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Kinetic theory, in the repeated-ring approximation, is employed to calculate the general

expressions for thermophoretic forces and velocities which were obtained in the preceding

paper {I). The velocity is not renormalized by the repeated-ring terms, since they all cancel.
The thermophoretic force, on the other hand, is strongly renormalized by these terms, since
the friction constant is. The latter changes from Boltzmann-type behavior at low densities
of the host gas to Stokes-type behavior. In the limit in which the guest particle is

represented by a hard-sphere potential we regain known results in the Boltzmann regime.
These results are at variance with experiment. A realistic attractive tail, added to the
hard-sphere potential yields a vanishingly small correction be:ause of the typical short
ranges of such tails. When accommodation processes are included, one obtains excellent

agreement with experiment, provided the longitudinal and transverse momentum have dif-

ferent accommodation coefficients.

I. INTRODUCTION

In the preceding paper, ' denoted by I, we have
developed a general formalism for the phenomenon
of thermophoresis. We obtained molecular expres-
sions for both the thermophoretic force and veloci-

ty. The thermophoretic force coefficient was shown
to be related in a simple manner to the Soret coeffi-
cient. The mode-coupling renormalization of the
Soret coefficient was shown to be negligibly small
with respect to its observed values. We concluded
that the Soret coefficient was basically given by its
"bare" value and therefore one needs a microscopic
calculation to obtain this value.

Since the relevant experiments are mostly per-
formed on aerosols or small particles in host gases,
and since the only microscopic approach at hand is

provided by kinetic theory, we employ this theory
for the calculation of the thermophoretic force coef-
ficient. We use the repeated-ring approximation
which is known to yield good results for a large
range of gas densities.

It turns out that the thermophoretic velocity is
unaffected by the repeated ring terms. They all
cancel. On the other hand, the thermophoretic
force is strongly renormalized by those terms. They
are responsible for the crossover of the friction
from its Boltzmann value to the Stokes value. The

fact that our theory compares well with experiment
can be taken as support for the repeated ring ap-
proximation for the friction coefficient.

An inspection of the type of terms that contribute
to thermophoresis shows that they are of a nonhy-
drodynamic nature, thus confirming the same state-
ment we made in I, based on the mode-coupling
analysis. As we shall show, the kinetic theory cal-
culation presented here gives a result for the dif-
fusion constant and thermal-diffusion ratio which
has exactly the form obtained in I. The only differ-
ence is the fact that the bare quantities are known
in kinetic theory and hence numerical values for the
thermophoretic force and steady velocity can be
computed and compared with experiment.

The meaning of this result is that the main pro-
cesses that are "responsible" for thermophoresis oc-
cur close to the surface of the guest particle (on a
length scale which is "invisible" to hydrodynamics).
The surface processes are either "reversible" or "ir-
reversible. " By the former we mean potential
scattering events. The latter are responsible for ac-
commodation processes and reflect the coupling of
the host particles to the internal degrees of freedom
of the guest particle. A realistic potential between a
typical guest particle (of linear size 1 pm) and a
host particle is a hard sphere with a short attractive
tail. The range of such a tail is of the order of
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II. SPECIALIZATION OF THE GENERAL
THEORY TO LO% DENSITIES

As was shown in Sec. II of paper I, the thermo-

phoretic force constant, through its dependence on

the thermal-diffusion ratio, depends on the follow-

ing quantities:

(Ps(t)is p(0))
Vz. = dt

Mkg T2

and the friction coefficient g,

(Ps(t)Pii )
dt

M ksT

(2.1)

(2.2)

angstroms. As a result, we can show that this tail is
unimportant for integrated cross sections (which we

need for the calculation of thermophoretic coeffi-
cients). Thus, as far as the potential is concerned, a
hard sphere is sufficient. Such a potential has been
used in all previous kinetic calculations. Since the
hard-sphere calculations disagree with experimental
data, we need to take into account accommodation
processes. It turns out that energy accommodation
cannot account for the experimental findings; nei-

ther can a diffuse scattering term. We employ a
momentum accommodation mechanism, with dif-
ferent accommodation coefficients for transverse
and longitudinal components. Such a model has
been shown to give good fit to atom-surface scatter-
ing data. It turns out that this model is in quanti-
tative agreement with the available thermophoresis
data as well.

This paper is organized as follows. Section II
shows how to specialize the results of paper I to the
case of a "dilute" host gas. In Sec. III a short intro-
duction to modern kinetic theory is provided and
the expressions needed for our purposes, in the re-

peated ring approximation, are derived. Section IV
is devoted to the actual calculation of these terms.
Our main approximations are made there. The re-
sults of Sec. IV are used in Sec. V to compare to ex-

perimental data. Section VI provides a discussion
of our results, the approximations involved in ob-
taining them, as well as necessary future work.

mr=(Vr ka—. (2.4)

The significance of Vq is easily seen by solving the
equation of motion [Eq. (I2.29)] for the "8"
particle's steady-state velocity at constant pressure.
We thereby obtain

k~
Vg ——— Vp — VT. (2.5)

The term in kz in Eq. (2.5) is completely negligible,
and hence Vz is the large-particle velocity per unit

VT.
A final comment: Vr and g

' as defined by Eqs.
(2.1) and (2.2) are simply the Soret coefficient and
diffusion constant (up to trivial factors of kqT)
considered in the preceding paper. The reason for
the new notation (and that is all that has been intro-

duced) is to facilitate a comparison with experi-
ment. The plan of the calculation is exactly as in

the phenomenological node-coupling approach
presented in Sec. III of I. Thus, the transport coef-
ficients are calculated (i.e., Vr or Ls r and g

' or
D) and from these the thermophoretic force, veloci-

ty, etc., are computed.
As was shown in Sec. III of I, the Soret coeffi-

cient (and thus V~) could not be computed via pure-

ly macroscopic arguments. In order to understand

the phenomena of thermophoresis, we are thus

forced to consider some microscopic details.

At present, the only systems for which such de-

tails can be included analytically in a semirigorous

way are gases (we ignore the molecular dynamics

methods). Therefore, we now use kinetic theory to
calculate Vr and g.

In order to carry out the kinetic calculations, we

make some simplifying assumptions: First, the
terms in I E~ (Ref. 1) explicitly containing the po-
tentials and interparticle forces are dropped. There
are two reasons for this. They come in as higher-

order density corrections and more importantly, re-

quire a pair of particles to be close together, a situa-

tion which does not last for very long times. Thus
there should be no new singular density dependence

associated with these terms. This is in contradis-
tinction to changes in momentum which persist for
much longer times. Thus the dissipative heat
current is taken to be

kr ——/VS /ks (2.3)

which gave [cf. Eq. (2.46) of paper I (I2.46)] the
thermal-diffusion ratio, and

~2
PJ 5 PJIs F g — ksT-— —
2Pl 2 Nl

(2.6)

and [cf. Eq. (I2.30)] gave the thermophoretic force
constant:

where we have introduced the low-density form for
the enthalpy [cf. (I2.41)]. For the purpose of com-
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where "2" is a typical gas particle and & is the sys-
tem volume. The second assumption is the use of
an ideal gas distribution function in evaluating the
averages. That is,

f(x ) = gyJ(PJ),V~ J J (2.8)

where pJ is a Boltzrnann momentum distribution
for the jth particle and M—1 is the number of gas
particles. Both of these approximations are not
essential and can be corrected using standard tech-
niques. The consequences of Eqs. (2.6) and (2.8) for
our final results will be discussed below.

