-temperature heat
bath. The medium occupies the half space r g0,
whereas a vacuum exists in the half space r(0.
Figure 1 shows the physical problem that we are
considering. A current density of magnitude j,
directed in the negative r direction, exists in the
medium. In the present work, it is further assumed
that there is no absorption nor other sources of par-
ticles, although these assumptions are not crucial to
the development. The problem consists of deter-
mining the steady distribution of test particles and,
in particular, the angular distribution of these parti-
cles emerging from the medium into the vacuum at
r =0.

This problem is a fundamental problem in phys-
ics and has application to radiation-transfer prob-
lems, ' neutron-transport theory, and rarefied-gas
dynamics. ' ' In the astrophysical context, the test
particles are photons and the quantities of interest
are the steady intensity of radiation in the interior
of a star and the emergent angular distribution.
This is the problem originally considered by Milne.
For neutron transport, the test particles are neu-
trons diffusing through a reactor and the steady
neutron velocity distribution is the desired quantity.
In this case, an important variable is the mass ratio

f(ux = j

Vacuum Medium

FIG. 1. Geometry of the Milne problem.

y=m&/m, where m& and m are the masses of the
medium and the test particles, respectively. The re-

lationship between the neutron-transport and
radiative-transport problems has been presented in
considerable detail elsewhere. ' It is important to
mention, however, that for y=ao (the one-speed
case or Lorentz limit), the neutron-transport prob-
lem becomes identical with the radiative-transfer
problem (the restricted Milne problem in the gray
case' ). This special case is usually what is meant

by the Milne problem for which an exact solution
exists. '

The present paper considers the Milne problem as
a kinetic-theory problem in rarefied-gas dynamics.
The basic objective is to obtain converged solutions
of the Boltzmann equation subject to the boundary
condition that there are no test particles incident on
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the medium from the vacuum. The velocity-
distribution function is sought for a wide range of
values of the mass ratio y. The basic assumptions
are that only test particle-heat-bath collisions need

be considered and that the differential cross section
o is a hard-sphere cross section, that is, o.= 4d,
where d is the average of the diameters of the two
species. Important macroscopic quantities such as
the number density profile n(r) and the diffusion
coefficient D are calculated.

From the viewpoint of rarefied-gas dynamics, the
important aspect of the problem is the effects that
occur within several mean-free paths of the boun-

dary at r=0. To simplify the discussion in the
remainder of this Introduction, the bath particle
density ni will be assumed constant. (In Sec. II, it
is shown how this assumption may be relaxed. ) Far
from the boundary, in the positive r direction, hy-

drodynamic equations are valid, which for the
present work is the diffusion equation

which relates the diffusion flux j and the gradient
of the asymptotic (r~oo) density profile n"(r).
However, one finds that the asymptotic density ex-

trapolates to zero at the point r = —q, where q is re-

ferred to as the extrapolation length. Consequently,

Eq. (1.1) is not valid near the boundary at r=o.
The calculation of the density profile and the extra-

polation length is one of the objectives of the
present work.

In the I.orentz limit (y= ~), the Boltzmann
equation reduces to the simpler one-speed version
for which an analytic solution exists' and q is given
as a definite integral whose numerical value is
0.710451( 00 ), where

l( oo ) =(n iud )

Very little work has been done with the full
Boltzmann collision operator and the variation with
mass ratio has received little attention. Conkie, "
and later Kladnik and Kuscer' considered the case
of equal masses (y=l) and obtained the values
0.763l ( ao ) and 0.935l ( oo ), respectively. (The
present work confirms that the result obtained by
Conkie is in error as suggested earlier by Kladnik
and Kuscer. ) %illiams' and later Arkuszewski'
approximated the Boltzm ann collision operator
with a separable kernel and obtained analytic solu-
tions for all values of y. They found that q de-
creases with decreasing y from the one-speed value
to the value q=0.538l(00) for y=1. This mass

dependence differs from that inferred from the re-
sults by Kladnik and Kuscer' which suggest that q
increases with decreasing y.

The present paper considers solutions of the
Boltzmann equation without modification to the
collision operator. The distribution function is
written as a sum of spatial transient and asymptotic
parts. The spatial transient portion of the solution

plays an important role near the boundary, whereas
the asymptotic solution dominates in the region far
from the boundary. An expansion in Burnett func-
tions is employed following the procedure intro-
duced by Frankowski et a/. ' in their study of heat
conduction in a rarefied medium. %e demonstrate,
in the application to the Milne problem, that this
expansion method does give convergent solutions.
The method permits the study of the variation of
the distribution function, density profile, and extra-
polation length with mass ratio y.