With these two assumptions Eqs. (2.7) and (2.2)
can be rewritten as

pF&
VT —— lim

kgT2Mm s~o+

X f dp g pJ(pJ)p (0
~
G(s)

~
0)

T

P2 5k P2

2m 2

and

lim
M kgT s~o+

x f dp gpJ(pJ)P (0
~

G( )
~

0)P

(2.9)

puting Eq. (2.1), the identity of the fluid particles
can be used to rewrite VT as

2

mMk~ T~ o 2m 2 m

(2.7)

of a theory for the propagator G(s). Such a theory
exists and is presented in the next section.

III. KINETIC THEORY: GENERAL
CONSIDERATIONS

The time-correlation functions appearing in Eqs.
(2.9) and (2.10) (or their Laplace transforms) can be
computed using the binary colhsion expansion.
This method has been used previously in the calcu-
lation of the friction coefficient. To leading order
in the density of the host gas, Zwanzig' has shown
the equivalence of this approach and that of the
Boltzmann equation in the case of self-diffusion.
Subsequently, much work has gone into the calcula-
tion of the density expansions of the other transport
coefficients. " Unfortunately, the method is not
valid at higher densities due to nonanalytic terms
(i.e., p lnp) resulting from a special class of many-

body collisions, the ring collisions' (see also below).
These collisions are ultimately responsible for intro-
ducing hydrodynamic phenomena into kinetic
theory. Examples are long-time tails' and correla-
tion anomalies in nonequilibrium systems. ' They
can also be used to follow the transition of physical
quantities from their low-density forms to their hy-
drodynamic values. Specifically, the transition of
the friction constant from the value predicted by
the Boltzmann equation to its Stokes value has been
studied. For completeness, certain aspects of the
calculation of the friction constant [Eq. (2.10)] will

be repeated in this work.
The starting point of the calculation is the binary

collision expansion for the propagator':

G(s)=Gp(s) —g Gp(s)T (s)Gp(s)

where

G(s) —= 1

s+fL '

(2.10)

(2.11)

+ g'Gp(s)T (s)Gp(s)Tit(s)Gp(s)+ ' ' '

a,P

(3.1)

L is the Liouville operator, and the matrix element
for an operator 0 is defined as

(k iO i
k™)—= f dr e'" ' Oe'"

(2.12)

Note that in general, the "matrix" elements defined

by Eq. (2.12) are still operators in momentum space.
Equations (2.9) and (2.10) are useless in the absence

where Go is the free streaming propagator, T is the
binary collision operator, a and P denote pairs of
particles (including the B particle) and where g'
implies that a+P, etc.

A number of important properties [Eqs.
(3.2) —(3.7)] of these operators are needed'P.

(k
~
Gp(s)

~

k' )=(s+ik V ) 'blk —k'~),

(3.2)
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where 6 is a Kronecker 5 function and where V is
a vector whose elements are the particle velocities,

(k
I T|2 lk' )~F' (3.4)

for a large system, and

~B»m f dP343(p3)(o I ~TB31 0»
s-+0+

(3.5)

(k~
I
T„(s)11~)

(x: k(k —k' )A(k&+ k2 —k& —kg) ~

(3.3)

(o) (b) (c) (4) (e)

FIG. 1. Diagrammatic representation of some terms

in the binary collision expansion of the Soret coefficient.
Diagram (a) is free streaming, (b) a single collision, (c) a
factorizable diagram, (d) a single nonexchange ring, (e) an

exchange ring, and (f) a repeated ring. In all cases, the
leftmost line corresponds to the B particle.

where W~ is the Boltzmann-Lorentz collision

operator. When P'~ acts on any function of pz, we

obtain

(3.7)

where %23 is the particle exchange operator which exchanges the labels on gas particles 2 and 3. The deriva-

tion of Eqs. (3.2) —(3.7) is straightforward and the reader is referred to Zwanzig' for details.

By inserting Eq. (3.1) into (2.8) a "naive" density expansion for Vr is obtained:

~Bf(PB) f dP303(P3) f bd& f dfl&B —&31(f(PB) f(PB)l, (3.6)

where b is the impact parameter, p is the azimuthal angle, and e denotes the value of pB before the collision

which results in final momenta p~ and p3.
The linearized Boltzmann collision operator for the gas particle Wz is related to T by

~F= —»m f dp3p3(p3)(o I
~T23 I

0)(1++23)
s~0+

V = li f dp gt)) (p. )P ——(01&T 10)+ (011"T 10)(011"T 10)
mMk~ T s 0+ J S s

+, (o
I
~TB310)(0

I ~T231o)
s

+ 3 (01 WTB310)(0
I
F TB210)+ . Pz Pz 5

m 27tl 2

(3.8)

where n~ is the gas number density and where the wave-number conservation rules [cf. Eqs. (3.2) and (3.3)]
have been used. In addition, we have used the fact that the first T operator must involve the B particle and
the last must involve particle 2 in obtaining Eq. (3.8) (see, e.g., Ref. 10 for a discussion of this point). Equa-
tion (3.8) contains all terms involving up to two T operators. The expansion is termed naive since each term
diverges as S~0. The common approach is to resum the most (or next most) divergent terms in s at each or-
der of ny. This direct resummation procedure is most easily understood by using a graphical notation, intro-
duced by Bartis and Oppenheim. ' Roughly speaking, the different diagrams represent different types of col-
lisions. For example, in Fig. 1(c), B collides with particle 2 which had collided with a third particle at some
earlier time. In Fig. 1(e), B collides with 2 after colliding with 3, after 2 and 3 collided.

In Fig. 1 some of the terms appearing in Eq. (3.8) as well as some of the higher-order ones are depicted.
The graphs should be read from top to bottom. Each particle has a vertical line corresponding to free propa-
gation. The horizontal lines imply T operators involving the connected particles (notice that the first T in-
volves B and the last one 2). The wiggly vertical lines denote summation over an intermediate wave vector.
For example, the contribution of Fig. 1(d) to ( 0

I
G (s)

I
0 ) is
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, f, (o~mT»~k, —k) (k, —kimT»~k, —k)
s (2m) s+ik. (Vg —V2)

(k, —k
~
~T„~0) .

s +i k {V~—V2)
(3.9)

In general the sign of a given diagram is ( —1),where e is the number of T 's, the power of the density is
given by the number of different gas particles (other than particle 2) taking part in the event, and the power of
s ' is equal to the minimum number of horizontal strips not containing any intermediate wave vectors. The
intermediate wave-vector sums protect the divergence in s . This protection is not complete, a ln(s) diver-
gence still remaining. 3Ib" '3' [Strictly speaking, this is true in two dimensions (2D). For three dimensions
(3D) the ln(s) divergence occurs with a four-body collision. ]

Clearly, at a given order in density, the most divergent diagrams are those containing no intermediate wave
vectors. These are known as the factorizable diagrams. ' At low enough density, it is sufficient to resum just
these diagrams. The result is

Vr —— lim f dPsdp2gs(P&)gz(p2)P& (0
~

F Tsz
~

0)
mMkg T g o+ (s —n) Wg)

1 p2 Pz 5k
(s —nyW~) m 2m 2 8 {3.10)

In obtaining Eq. {3.10), the equivalence of the gas
particles has been used. As we shall see, Eq. (3.10)
is equivalent to the results of the Boltzmann equa-
tion. No effects of correlated many-body collisions
are included.

The diagrams containing single intermediate
wave-vector sums are known as ring diagrams.
They are the next most divergent terms in s at a
given order in density. %e distinguish between two

types of ring diagrams containing the 8 particle.
The nonexchange type, which begins and ends with
a T involving the 8 particle, and the exchange type
which contains an intermediate T after which 8 no
longer appears. For example, Fig. 1(d) is a nonex-

change ring collision and Fig. 1(e) is an exchange
one. Closed-form expressions can be obtained for
the sums of all these ring collisions in the following
way. Note (cf. Kawasaki and Oppenheim' for
more details) that any of the nex (nonexchange ring)
diagrams can be written in the form

( ~ )Pl

(0
~
~T82Aa)(~1) A (i )~GOT82 I

o)

(3.11}

where ij ——8 or 2 (2 need not be the special gas par-
ticle here) and

A~(i) = f 1p3$(p3)GoF~T;3, (3.12)

A~(2)—= f dpi'(p3)Go~T»+».

Summing over n, (aj J and Iij] gives

1 0 PTg2
S2

(3.13)

1

l +ny[A( (2)+Ag(2) +A((8) ]

g &GOTg2 0 (3.14)

where we have also used the fact that

(o
I ~Ta26o~Ts2 I

o)=o (3.15)

since particles 8 and 2 can collide only once
without the intervention of a third particle.

In an analogous manner, the exchange rings sum
up to yield

I, i~=8
I ol 4', fj. =2 .

The so-called "loop" and "dot" operators are de-
fined as



1

1
XGO~Tg3

1+nj [At(2)+Ay(2)+A((3)+Ay(3)]

XGOP T23(1+%23) 0

The single ring sums no longer diverge like

(Ils )Ins. In the standard applications of kinetic

theory (i.e., to molecular systems) they result in log-

arithmic terms in the density expansion of the

transport coefficients. As we now show they also

diverge when 8/(~00. It is for this reason that

they are kept here. Moreover, since it is just this

dependence which is under investigation, we omit

all ring diagrams which do not include the 8 parti-

cle (i.e., the host gas is dilute enough). That the

ring divergence is eliminated can be seen in the fol-

lowing way: Recall that a typical ring contribution

could be written as [see, e.g., Eq. (3.9)]

q f dk(0
I VTagI 0)

s S +i k.V~2

X(0 I VT23 I
0) (0

I
VTa2 I

0),
S +/k'Vg2

where the k dependence of the T's is omitted.
Treating the T matrix elements as constants, shows
that in 20, a logarithmic infrared divergence sets in

as S~O, i.e., the contribution is O{s lns). In 3D
ties occurs with a four-body COBision.

The ring resummation replaces the free propaga-
tors by effective ones—namely, propagation with
Boltzmann collisions with the other bath particles.
These extra coBisions provide additional damping
and eHminate the divergence. To see this, we note
that the dominant contributions to the small-k parts

I

of the integrals is [cf. Eq. (3.14) and below]

f, , d«0
I VTa2I0)k&k s+rk' '

where we have again ignored the operator character
of the T's (this is corrected below) and inserted the

propagator appropriate for a hydrodynamic part of
the spectrum (e.g., a shear mode). The constant I
is of the order of the bath kinematic viscosity or
0 (l). Finally, the size dependence of TB~ is O(A ).
Thus, the magnitude of the above integral is

O(k, E. /l) in 3D. The cutoff accounts for our
neglect of the k dependence of Tq2 and for the use
of the hydrodynamic approximation (see below). It
is O(A ') for E. ««l or O(l ') for 8 ~(/. In the
former case, we thus find that the integral in ques-
tion is O(R/l), which diverges when 8~ 00. Since
this integral is essentially the ring correction factor
to Ta2 [see Eq. (3.14)), we see that for R peal, more
than single rings must be kept. Physically, what is

happening is as follows: After colliding with 8 a
gas particle travels a distance O(l) where it en-

counters another gas particle. If //8 ««1, the solid

angle subtended by 8 at this collision site is very
small. On the other hand, for large enough R,
I/8 g~1, the 8 particle looks like an infinite plane
and the probability of recollision is close to unity.
The divergence of the nonexchange ring diagrams is
thus further renormalized by repeated rings. ' '

Formally, this gives

~aa(»»=+ —(o
I
VTaP'azVTaz VTa2&a2VTa2&—a2VTaz+

s

1 10
s 1+~Tg2&g2

—1 PTg2 0

9'a2= [1+nf[AE(2)+24(2)+Al(»]) 'Go

= Go +&y~ f dp30(p3)[Ta3+Tz3(1++23)l
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The second equality in Eq. (3.17) follows when we recognize the repeated-ring series as a geometric series.
Notice that there is still a s divergence, which merely signals the fact that factorizable diagrams must be
summed. The second equality in Eq. (3.18) follows from Eqs. (3.12) and (3.13). ERR is referred to as the
repeated-ring operator. The quantity 9'B2 is a propagator for the (B,2) pair of particles each undergoing un-

correlated binary collisions with the gas. Similarly, 8,„ is modified by repeated nonexchange rings.
The general diagram will be composed of factorizable parts, nonexchange rings and repeated rings, involv-

ing B and some fluid particle (not 2) and either of TB2, an exchange or nonexchange ring involving 2. As was

the case above, this generates yet another geometric series. The resummation is now straightforward and we
obtain

, »m f dPsd p2$B(PB)42(p2)PB+s"(s)
yyg~kB T s~o+

1
~Ta2 1+ny&a2 dp3A(p3) VTs»23VT23(1++»)+~ B2 B2

1 P2

S —P1y&F Nl
——kBT

Pz 5

2'
where the one-particle B propagator is defined by

9s'(s)= s+nI f dp3$3{p3) 0 g Ts3 0
1+~TB3B3

(3.20a)

9'23 —— Go '+nI f d P4$4(P4)[WT2~(1+ 9'24)+ WT34(1+ 9'34)] (3.201)

Eq. (3.5) having been used. Equation (3.19) is most
easily proved by expanding the propagators defined

by Eqs. (3.20a) and (3.20b) back into the binary col-
lision expansion, keeping the parts due to repeated
rings together [cf. Eq. (3.17)j. This form for Vr
will be referred to as the repeated-ring approxima-
tion for Vr. Notice the similarity between Eqs.
(3.19), (3.20), and Eq. (3.10).

The inc1usion of the ring collisions has renormal-
ized the Boltzmann propagators as well as the (B,2)
scattering operator (this plays the role of the mode-

coupling vertex). No renormalization of the fluid
propagator appears since gas-gas rings have been
omitted.

The ring —repeated-ring resummation results
presented here differ slightly from the standard
ones. If the technique is applied to the friction con-
stant, one obtains

lim

f dPsgs(Ps )Ps 9's '(s)Ps,
M kBT

(3.21)

this being the well-known result.
The main results of this section are Eqs.

(3.19)—(3.21). A number of approximations have
been made: Only single rings have been included.

No fluid renormalization has been considered. As
was discussed above, this is not a full density expan-
sion and we have kept only those terms which are
important for the Boltzmann behavior or for a large
8 particle [i.e., we neglect terms 0(a'iR) at higher
densities, o being the "diameter" of the host-gas
particles].