There are several other methods of solution of the
Boltzmann equation that can be used in the study of
the Milne problem. In particular, there exist varia-
tional methods, ' ' ' discrete ordinate
methods, and other types of expansion pro-
cedures. ' Each method has distinct advantages
and disadvantages and we will not attempt a
comprehensive comparison here. The expansion
procedure used in the present work was employed
since the matrix elements of the Boltzmann col-
lision operator with the Burnett functions have been
previously calculated. It is not known whether
the matrix elements for other basis functions, such
as half-ranged polynomials, can be as easily deter-
mined. Variational procedures with simple trial
functions do give very good initial estimates of
quantities such as the extrapolation length. Howev-

er, more accurate results with more complicated
variational functions are not as easily obtained. The
discrete ordinate method has been used in only a
few cases and it is diffucult to judge how Aexible it

may be in its application to a variety of different
problems.

The present methods should be useful in the
study of a wide variety of gas dynamical problems.
These include, for example, the Kramers, '

Couette, ' Poiseuille, ' and temperature slip prob-
lems. ' ' The mathematical methods common to
these problems and to neutron-transport theory
have been emphasized by several authors. The
present authors' work in the Milne problem stems
from an interest in the thermal escape of particles
from a planetary atmosphere. ' This problem is
somewhat similar to the Milne problem but has an
additional comphcation in that test particles escape
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II. FORM AND PROPERTIES
OF THE GENERAL SOLUTION

For steady-state conditions the Boltzmann equa-
tion for the velocity-distribution function of test
particles f(r, u,p) is

vp f(r, v p—)=n~(r)J(f(r, v,p)),
Br

(2.1)

where JM =cos0 and 8 is the angle between v and the
positive r axis as shown in Fig. 1. In Eq. (2.1),
ni(r) is the number density of the scattering medi-
um and the Boltzmann collision operator J is de-

fined by

J(f(r, v))= J f [f™~(vI)f(r, v') —fl (v~)f(r, v)]

)(0(g,n)g dn d v, . (2.2)

The notation in this paper is that of kinetic theory
rather than of neutron transport.

In Eq. (2.2), g = v —v i is the relative velocity, o
is the differential cross section, 0 is the scattering
solid angle, and f ~

is the Maxwellian distribution
given by

f ~ (u, ) = (m
&
/2rrk T1 ) exp( —m

~
u

&
/2k T~ ),

(2.3)

from the atmosphere if their speed exceeds the es-

cape speed. Consequently, the point of departure of
the planetary escape problem from the Milne prob-
lem is in the nature of the boundary condition. It is
anticipated that the present methods of solution of
the Boltzmann equation will prove useful in the
planetary escape problem. In particular, the hard-

sphere model employed in this work was shown to
be appropriate to the escape problem.

The present paper on the Milne problem is organ-
ized as follows: Section II contains a discussion of
the Boltzmann equation for the problem and the
division of the solution into spatial transient and
asymptotic portions. The way in which the boun-

dary condition specifies a unique solution is
described in Sec. III. The numerical results ob-
tained appear in Sec. IV. A discussion is given in
Sec. V.

pp f(x p»p)=J(f(» p p))
a

Bx
(2.5)

where J=J/(ud vu), f =f[vu/n~(r)ud ], uu

=2kTi/m, and p =v/v0.
In the Lorentz limit (or one-speed case), when the

medium particles become infinitely heavy, the
Boltzm ann collision operator J reduces to the
Lorentz operator, that is,

J(f(v)) ~ —,d v I [f(v') —f(v)]dQ .
']r~ 00

For this case, one has the simpler one-speed trans-
port equation

p (x,p) = —, f(x,p')dp' f (x,p), —

(2.6)

which is identical to the radiative-transfer equation
in the gray case. '

In the present paper, we seek solutions to the
more general equation, Eq. (2.5), subject to the
boundary condition at x =0,

f(op p)=o o&p&l (2.7)

since it is assumed that no particles in the vacuum
return to the medium. A more detailed discussion
of boundary conditions is presented in Sec. III.

The general solution is written as the sum of a
spatial transient part f'" and an asymptotic part f",
that is,

f fS +f SSS (2.8)

The transient solution plays an important role in
the region near x=0 and decays out in a distance of
the order of several mean-free paths. The asymp-
totic solution dominates at large distances from the
boundary, where hydrodynamics is valid. The
separation of the solution in this way has been dis-
cussed by Williams in connection with several oth-
er similar problems.