IV. HYDRODYNAMIC APPROXIMATION

As was mentioned earlier, the repeated-ring ap-
proximation has been used in many applications, in-
cluding self-diffusion, "' ' ' diffusion in a Lorentz
gas, ' and in the calculation of the friction coeffi-
cient. The most common approach used in carry-
ing out these calculations is known as the hydro-
dynamic approximation (see, ho~ever, Ref. 18). In
short, this approximation takes a spectral represen-
tation for the one- and two-body propagators con-
tained in Eqs. (3.19)—(3.21) and retains only those
terms corresponding to the densities of the con-
served variables. The motivation for this is the fact
that these terms are responsible for the anomalous
time dependence (i.e., lns) which required the ring
resummations in the first place. The other terms
give a contribution 0(plnp) or 0(R lnR) and are
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less important (see below). The calculation of g is
somewhat simpler than V~ and we consider it first.

A. Friction constant g

The friction constant g has been studied within
the context of the repeated-ring approximation.
The analysis, albeit quite complicated if carried out

rigorously, yields a rather simple expression for the
size dependence of g. Here, we prment a cruder
version of the more general argument (see Ref. 5 for
more details), which is sufficient for our purposes.

In the wave-vector representation, for k's smaller
than the inverse range of the interaction (i.e., 8 '),
the k dependence of the T-matrix elements can be
neglected. In this case Ss' can be written as [cf.
Eqs. (3.20) and (3.18)]

1+(0
i
P"Ts3i 0) J„"~ ~ (2n. ) s+ik(Vs V3) n—i[&—s —W~(3)]

1

X(0~MT, ~O) (4.1)

where k, -0(E. '). The integrand of the k in-

tegral in Eq. (4.1) is the Boltzmann propagator for
the 8 and gas particle (3). It describes the propaga-
tion of the pair, as inAuenced by multiple uncorre-
lated binary collisions with other gas particles.
How important are the various parts of this propa-
gator' Clearly,

{4.2a)

since (Nl /~) cc 1 Moreover since ~a and
are Boltzmann-Lorentz and Boltzmann collision
operators, it is easy to see that

' ]/2 ' ]/2
2 m kB~ 2 kgTWg-R—

M m Nl

(4.2b)

Of course, these are operators, and hence Eqs.
(4.2a) and (4.2b) must be treated with some care.
Nonetheless, for the present case, we can neglect the
parts of 8~3 which pertain to 8.

The right eigenfunctions g of the gas Boltzmann
equation satisfy

[ i k V3 n—g&i(3)—]g g(p3)

=A, (k)f -„(p3) . {4.3)

For a reasonable choice of the potential, "' the
eigenfunctions are complete and there are five
eigenfunctions (a = 1,. . . ,5) whose eigenvalues van-

ish in the limit k~0. These are the hydrodynamic
eigenvectors. The left eigenfunctions are related to
the right ones through complex conjugation. "
This implies that the eigenfunctions can be chosen

l

such that

& 4., I 4., & = J ~534)3{p3W. , & (P3)4., -„{p3)

where the overbar denotes complex conjugation and
where the customary inner product (

~
) for kinetic

theory has been introduced.
Using Eqs. {4.2a) and (4.2b), we see that the ratio

of the convective term to that containing the col-
lision operator on the left-hand side (lhs) of Eq.
(4.3) is 0(kl) [1 {n~o -) ' is the mean free path].
For small enough k we can thus treat the convective
term as a perturbation [this will force us to take
k, -min(l ',8 ')]. In this case we will use the
eigenfunction in the limit k~0 denoted by P' ' and
expand the eigenvalues in a power series in (kl).
The manipulations are standard, and the reader is
referred to Refs. 14, 3(b), or 5(b) for details.

Consider what happens when (0
~

VT~3
~
0) acts

on a function f( p3, ps):

{o
I ~~a, 3 ~

0)f
= f, I di J"d~lV. VI-

X [~(Ps P3) f{ps,p3—)] .

(4.5)

For a large enough mass ratio, the change in Pz is

0(&m/M) and thus
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(o
I ~TB3 I o)f

—f bdb f dt(IVB —V3I

X [f(~B P3) f(PB P3)1

+O(v'm/M ) . (4.6)

Thus (0
I
~TB 3J 0) does not act on PB in a compo-

site function of Pq and p3 (assuming the leading or-
der result is nonvanishing). Using Eqs. (4.3), (4.4),
and (4.6) in (4.1) allows us to rewrite the one-
particle B propagator as

8'B"(s)= s nf M—B+ f dp3$3(p3)(0 I VTB3
I 0)t(pgl(p3)

1
X

Q+Z a,a, f dP444(P4)t(', (P4)(o
I ~B,4l o) (4.7)

where
—1

z i 2 k&k (2~)3 s+g (k)..-=6. . "" '
A.(k) (4.8)

r...,—= f d P34(P3W~", '(P3)(0
I ~B,3 I 0)4.",'(P3)

I P, =o. (4.9)

The quantity A (k) ( denotes a unit vector) accounts for any directional dependence of t(' on k.
drodynamic approximation only those terms for which a],0,2

——1,. . . , 5 are kept.
The most important contributions come from those eigenfunctions whose eigenvalues are real [and hence

O(k ) in the hydrodynamic approximation]. For the case at hand, these correspond to the heat and shear
modes. That is,

1(,"„~,(p3)=(1—kk) p3/(~kBT)' ', Q,„„„= k,
317 V

(4.10a)

2

1( g~, (P3)=F2/5 — kB T, Qs„—, ——

kqT 2m 2

k,
3m IT

(4.10b)

where v is the kinematic viscosity of the host gas and I T is its thermal-diffusion constant, both are O(n~ ).
Neglecting all other modes, and assuming that the B particle is spherical, implies that ~ is diagonal. Hence

9''B"(s)= s n/WB nI f —dp3$—3(p3)(0
I

P TB3I 0)

P3 f d P444(P4) P4(o I ~TB4 I
o)

X
(3/v/k, +.r,h„,)mkB T

2 P3 5k
2

5(kg T)2 2m 2
+

(3 rT/k, + h, )

P4 5
X f dP4$(P4) kBT (o

I
~TB4—1—o)

2ppl 2
(4.11)

The one-particle propagator is still an operator. In order to compute g [cf. Eq. (3.21)] its inverse must be
found. A common technique used in solving the integral equation which defines the inverse in Eq. (4.11) is to
perform a basis-set expansion, the basis functions usually being taken to be the Sonine polynomials. The B-
particle s momentum is one of the Sonine polynomials. Thus in the first approximation [cf. Eqs. (4.11) and
(3.21)]
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drags(PJ3)Ps
nf f ~.P.+ f dp3$3(P3)(0 I

~Ts3
I
0)

kgT

p3 f dp4(((P4)p4(0 I ~Ta4
I
0)Ps

mkgT (3dv/k, +r,h„„)

(p 3/2m —5/2k' T)
+

5k' T (361'r/k, +rh„, )

2

f P44(P4) — 4T (0
I ~Tg4I 0)Ps

2m 2

(4.12)

Since P~+p; is conserved in a (B,i) collision, one
can replace Pz by —p4 in the last term in Eq.
(4.12). This yields a factor ~hea, she~, which we have
already neglected. The remaining terms can be
rewritten as

an adjustable parameter to be determined in a
separate measurement of the B-particle diffusion
constant, friction constant, momentum relaxation
time, etc. In summary, then

shear
g=+nfmru~r nfm-

3&v/k, +r,h,
shear

[1+r,h„,k, /(3dv) ]
(4.13)

1~(gk, /(3n r))
(4.16)

Notice that for I &&R, k, —I ' and thus the
ring —repeated-ring corrections are 0 (nf).