A. Spatial transient solution

It is convenient to employ, instead of r, the di-
mensionless spatial variable, analogous to an optical
depth, ' defined by

P

x =md ni(r')dr' .
0

With this change of variable, the Boltzmann equa-
tion can be written in the form

where k is Boltzmann's constant and Ti is the bath
temperature. Primes in Eq. (2.2) refer to post-
collision velocities. The cross section in Eq. (2.2)
will be taken to be the hard-sphere cross section.

The transient solution is written in the form

f'"(x,p, p)= g ake "&k(p,p),
k=1

(2.9)
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which, when substituted into Eq. (2.5), yields

J(Rk(p, p)) =(pp)gkRk(p, p) . (2.10)

N„I = [V en!(21 +1)/2I (n +1+—, )]'~2 .

(2.15)

Ilk(P, V)=f (P) g g bnIPnl(P, P), (2.11)

Equation (2.10) is in the form of an eigenvalue

equation for the operator (pp) 'J, with eigenfunc-
tions Rk(p, p) and spatial eigenvalues gk. The ex-

pansion coefficients ak are determined by the boun-

dary conditions as discussed in Sec. III. The tran-
sient solution is chosen in this form so that f" +0-
as x~ 00. Obviously, this requires that only nega-
tive eigenvalues gk be included in Eq. (2.9).

The eigenfunctions Rk and corresponding eigen-
values gk are determined by an expansion in Burnett
functions 11„I(p, tu),

A solution to Eq. (2.10) is obtained with the substi-
tution of the expansion equation (2.11) into Eq.
(2.10), multiplication by each basis function, and in-
tegration over p. This procedure converts Eq.
(2.10) into an infinite set of linear equations

g (Anl, n'I' (lk~nl, n'I')bn'I'
n'=0 I'=0

(2.16)

where A„~ „I are the matrix elements of the
Boltzmann collision operator calculated by the au-
thors in an earlier paper. In order to make con-
nection with this previous calculation, it is con-
venient to define the collision operator

n =Ol =0
—3/2 —2

where f (p)=m ~e ~ and

gnI(P«P) =Nn(P'L„+' (P )PI(P) . (2.12)

I(h(V)) =(f (U)) 'J(f™(v)h(V))

= f f f I (Ui )[li (v') —h ( v)]

xo(g, Q)g dQd v ),
In Eq. (2.12), PI are the Legendre polynomials and
L„+' (p ) are the associated Laguerre polynomials
defined by

(2.17)

and the corresponding dim ensionless operator
I =I/(~d vo). In terms of I, we see that

( —1) I (n+l+ —, )

=p m!I (m +1+ z )(n —m)!
Anl „I = (Pnl«IItln I ),
~nln I (k, n'l '«P1J'Pn'I')'

(2.18)

(2.19)
(2.13)

The normalization factors N„l are chosen such that
the norm

The matrix A„I„I can be obtained by multiplying
MI'„'„' in Eq. (25) of Ref. 25 by the factor

5II N„IN„ I[4Ir/(21 +1)](Ird vp)
2(4 4. I ) =Ir '"f e ' 4(P)g. I ( p)d p,

=5„„5II .

Equations (2.12)—(2.14) yield the result

(2.14)

The matrix elements of the right-hand side of Eq.
(2.10), B„I„I, are readily evaluated using the recur-
sion relations for the Legendre and Laguerre poly-
nomials. The result is

(1+1)[(n+1+—,)/(21+1)(21+3)]'~, n'=n, 1'=1+1
—(1+1)[n/(21+1)(21+3)]'~, n'=n —1, 1'=1+1

B„I„I 'l[(n +1+—, )/=(21 —1)(21+1)]', n'=n, 1'=1—1

l[(n+1)—/(21 —1)(21+1)]'~, n'=n+. 1, 1'=1+1
0, otherwise .

(2.20)

Approximate eigenfunctions and eigenvalues are
obtained by truncation of the summations in Eq.
(2.16) at n

' =N and I' =L which yields
K =(1V+1)(L+1) linear homogeneous equations
in K unknowns. A solution exists if and only if the
determinant of the matrix in square brackets is

zero. The solution of the resulting secular equation
gives approximate values for the first K eigenvalues

gk
The work here is similar to the procedure by

Frankowski et al. ' in their study of heat conduc-
tion, although they chose to divide through by pp
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in Eq. (2.10) and then take matrix elements. An
important feature of the eigenvalue spectrum, as
sho~n by Frankowksi et al., ' is that the exact
eigenvalues gk occur in positive and negative pairs.
Likewise, the zero eigenvalue is doubly degenerate.
For finite orders, this pairing may be shown by
splitting Eq. (2.16) into groups for even and odd I.
Elimination of one group in favor of the other
yields an eigenvalue equation for gk. This result oc-
curs provided the dimension of the even and odd
submatrices are equal or equivalently if 1. is odd.

Since a necessary condition for the transient solu-

tion is that it vanish as x~00, zero and positive
eigenvalues must be excluded from Eq. (2.9). Con-

sequently, ak ——0 for gk &0 and the transient solu-

tion is now written in the form

1/2E —1

f"(xpI )= g eke "~k(p,)»
k=1

where the sum extends only over negative gk.
The present procedure is also somewhat similar

to that employed by Conkie" in his study of this
problem for y=1. However, his choice of basis
functions for the expansion of Ek(p, p) differs from
ours [Eqs. (2.11)—(2.13)] and the corresponding
Inatrix elements had to be evaluated numerically.

B. Asymptotic solution

The asymptotic solution, following the work by
Kladnik and Kuscer, ' is chosen to be of the form

f (x,p,p)= (j /D)f (p)[—q+x pU(p)], —

(2.22)

where j =j /uo[n((rhrd ] and D =D [/us/
n, (r)md ] are the dimensionless flux and diffusion
coefficient, respectively. These are defined by

j = f f(x pI )pI dp (2.23)

and

not contribute. This density profile satisfies the dif-
fusion equation

d1lJ= —D
dx

(2.26)

and extrapolates to zero at x = —q. It is also im-

portant to note that the transient solution f" does
not contribute to j.

Substitution of Eq. (2.22) into Eq. (2.5) yields the
following integral equation for the function U(p):

1(p U(p) )= —pp . (2.27)

The function U(p) is determined by its expansion in
Laguerre polynomials; that is,

U(p)= g d„N„gL„(p ),
n'=0

(2.28)

or in terms of the Burnett functions of Eq. (2.12),

VU(p)= X d. 4'i(p V).
n'=0

With Eq. (2.29) in Eq. (2.27) and taking matrix ele-

ments, we obtain,

g A„) „)d„=—5„0/~2 .
n'=0

(2.30)

An approximate solution is obtained with the trun-
cation of the expansion at n'=S and inversion of
the resulting finite set of equations. This yields a
set of N-expansion coefficients and an estimate for
the diffusion coefficient. The foregoing will be
recognized as the usual procedure for the calcula-
tion of the diffusion coefficient with the Chapman-
Enskog scheme.

VAth Eqs. (2.26) and (2.29), it is easily seen that the
diffusion coefficient is given by

(2.31)

D= f f (p»)pI'«p)dp, (2.24)

where Eq. (2.22) has been used. The choice of Eq.
(2.22) for the solution far from the boundary can be
appreciated by considering the contribution it
makes to the density. Integration of Eq. (2.22)
yields

n "(x)=f f"(x,p,p)dp= (j /D)(q+x), —

(2.25)

where the term proportional to p in Eq. (2.22) does

C. General solution

An important feature of Eq. (2.5) is that when in-

tegrated over p, the right-hand side vanishes due to
particle conservation with the result that

f pI ~
dp=O.cl

In view of the definition of the Aux j, Eq. (2.23),
this result indicates that dj/dx=0 and, therefore,
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that j is constant. Furthermore, since the kinetic
equation and associated boundary conditions (Sec.
III) are homogeneous, some normalization of the
distribution function is required. This normaliza-

I

tion is fixed, as is usually done, " '
by setting

j= —1.
With this choice, the general solution is with Eqs.

(2.9), (2.11), (2.21), and (2.22) given by

1/2K —1 L N

f(x,p, I )=f 4») X eke" X Q I."if.ib»l )+D ' e+x X—d.f.iV»V) (2.32)
k=1 l =On =0

The coefficients b„l in Eq. (2.32) are determined
with Eq. (2.16). Similarly, the d„coefficients and

the diffusion coefficient are calculated with Eqs.
(2.30) and (2.31), respectively. In order for f(x,p, iu )

in Eq. (2.32) to be completely specified, the
( 2

K —1)uk coefficients and the extrapolation

length must be determined. These —,K quantities

are fixed by the boundary conditions.

k=1 n'=0 l'=0

+D ' eg.i, oo
—g d G i,

1/2K —1 N L

uk g g bn'I'Gnl, n'I'
k

(3.2)

III. BOUNDARY CONDITIONS

G.i, 'r= JH(VW"iV, VW. iV») )dp.