At very low density the Boltzmann result (in the
one Sonine polynomial approximation) is recovered,
i.e.,

kB nf mshrar e~

while at high density

(4.14)

(4.15)

(g is the shear viscosity. ) For k, -O(2m. /R) this is
the hydrodynamic result, ' ignoring for the moment
the question of slip or stick prefactor. In order to
remove k, completely, the small-k approximation
used for the T-matrix elements must be eliminated
and details of the scattering event, on the scale of
the interaction, must be considered. This has been
done although for our purpose we can treat k, as

B. Thermophoretic velocity Vz

The calculation of Vr follows that for g in prin-

ciple, although it is somewhat more complicated.
The expression for Vr [cf. Eq. (3.19)] splits into two

parts, the part containing the "exchange rings" (i.e.,
R,„) and the rest. In Appendix A we show that the
contribution from the exchange collisions is negligi-
ble.

The remaining part of VT is made up of three
factors: the single-particle propagator P~ '(s), the

(B,2) repeated-ring propagator, and the gas-
linearized Boltzmann propagator. As in the Sec.
IV A, we will use a one-Sonine polynomial approxi-
mation for S~'(s) as well as for (s —nfl)
Noting that p3/m [P2/2m —(5/2)ks T] is a Sonine
polynomial and using the results of the preceding
section allows us to write

Vp ——

2—PF i
—+ 1 P2 P2 5 km

3 hm g dPsd p2ps(Ps)$2(p2)Ps 0 WTg2 0 ——ATmk~T2 s 0+ 1+Ta2+a, 2 2m 2m 2 —,kg Tnf

(4 17)
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where we have used Eq. (3.21) and have introduced the translational part of the gas thermal conductivity A.,
given in the one Sonine polynomial approximation by

(4.18)

Hence, in the single basis function expansion, all that remains to be done is to evaluate the repeated-ring
contribution in Eq. (4.17). The way this is performed is exactly as was done in the calculation of g, that is to
use the hydrodynamic approximation. The result is

r

V
212EA f d~ (~ )~ (0)(» )

1T=
5(kg&}3~ f P26 P2 P24a P2 Q'

(g8 cP

&& f dpzdPsks(pa)kz(p~Wa'(Ã2)(0 I Vls2 I
o} ka~- —

Nl 2' 2
(4.19)

where we have used Eqs. (4.8) and (4.9), and we have used the fact that p2+Ps is conserved to replace Pz by
—p2 in Eq. (4.17). As before, only n, P corresponding to hydrodynamic modes are included. Of these, the
shear contribution is most important, and hence,

2ltlk, 31T V

5(4~)'0 3m'v
+&.b *

p2 P2 5f dPzdpa02(P2)fs(~s)Pz(0 I ~~s210)
L

(4.20)

which follows from Eq. (4.10a). Using our result for g [cf. Eq. (4.13}]gives

2 pz pz 5Vr= , —fdp2dpakz(pz)ks(~a)p2(01~&a210} ——kate'
5 nf(AT) v,g~, Pf 2' 2

All dependence on k, has dropped out. Moreover, Eq. (4.21) is exactly what would have been obtained had we
started in the Boltzmann limit [i.e., Eq. (3.10)]. Thus, the effects of rings-repeated rings completely drop out

of the thermophoretic velocity. The exact cancellation occurred largely due to the one Sonine polynomial and
hydrodynamic approximations. However, it is possible that this cancellation is more general. The cancella-
tion of the ring —repeated-ring corrections to V~ yields a result which is completely analogous to the mode-
coupling result for the Soret coefficient (remember that the two are essentially the same). In that case (cf. Sec.
III of I), the mode-coupling parts dropped out. In fact, technically the two theories have very similar struc-
tures, the main differences arising in the nature of the vertices and in the bare quantities. In any case, the full
effect of rings will occur as a ratio of the ring —repeated-ring corrections for the friction, to those involved in
Vr. This ratio should be 0(1).

C. Relationship to the (8 —2) scattering cross section and collision integrals

The manipulations leading to the expressions for g [cf.Eq. (4.13) or (4.16)] and Vr [cf.Eq. (4.21}]have, to a
large extent, been independent of the choice of scattering law between the 8 and gas particles. The only way
this dynami, cal information appeared was via

k ~ f dp242(P2}P~(o I ~~ail o)pz
mkgT
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2
P2 J'2 5~= f dp242(P2) f dpBPB(~8)P2(0 I ~Ts21 0) — ka T
Pg 2@i 2

2
+ P2 P2 5 += f dp2dpaA(P&)Ps(~a) 4T {0

I ~Ta21 0)P2
P2l 2tie 2

(4.23)

where the last equality follows from stationarity. %hen M p~ m, we can neglect the motion of 8 in the col-
lision and thereby obtain

~= f dp2&2(P2) kBT {01~TB2
I 0)P2

P2 PZ 5

2Ptl 2 P ~=0
(4.25)

In both Eqs. (4.23) and (4.25) we need the quantity {01P"Ts210)p21 p 0 which, for the case of potential

scattering, is easily obtained from a knowledge of the scattering cross section. For this case, using Eq. (4.5),
we find

3

f dp2$2(pi) —f b db f dg(1 —cos8), (4.26)

where the scattering angle 8 is given by

cos8:—P 2
~ P 2 /P 2

The cross section is given by

b db
O(P2, 8)=

(4.27)

(4.28)

and thus

8 00
5

rsh~~= 2 dpp$2(pp)pp d{cos8)(1 cos8)cT(p—2,8) .
3m 2k' T 0

Similarly, using Eq. (4.24),

Sm Pz 5f dpzg2(pz)p2 — k&T f d(c—os8)(1 —cos8)o(P2, 8) .
3m 2 2m 2

(4.30)

It is generally accepted that the dynamics of the host-gas —8-particle collisions cannot be described solely in

terms of potential scattering. Processes w hich lead to energy accommodation and diffuse scattering (e.g.,
roughness) are likdy to be important. In order to include such processes here, we rewrite "'

42 P2 I 821 P2 f
[ R [ z f P21. {P2 P21 )P202(72 ) {P2 P2 I )P2(t 2(72)l

(4.3 1)

where K( pz~pq I
R ) is the probability density per

unit time that particles with momentum p 2 initial-

ly, leave the 8 particle with momentum p 2 after a
collision at unit vector 8 on the 8 surface. This
form can be used in Eqs. (4.22) and (4.25) in order
to obtain v h„„and W once K is specified. Clearly,
for nonpotential scattering, there is a great deal of
freedom in choosing E. Nonetheless, some condi-
tions can be imposed; for example,

«Ã2 P21~)=0

for

8 p2 gO or p2.R gO,

detailed balance,

429»')«pi

42(P2)+( P2 P2 I
& )

(4.32)
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and normalization,

I P2 II
I

dÃ~«pz p2II~» I~ p2&0.
and

+shear

' 1/2
8mkgT 4g 2

Nl 3

[See Ref. 3(c), Chap. III for a discussion of these

symmetries. ]
The use of an inelastic scattering mechanism in K

does not follow from the theory piesented here. We
had assumed that B's internal degrees of freedom
separated from the rest. The use of an inelastic
scattering kernel represents the opposite limit; that
is, the internal degrees of freedom behave in a sto-
chastic manner. This is therefore an additional
phenomenological assumption in the theory [see
Ref. 3(c) for a more detailed discussion of this
point]. Before specifying K further, we return to

%shor and W.
If the B-gas interaction is taken to be that of elas-

tic hard spheres (o =8 i4), we can easily evaluate
the integrals in Eqs. (4.29) and (4.30) with the result
that

' 1/2
Sake T 2g 2

(kg T)2 .