(3.3)

It is impossible for a finite expansion such as Eq.
(2.32) to satisfy the boundary condition Eq. (2.7) for
all p and all p &O. As a result, there is no a priori
preferred method to determine the remaining —,E
quantities. In the present work, three methods are
employed. These include the Marshak and Mark
methods employed in neutron-transport theory,
and a third method based on a variational principle.

In the Mark method, the distribution function at
x=0 is set to zero at (%+I) p„points and

(6+1)/2 p~ points corresponding to incoming
directions, in accordance with Eq. Q.7). For the

large orders, N and L, used in the present work,
large instabilities occurred with this method and the
Mark method was abandoned. No detailed study
was made to ascertain the source of the difficulty.

1

Gnl, n'1 2 ~l l~nn' .

With Eq. (3.4) and the definition

(3.4)

N L
%i= g gb pGi i

k k

n'=0 l'=0

we find that

1/2K —1

&k ~.i+(e~»G.ioo=(2» '~i id. .
k=1

An explicit expression for these quantities can be
derived with the expansion Eq. (2.4). The method
of evaluation essentially follows the calculation of
Frankowski et al. ' The details of this calculation
can be obtained by writing to the authors. In par-
ticular, it can be shown that

A. Marshak boundary condition

The Marshak boundary conditions set to zero
various moments of the distribution function at
x=O;

IH(v W.ib»l )f(o pl )dP=o.

In Eq. (3.1), H(p) is the Heaviside function, that is,
H=1 for p &0 and H=O for p &0. The usual pro-
cedure is to employ Eq. (3.1) for all n but only for
odd I which then gives the required K/2 conditions.

With Eq. Q.32) in Eq. (3.1), we obtain

Inversion of Eq. (3.6) for all n and odd I yields the
unknown ak and q.

B. Variational boundary conditions

The success of the Marshak condition, despite its
arbitrariness, is not well understood. ' For ex-
ample, the retention of only odd I is not easily justi-
fied. We here introduce an alternate method based
on a variational procedure for comparison.

Consider the functional
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P'= IH(p)(f(Op!M))'(f (p)) 'dp .

(3.7)

The unknown coefficients are determined by
miniInizing I". %ith Eq. (2.32) in Eq. (3.7), the con-
dition BF/Oak ——0 leads to the following —,K —1

equations:

1/2K —1 N L
ak' g g ~ !~nl + (q /d) ~00

N
=D ' g dn~ni .

Similarly, the condition BF/Bq=0 gives the addi-
tional equation

1/2K —1 N

ak W'00+q/2D =D ' g d„G„,00 .

(3.8b)

Equations (3.8) are a total of 2E equations in 2K
unknowns. Inversion of these equations gives the
desired ak coefficients and q.

IV. NUMERICAL RESULTS

The important quantities in this study are the
spatial eigenvalues gk that determine the rate of de-
cay of the transient solution f", Eq. (2.9); the extra-
polation length q that occurs in the asyInptotic solu-
tion f", Eq. (2.22), and the density profile given by
the integral over the general solution f=f'"+f",
Eq. (2.32). These quantities depend on y and the
number of basis functions employed in the expan-
sions of f" and f". Except for the spatial eigen-
values, these also depend on the choice of boundary
conditions. The main objective of the present study
is to examine the convergence of these quantities as
the number of basis functions is increased, their
mass dependence, and the nature off (x,p,p).

An important aspect of the numerical work is the
recognition that the collision operator in Eqs. (2.5)
and (2.10) conserves particle number. Integration of
Eq. (2.10) gives

f p(Rk(p»I )dP=o (4.1)

which, with Eqs. (2.11) and (2.14), implies bQ1 —0.
This is an important point since, with Eqs. (2.23)
and (2.32), we find that

1=2 g ake boi —1

k

Since bQ1
——0, j = —1 is consistent with the chosen

normalization. Furthermore, it can be shown that
f" does not contribute to the E integral ' defined

by

K(x)= J pp U(p)f(x, p, I!,)d p . (4.3)

If K"(x) denotes the contribution off" to E(x), we

have, with Eq. (2.9), that

E"(x)= g ake " Ipp U(p)Rk(p, p)d p .

where Eqs. (2.11), (2.16), (2.18b), (2.29), and (2.30)
have been used. Also, it may be shown that Eq.
(4.5) is valid for the case gk ——0. It should be noted
that the proof of Eq. (4.S) requires that the upper
limits of the sums over n in Eqs. (2.16) and (2.29)
are equal. Equation (2.32) has been written with
equal upper limits of the n sums. Therefore, the
distribution function calculated through the use of
Eq. (2.32) will satisfy the K integral condition ident-
ically at all finite orders.

The K integral is often used in a variational cal-
culation of q (Refs. 2 and 12) based on the fact that,
as shown above, only the asymptotic solution con-
tributes and K(x) varies as q+x. In the present
method of solution, the K integral plays no direct
part.

A. Spatial eigcnvalucs

The first step in thc calculatioIl is thc evaluation
of the spatial eigenvalues gk in the transient solu-
tion. The summations in the set of equations, Eq.
(2.16), are truncated at n'=X and I'=I., which
yield a set of discrete eigenvalues. It is well known
that the eigenvalue spectrum has both discrete and
continuous portions, " although the mathematical
properties are not fully understood. In this paper,
we are concerned with the numerical calculation of
a set of discrete eigenvalues and a study of the nu-
merical convergence as X and L are increased. In
all previous work, "*' ' the expansion in p has usu-

ally been restricted to no more than one or two
terms. It is clear that such limited studies are insuf-
ficient to establish convergence.

The eigenvalues were calculated by diagonalizing
the matrix in parentheses in Eq. (2.16), constructed

(4.4)

For a finite-order expansion, it may be shown that

Ipp'U(p)Rk(p IJ )"p = —&01/v 2gk

(4.5)
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in accordance with Eqs. (2.19) and (2.20). The form
of Eq. (2.16) was suitable for a numerical diagonali-
zation procedure known as the QZ method. The
size of the basis set was increased and successive ap-
proximations of the eigenvalues were obtained as
shown in Table I, for y=1, and k=1 —4. With L
odd, the pairing of the eigenvalues in positive and
negative pairs as discussed earlier was observed and,
therefore, odd L was employed in all calculations.

Williams and Spain ' have shown that the magni-
tude of the discrete eigenvalues (properly normal-
ized) must lie in the range (0,1), while the continu-
ous portion of the spectrum lies outside this range.
The converged eigenvalues shown in Table I obvi-

ously lie in the discretum. However, most of the
remaining discrete eigenvalues calculated for larger
k were, in fact, in the continuum.

The magnitude of these eigenvalues is qualitative-

ly indicative of the rate of decay of the transient
solution as one recedes from the boundary. This is
an important part of the study of boundary effects.
The variation of the lowest-order eigenvalues versus
M =m/(m +m I ) is shown in Fig. 2. For mass ra-
tios close to unity (M- —,), energy exchange is effi-

cient and the eigenvalues achieve a maximum. The
boundary layer regime is consequently narrower for
nearly equal mass ratios relative to the situation in
the disparate mass case (M~0 or 1).

B. Extrapolation length

The calculation of the extrapolation length q de-

pends on the choice of boundary conditions and is
given by Eqs. (3.6) and (3.8) in the Marshak and
variational methods, respectively. The extrapola-
tion length was calculated with the Marshak and
variational boundary conditions and for y=l re-
sults for several different orders are shown in Table
II. Both sets of extrapolation lengths appear to be
converging, but the convergence is more rapid for
the Marshak conditions. The convergence for fixed
N and increasing L for the Marshak boundary con-
ditions should be noted. It is interesting to notice
also the more rapid convergence of q relative to the
individual eigenvalues in Table I. The converged
value q=0.937 is in excellent agreement with the
variational result 0.935 obtained by Kladnik and

X+I.=
TABLE I. y=1 eigenvalues.

13

1.4154
1.2101
1.2099
1.2099
1.2099

1.0002
0.9042
0.9042
0.9042
0.9042

First
0.9611
0.8831
0.8831
0.8831
0.8831

eigenvalue
0.9555
0.8812
0.8812
0.8812
0.8812

0.9547
0.8810
0.8810
0.8810
0.8810

0.95451
0.880 98
0.880971
0.880 971
0.880 971

0.954 48
0.880 98
0.880 970
0.880 970
0.880 970

1.4199
1.3956
1.3956
1.3956

2.1519
1.0057
0.9855
0.9855
0.9855

Second eigenvalue
1.3660 1.1995
0.9622 0.9546
0.9432 0.9361
0.9432 0.9361
0.9432 0.9361