Scaling the more general scattering law expressions
by the hard-sphere results gives

8&kg T
g 2g(1 1)

+shear

' 1/2
8m' 7 g 2(k y )2( 6g(1,2) ~

PFl 3

(4.36b)

whcrc thc reduced collision intcgrals arc defined as

in isa d»»» d R f d»[+(P& P& I @P202(pz)&'(s+ I)!(2mks T)'+'~'2ir'i~'

—«» P21I~ )424 2)P&] .

(4.37)

The co!hsion integrals defined by Eq. (4.3'7) are the same as those introduced in Ref. 20.
In this work we adopt Cercignan]['s model ['~' for the transition probability in the B-gas atom scattering

event. Namely, we let

K(p'~p IR)= 2 0
m2~(mkBT) alall(2-all) almkBT

[pi. +(I—ai)pi'] [p!!—(I —a!!)Pt!]'
Xexp —

k
—

(2 )2 k &
p~&0 Pi&O (4.38)

2jggkg TQ~ Q~~(2 —CX
~]

)2Ptlkg T

where i and II denote the components normal and parallel to the 8 surface at 8, respectively, and Io is a
Bessel function. The parameters az and a~~ are accommodation coefficients for the part of the relative kinetic
energy corresponding to motion in the R direction and transverse momentum, respectively. As Cercignani has
shown, 3"'s Eq. (4.38) can be derived on the basis of a stochastic model. Moreover, Eq. (4.38) has been used to
compute detailed angular scattering cross sections with good agreement with experiment. The accommoda-
tion coefficients must satisfy

0&aqg 1, Ogo,
~~
~2, (4.39)

in order that Eq. (434) hold. In addition, X defined by Eq. (4.38) satisfies detailed balance [cf.Eq. (4.33)].
When ~~~ and ~& vanish, the scattering process reduces to elastic hard-sphere scattering (j.e., g becomes a 5

function). What about using a more realistic potential. As is easily shown, if R ~go., the range of the true
surface potential, then the details of the potential are unimportant since pj ———pj +0(o /8) no matter what



the potential (assuming that it is short range and neglecting grazing collisions). VAen a~~ or az becomes uni-

ty, this corresponds to full thermal accommodation in the II or J. directions. FinsHy, a~~ =2 corresponds to
the ~j momentum being completely reversed on impact, a situation which is related to the rough sphere

scat ter1ng model.
When Eq. (4.38) ls used in Eq. (4.37) we flilld (see Appendix 8 for the detsils)

0""=1+—,(a~~
—1)+ F[———,, ——,;1;(1—a )]

8

0""=1+—,(a}~—1)+—
{—,F[——,, ——,;1;(1 ag)]+—, F[———,, ——,;1;(1—aL)] j,

8 2

where E is a hypergeometric function. Using these results in Eqs. (4.36a) and (4.36b) gives
T

4mB e 1+—,(a(( —1)+ F[——,—, ——,;1;(1—a~)]

(4.40b)

2mR2(ksT} c

3

3' 3 [1+-, (a}~—1)+ [F[—-„—-„1,(1—a, )]—F[—-„——,;1;(1—a, )]j

In the last two expressions, the mean speed

' 1/2
Sky T

was introduced. Combining Eqs. (4.41a), (4.4lb), and (4.22} gives

l 3'lT 3 1 11+—,(a~~
—1)+ [F[——,, ——,;1;(1 az}] F[———, , ——,—;1;(1—a, )) j

VT ——

5Pa 1+—,(a(( —1)~ F[——,, ——,;—1;(1—a~)]

where pI,
——@I'T is the ideal gas pressure. It is interesting to note that if we let

I4F[ ——,, ——,;1;(1—aj )]—3F[——,, ——,;1;(1—a~)] jQ=
l 3'F 3 1 l l1+—,(a(( —1)+ IF[——,, ——,;1;(1—ag)] —F[——,, ——,;1;(1—ag)] j

then Eq. (4.43} is identical with the result obtained by %aldmann for the thermophoretic velocity, although
at the level of the scattering kernels E, the theories are still quite different.

The thermophoretic force is easily obtained once the friction constant is known [cf. Eqs. (4.16) and (4.13)].
Using Eq. (4.41a) we find that

Ck, I

4mB 2c
pI 1+ 2 (a~~

—1)+ F[——,, ——,;1;(1—aj)]—

At very low density, only the second term on the rhs of Eq. (4.45) is important (i.e., the Boltzmann limit).
Unlike before, introducing a via Eq. (4.44) does not yield %aldmann s expression for the friction in the
Boltzmann limit except for total (az ——nI~

——1) or no accommodation.
In order to facilitate comparison with experiment, we introduce scaled velocity, friction, and thermophoret-

ic force by scaling these quantities by their Boltzmann limit values when 8 is a hard sphere. Thus
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— 5PIV:—VT (4.46a)

4R k,cd +
9m'

11+—,(aii —1)+ F—[——,, ——,;1;(1—ai)]
(4.46b)

(4.46c)

Notice that unlike Waldmann we, in general, do not have F*=1. In addition, unlike Mason and Chapman
(who assumed a diffuse scattering mechanism), we do not have V~= 1.

We are still faced with the problem of determining the accommodation coefficients a~
~

and az. They are ex-
pected to be more or less independent of py, unless p~ is made so low that any adsorbed gas molecules desorbe.
We are not interested in this regime and thus by choosing the density to be sufficiently low so that the ring
corrections can be omitted we, in principle, can determine a~~ and az from velocity and force measurements.
Of course, a better way would be to have detailed angular patterns for molecular beam scattering from a sur-
face of the material making up B and comparing with the patterns calculated by using the scattering kernels,
Eq. (4.38). Since a~~ enters into the expressions in a simple way, a~ can be determined by noting that

lim F» —1
p~ o V~

a~ ~,a& const

=—f4F[ ——,, —, ;1;(1——at)]—3F[——,, ——,;1;(1—aj)]I . {4.47)

This function is plotted in Fig. 2. In the next section we compare our theory with experiment.

V. COMPARISON TO EXPERIMENT

In the previous sections we have shown that the
thermophoretic forces and velocities depend on the
heat conductivity of the host gas, the pressure, the
temperature, and the temperature gradient. A part
of these quantities are control parameters in the ac-
tual experiments and the others can be easily mea-
sured independently. In addition, there are the two

O. SO

0.2S-

h.