1.1304
0.9532
0.9349
0.9349
0.9349

1.097 1

0.952 8
0.93467
0.934 64
0.934 64

1.078 3
0.952 8
0.934 64
0.934 60
0.934 60

2.2767
1.4860
1.4830
1.4830

2.6105
1.3226
1.0304
1.0252
1.0252

Third
1.4165
1.1429
0.9771
0.9703
0.9703

eigenvalue
1.2451
1.0843
0.9660
0.9586
0.9586

1.1841
1.0595
0.9634
0.9558
0.9558

1.1480
1.0473
0.9628
0.9551
0.9551

1.1221
1.0405
0.9627
0.9550
0.9550

1.6787
1.5345
1.5342

2.1966
1.1373
1.0510
1.0497

Fourth
3.5183
1.3423
1.0553
0.9895
0.9869

eigenvalue
1.7490
1.1784
1.0300
0.9751
0.9716

1.4111
1.1193
1.0200
0.9713
0.9673

1.2716
1.0912
1.0155
0.9702
0.9661

1.1995
1.0749
1.0134
0.9699
0.9658
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TABLE II. y=1 extra olp ation length

5 13

1

3
5

7
9

0.6281
0.6432
0.6457
0.6466
0.6471

0.8311
0.8589
0.8654
0.8681
0.8695

Variational
0.8456
0.8791
0.8882
0.8923
0.8946

bounda ry conditions
0.8493
0.8849
0.8956
0.9008
0.9038

0.8504
0.8868
0.8983
0.9042
0.9078

0.8507
0.8874
0.8993
0.9057
0.9096

0.8507
0.8876
0.8998
0.9063
0.9105

1

3

5

7
9

0.8706
0.8747
0.8751
0.8753
0.8754

0.9252
0.9302
0.9310
0.9313
0.9314

Marshak bo ry cundary cry conditions
0.9281

0.9347
0.9342

0.9352
0.9356

0.9354
0.9361
0.9364

0.9281
0.9344
0.9358
0.9365
0.9368

0.9280
0.9344
0.9359
0.9366
0.9370

0.9279
0.9344
0.9359
0.9366
0.9370
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TABLE III. y & 1 extrapolation lengths q for IV=9 and L = 11.

Mars hak Variational

1

1.222
1.5
1.857
2.333
3
4
5.667
9

19
39
99

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.025
0.010

0.9370
0.8933
0.8564
0.8250
0.7984
0.7759
0.7569
0.7410
0.7278
0.7170
0.7123
0.7097

0.9096
0.8671
0.8313
0.8009
0.7753
0.7538
0.7357
0.7208
0.7087
0.6994
0.6958
0.6943

Exact: 0.7104

x=O, that is, at the boundary. The results obtained
with the Marshak boundary condition are shown in

Fig. 5 for several values of p. From the results in

Fig. 5, it is clear that the distribution function is
peaked in the forward direction, p= —1; more so
for y=1 than for y=10. For larger reduced speeds,
the maximum of the distribution function in the
forward direction is more pronounced. Of particu-
lar interest is that the boundary condition,

f( Op@)=0, 0&p &1

is better satisfied at high p than at low p. This
boundary condition was found to be less well satis-
fied with the variational boundary condition and is
the reason for the choice of the Marshak condition
in showing these results. In either case, the boun-

dary condition cannot be satisfied exactly with the
finite polynomial expansions employed in the
present paper. The oscillations off versus p in the
region 0 (p ( 1 is a consequence of this method of

solution of the Boltzmann equation.
An important aspect of the present work is to

show the extent of the departure from hydrodynam-
ic behavior near the boundary at x=O. This can be
shown in a variety of ways and we have chosen to
display results for the density

n(x)= J f(x,p,p)dp
1/2E —1

ake " boo+D '(q+x)

(4.6)

in Fig. 6 and for ~Ddn(x)/dx
~

in Fig. 7. For
large x, n (x) approaches n "(x) given by Eq. (2.25)
and

~

D dn (x)ldx
i

approaches unity. The extent
of the departure from hydrodynamic behavior de-
pends on the extrapolation length q, the eigenvalues

gk, and the coefficients ak. Each of these quantities
exhibits a different mass dependence that has not
been examined in detail. Figures 6 and 7 show the

TABLE IV. y & 1 extrapolation lengths q for ¹9and L =11.

1

0.8181
0.6667
0.5385
0.4286
0.3333
0.2500
0.1765
0.1111
0.0526
0.0101
0.0010

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
0.99
0.999

Mars hak

0.9370
0.8944
0.8581
0.8267
0.7992
0.7749
0.7533
0.7338
0.7161
0.7000
0.6881
0.6856

Variational

0.9096
0.8685
0.8336
0.8036
0.7776
0.7547
0.7346
0.7168
0.7009
0.6870
0.6770
0.6749
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0.90-

0.80- 0.80-

070- 0,70-

0.60- 0.60
0.5

FIG. 4. Extrapolation length q vs M for N=9, L= 11.
(a) Marshak, (b) variational.