0.0 I I I

O. D 0.25 0.50 0.75 1.0
FIG. 2. Combination of the scaled force and velocity

vrhich leads to an unambiguous determination of a] in
Cercignani's model for gas-surface scattering in the
Boltzmann limit [see Eq. (4.47)j.

l

accommodation coefficients which can be extracted,
in principle, from molecule-surface scattering data.
However, we are not aware of experiments in which
the surface materials were the same as those making

up the B particles. In addition, the pressures in sur-
face scattering experiments are many orders of
magnitude smaller than those typifying thermo-
phoretic measurements, and thus the nature of the
8 surface may be quite different. Finally, there is
the parameter k, whose value in a dense gas is
determined by the nature of the hydrodynamic
boundary conditions: free (slip) or rigid (stick).

For the sake of comparison to experiment it is
convenient to introduce a reduced force, defined by
the ratio of the actual force to R V T. The reason is
that the reduced force depends, for a given ag Ex~~,

and T only on the ratio I/R. This can be seen from
Eqs. (4.43), (4.45), and the low-density formulas for
the heat conductivity and the pressure. A conse-
quence of this property is that the reduced forces
corresponding to different values of R should lie on
a single curve, as a function of I/R. This conse-
quence is born out experimentally as seen in all the
figures (3—6) (when one disregards scatter in the
experimental data).

Before comparing the theory with experiment, we
wish to analyze the role of the parameter k, . Fig-
ure 3 is a plot of the reduced force versus I/R for
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with those bounds.
For comparison, we mention that if one uses en-

ergy accommodation (e.g., Waldmann's assump-
tions) one obtains F~=1 and V~ g1, which is in

disagreement with experiment. Mason and
Chapman's assumption of s diffuse scattering
mechanism yield V~= 1 and F*& 1, again in

disagreement with experiment. We conclude that a
correct choice of the accommodation mechanism is
extremely important for the understanding of the
thermophoretic data. Moreover, the sensitivity of
the experiment to accommodation coefficients sug-

gests that such experiments can be used to measure
accommodation coefficients in relatively dense

gases, where standard beam experiments do not
work. (Beam experiments are at pressures much
less than 1 torr whereas thermophoresis experi-
ments can be done even at pressures of hundreds of
atmospheres. )

Figures 5 and 6 correspond to thermophoretic
forces acting on particles with high heat conductivi-

ty. Figure 5 shows the experimental data of Sehadt
and Csdle for NaC1 particles in air at 307 K and s
temperature gradient of -49.4 K. Figure 6 shows
similar measurements for mercury particles in air.
Unfortunately, we know of no velocity measure-

ments in these cases. F* in this case is -0.54, so it
is close to its lower bound [Eq. (5.4)]. This corre-
sponds to az-1. Indeed, the two lowest curves,
having az ——1 and a~~

——0 and 0.5 (from bottom to
top) seem to be in good agreement with experiment.
It is interesting to note that Epstein*s theoretical
prediction in this case is about 30 times too small. '

This is so because his formula overestimates the
role of the internal heat conductivity of the parti-
cles. In fact, it seems from our agreement with ex-

periment that this internal heat conductivity can

play only a minor role, at least when the density of
the host gas is not too high. The theoretical reason
has been given in the previous sections.

In conclusion, our theory is in good agreement
with experiment. The latter seems to be sensitive to
the accommodation processes but not to the internal
heat conductivity of the particles. It is important to
perform more experiments and measure both the
thermophoretic forces and velocities. In addition,
independent measurements of the accommodation
coefficients, for example, by molecule-surface
scattering, may eliminate the remaining two param-
eters appearing in our theory.

VI. DISCUSSION

We have shown that thermophoresis, although
being a macroscopic, nonfluctuating effect is of

nonhydrodynamic origin. Firstly, the linearized
Navier-Stokes equation (with the usual boundary
conditions) predicts no thermophoresis. This solu-

tion is stable to nonlinear perturbations. Secondly,
the fluctuating hydrodynamic equations (mode cou-

pling) yields s vanishingly small renormalization of
the bare thermophoretic effect. This is consistent
with the low-density results, but is not very useful.

Finally, kinetic theory shows that the effect is of ki-

netic origin and is not renormalized by higher-order

(ring) or correlated events, which are typical of the
hydrodynamic regime. We have also shown that
the observed thermophoretic force changes its
behavior as one moves from a dilute host gas to a
denser host gss. This change reflects the crossover
of the friction coefficient from its Boltzmann value

to its Stokes value.
The guest B particle can be grossly described by a

hard-sphere potential. The use of such a potential

yields results which are in qualitative order of mag-

nitude agreement with experiments. To achieve a
better fit of the data one needs a more detailed

description of the interactions between the guest

particle and the host-gas particles. It turns out that
a small attractive potential tail, which is always

present is not significant as far as thermophoresis is

concerned. The reason is that the typical range of
such a potential is angstroms whereas the typical
size of the guest particle is about a pm. Another
mechanism of relevance to the scattering of host
molecules of the guest particle is accommodation.
We have shown that the simplest accommodation
models cannot possibly account for the data. '

Only when a more sophisticated model, allowing

different degrees of accommodation for transverse

snd longitudinal components of moments, is intro-

duced can one achieve a good fit to the data.
Indeed, the sensitivity of thermophoretic phenome-

na to the details of the gas-surface scattering pro-
cess, suggests that thermophoretic measurements
could be used to experimentally determine the ac-
commodation coefficients. This takes place in den-

sity regimes many orders of magnitude too large for
conventional "beam" experiments to be of much
use.

We stress that unlike in Epstein's formula, the
internal heat conductivity of the guest particie does
not appear in our formulas. This is because we did
not directly take internal degrees of freedom into
account. They were included phenomenologicslly
through the accommodation mechanism. On the
other hand, as explained by Waldmann, ' this inter-
nal conductivity is unimportant for dilute enough
host gases. This is because the particle does not
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stay for a large enough time in any region in space
in order to equilibrate with its surroundings. Thus,
Epstein's formula cannot be right (and indeed does
not compare well with experiments) for highly con-
ducting particles. In the case of a dense host fluid
(or a liquid) one in general cannot neglect the inter-
nal degrees of freedom of the guest particle. This
case is quite complicated and no microscopic theory
of thermophoresis, valid in the dense fluid regime,
is known to us.

On a more general level, we have shown that the
thermophoretic force coefficient is related in a sim-

ple way to the Soret coefficient. Since it is well

known that the latter is sensitive to microscopic de-

tails (i.e., scattering laws), so is the thermophoretic
force coefficient.

There are several approximations in our work.
One of them was mentioned before: the neglect of
internal degrees of freedom of the guest particle.
Another approximation is the use of the lowest or-
der Sonine polynomial expansion in solving the in-

tegral equations associated with the repeated-ring
approximation. Only in this approximation do the
repeated-ring corrections exactly cancel in VT.
Higher-order corrections in the Sonine polynomials
will renormalize both the velocity and the force.
Such a (multiplicative) correction will have the
form

'2
R R1+c)—+cg
I I

R R
1+c3 —+c — + .

the c s being constants. As I decreases {denser gas)
the result will tend to c~/c3 of the lowest order re-

sult (assuming ci &&c2,c3g&c4), then c2/c4 of it,
etc. Such a qualitative change is indeed observed in
some experiments. ' Still another approximation is
the neglect of the k dependence of the binary col-
lision operators snd the introduction of a cutoff k,
to compensate for this approximation. It has been
shown in the case of Stokes friction that such a pro-
cedure can yield qualitatively correct results. ' A
more severe error associated with k, is the hydro-
dynamic approximation, whereby only the hydro-
dynamic part of the operators, as well as the small-
k forms of the hydrodynamic eigenvalues are kept.
This has the advantage that analytic results can be
obtained. As discussed in Sec. IV, the cutoff is
0(min[1/R, 1/I I). The precise numerical factors
are important as far as free (slip) versus rigid (stick)
boundary conditions are concerned. However, the
thermophoretic force seems to be relatively insensi-

tive to the choice of these boundary conditions,
%hat does matter, however, is the point where the
cutoff changes from one behavior to the other. %e
have chosen I =R for the transition. At this point
one gets a break in the approximate curves describ-

ing the force versus I/R, which merely indicates the
fact that the theory breaks down for I-R, in the
absence of a small parameter. One can eliminate
the need for k, in a numerical study and we are ac-
tively pursuing this direction.

Another approximation is the inclusion of only

ring and repeated-ring events. This involves

neglecting ring within ring, three-body collisions,
etc. These events should yield well-behaved

higher-order (in density) corrections although their
relative importance is unknown. In addition, we

have neglected static correlations. This is reason-
able for a dilute enough host gas, although certainly
not for a liquid. " Finally, for large enough tem-

perature gradients, nonlinear terms in VT should be
considered.

%'e feel that the next step should be a better ki-

netic treatment (perhaps a numerical one} where

some of our approximations can be relaxed. A
promising method seems to be the vsriational ap-
proach.

Internal degrees of freedom should be taken into
account as a first step towards understanding ther-

mophoresis in dense fluids. Finally, since the 8
particles in experiments msy be charged one should

investigate the effect of charge on thermophoresis.
Since the existing experiments rarely measure the

forces and velocities separately, we believe that
many experiments should be performed in order to
measure the dependence of thermophoresis on the
physical properties of the host Auid and the guest
particles. In addition, independent gas-surface
scattering measurements would be very useful in

providing a qualitative check of the accommodation
coefficients deduced from thermophoretic experi-
ments, although, as mentioned above, one should
exercise some care in comparing beam data

(p~ -10 torr) with thermophoretic data (p~ -10
torr).
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APPENDIX A

In this appendix we show that the exchange rings are negligible. Physically me expect this to be the case
since they involve tmo bath particles in a coherent way (i.e., both must colhde with 8). The contribution of
the exchange rings to VT [cf. Eq. (3.19)] is

(1 T)ex I d Bd P2dP30B( B )'j4(P2)43(P3) 8 +B (s)
m MkgT

1 1
X 0 P"Tg29'g2P Tg39'231 T23(1+9'23) 0

1+J"Tg29'g2 (s —nf Wf )

X
P2 Pz 5——AT, s —+0+ .2' 2

(Ala)

Carrying out the one Sonine polynomial expansions described in the text yields

—2pf A

(1 T)ex 3
dpBd P2d P3'4(~B )((2(P2)43(P3)PB

5((kBT)'

1 P2 Pz S
X 0 ~TB2&B2~TBP'23~T23(1+&23) 0 ——kgT

1+&Tg29 g2 'ffl 2Ptl 2

The combination of operators (1+MT»$&2) 'WT~2 is exactly the same as what appears in 9'z'(s), al-

though we do not consider only the (0
~ ~

0) matrix element. On the other hand, since we neglect the k depen-

dence of the T's and mill evaluate the expressions within the context of the lowest-order hydrodynamic ap-

proximation, we can write
r

-+ -+ PB P2
Pg 0 P"Tg2 k, —k+~ 82 82 nf M m

and hence Eq. (A2) becomes
t

—2@iA, -+
(VT)ex= 3

dPBd P2dP3'4(PB)02(P2)03(P3) PB P2
SM(kg T) m

(A2)

dk P2 Pz S
X I (k, —k

~

9'B2&TB3/231"T23(1+9'23)
~
0) kBT——

k&k (2~)3 lt? 2@i 2

(A3)

where, as in the text, g has canceled. Of the two
terms on the rhs of Eq. (A2), only the one in P~ is
important. Since p2 is the lomestwrder shear eigen-
mode (it can be shown that the longitudinal contri-
bution is much less important), p29'~2 ~ p2. On the
other hand, p2T~3 vanishes and thus the term in p2
makes no contribution in the lowest-order hydro-
dynamic approximation.

A crude estimate is now sufficient to show that
(Vz ),„ is negligible. The operator appearing in Eq.
(A3) is singular as k~O. The singularity results
from the hydrodynamic parts of the propagators

9'z, 2 and 9'2 3. The latter mill behave as

$23-(vk2) ', k g k,

while

9'B,2-(gB/M) ', k (k, . (AS)

PB(o ( vrB3
~

0)-mz2c (A6)

Unlike the analysis given in the text, me must keep
W~ in 9'z2 since it protects part of the divergence
at k=0. Moreover,
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and

(o
I VT2, I

0)-co',
(J2

( VT),„-
nksT I max(R, /)

where the mean speed c is given by Eq. (4.42) and R
and u are typical dimensions for the 8 and gas par-
ticles, respectively. Finally, inserting estimates for
the size of (p2/rn)[(p2/2m) —, ks—T)gives

R o2k,
( VT),„-A,

gV

since v lc,-gs mR-cnf, and k, -min(R ', I '),

%'e are using kinetic theory and thus require that
o &pl. Moreover, for our formalism to hold, we
must consider a large 8 particle [i.e., (m/M) && I
and o &~R]. Thus

0. k,

which implies that (VT),„ is small with respect to
Vr [cf. Eq. (4.43)].

APPENDIX 8: DERIVATION OF EQS. (4 40a) AND (4 40b)

The integrations appearing in Eq. (4.37) are best considered in two Parts. Using Eq. (4.34) w«»d

g.2(&+1)!(2mk,r)'+""'2~'" dp, dp2p,'"+"p, - d'R&(p2~p2 IR)P2»('2(p2)=I)R ~=A

(83)

with

The remaining term in Eq. (4.37) is equal to (we choose m =1)
1/2

, („,) f, dp dP (pf+P~~'P~~) (Pi Pi+P~~'Pj~)'P2(Pz(P ~P IR) .
(s +1)!(2k&T}'+['/ '

p~ &0

p~ (0

Following Cercignani "we note that [the reader should be aware that there are many misprints in Ref. 3(c)]
' 1/2

K(p'~p IR)= &z(p) I
pjp'j.

I X (I —&j.)'» I —&()) +"Ann(p)A~n(p')
kgT inn

1()L " H
2k, T - V2k, T

(282+5 t ~)
—1/2p s2

+2ksT

where LI and H are Laguerre and Hermite polynomials, respectively. The functions p& „are orthogonal in
the sense that

2"
[farm&SI'm'n'] =

8 f, „dppi&2(pxi (pW'I' '. (p)=&tr&.,

Using Eqs. (83)—(85) in (82) gives for s= I

)'(I )""(
lmn 4k' T

where we have used the parity of the Hermite polynomials under inversion in writing the last expression.
Since

p(), 1 )/kB T Alo

and noting that

f dpjp j +
'e ' L~(Pp~/2) =(2ks T)"~2

r —+1r I ——P1

2 2

I!I ( —n/2)
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I"(l ——, )
(&[~—1)+

(I t)'I ( ——, )
(89)

The series on the rhs of (89}is a hypergeometric series. Hence, adding Eqs. (81) and (89}yields Eq. (4.40a).
In essentially the same fashion, Eq. (4.40b) can be obtained, the details being left to the reader.
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