0.50
0 0.5

FIG. 3. Extrapolation length q vs M for N=9,
L=11. (a) Marshak, (b) variational, (c) synthetic kernel
(Ref. 13).

approach to hydrodynamic behavior in a distance of
the order of several mean-free paths. This region of
nonhydrodynamic behavior is of greater extent for
smaller y, although there does not appear to be a
strong mass dependence for the range of values of y
studied.

Since there is a preferential loss of energetic par-
ticles from the medium, the temperature T(x) of

—,n(r)kT(r) = I —,m ( v V) f(r, v )—d v,

where V= j /n(r) is the flow velocity

j = I vf(r, v)dv

and

n(r)= f f(r, v)dv .

Substitution of Eq. (2.32) yields

(4.7)

test particles is somewhat less than the temperature
T& of the medium. A local temperature may be de-
fined as

T(x)/T, =[2/3n(x)]Jake" [( , )' b~o+[ ——, +n(x) ]boo]
k

+ [2/3n (x)D] [(q +x)[—, +n (x) ] 2D/n(x) ) . — (4.8)

The ratio T(x)/Ti is shown in Fig. 8 and the cool-
ing of test particles as the boundary is approached
is observed. The ratio T(x)/T& decreases with in-

creasing y due to the reduced efficiency of energy
transfer as y departs from unity.

V. SUMMARY

A numerical solution of the Milne problem has
been presented without approximation to the
Boltzmann collision operator. The method uses an
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0

FIG. 5. Surface distribution function f(x =O,p,p) vs p at %=9, I.= 11 with Marshak boundary conditions for (a)
@=0.4, (b) @=1.0, (c) @=1.4, (d) @=2.0.

expansion of the distribution function in Burnett
polynomials. The calculation naturally splits into
three parts. First, the eigenvalues and eigenfunc-
tions of the transient part of the distribution func-

tion are determined by the generalized eigenvalue
Eq. (2.16). Second, the asymptotic solution expan-
sion coefficients d„and the diffusion coefficient are
given by Eqs. (2.30) and (2.31). Finally, the eigen-



lj

l.5

rticleFIG 8. Ratio of test P
th Marshak~Itmedium temperature at

boundary conditions
0,5

density for %=9, L=11 withFIQ. 6. Number density for
conditions for (a} y= —„Marshak boundary con

' '

ne-s eed results of Table III in=10, (d) y=00 or one-sp
I.ecaine (Ref. 34); ——— x .

ff t a snd the ext p

Th general solution, Eq.methods, respec tively. T e gen
rder, satis les(2.32), at any finite ord

tion of mass and the K integral.

11Q

X

=9, 1.=11 with MarshakFIG. 7.
i
D dn /dx

i
at N=,

boundary condltlons.

bove quantitlcs hhas been ver-Convcrgcncc in c
ified by Increas' g

'
e

ults show the importance
thc cxpanslon 1n 0 vconvergence o t p v

rate of conve gr ence has been us
nds conditions.t methods for oun aamong diffcIcnt

As the Marshak Inethod g
ss the preferred met1f. vfas adopted ss p

iated uantities, suctions of associa e q

q=0.937, is in g
'n s variational cal-tained by Kladnnik and Kuscer in s v

that vafist1onala reement suggests aculation. This ag
its for extrapola-ield accurate resu smethods ' *

y
d sli coef icients, ation lengths an p

would be of interest to extend Kladni an
calculation to masmass ratios yQ .

sphere Holtzmann and sepa
A ossible exp ana iong - p
can be given i one asferent behavior can g'

ximately indepen en
-ratio dependence o t e ithe detailed mass-ra io p e

is taken into account. s
B ltzmann diffusion

profile must bebe extrapolated urt er
=0. Thclcfolc this sr-negstlvc x sx1s to reach n

h d-s here extrapolationgument pred icts that the har -sp
or decreasing y, as is ob-length should increase or ecrea

'



1670 M. J. LINDENFELD AND B.SHIZGAL 27

served. On the other hand, the separable kernel dif-
fusion coefficient decreases with decreasing y and,
hence, the separable kernel extrapolation length
should decrease with decreasing y, as is also ob-
served. The separable kernel is a useful analytic de-

vice but is not a realistic model of the collision
operator for all mass ratios y.
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