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The phenomenon of the motion of suspended particles induced by temperature gradients
in fluids, known as thermophoresis, is considered. We show that thermophoresis is related
to the Soret effect. The thermophoretic force acting on a particle immersed in a fluid
which has a temperature gradient, V T, is given phenomenologically by —q&V T. q& is
shown to be related to the thermal-diffusion ratio by qz. ——kq(kq —1). In the limit of a di-
lute suspension we find a molecular expression for kz in terms of an equilibrium time-
correlation function of the momentum of a suspended particle and the dissipative heat
current. As a by-product, we also obtain the force acting on a such a particle due to a pres-
sure gradient. We further show, using time-scale arguments, that a local-equilibrium calcu-
lation of the thermophoretic force cannot be adequate. Finally, we show, using a mode-

coupling approach, that the hydrodynamic contribution to the thermophoretic force coeffi-
cient is negligible, unlike in the case of Stokes friction. We conclude that although thermo-
phoresis is a macroscopic effect (not a fluctuating one} observed in fluids, it is not given by
standard hydrodynamics. In a subsequent paper, with the use of kinetic theory, we identify
the microscopic processes responsible for thermophoresis, calculate the thermophoretic
force coefficient for moderately dense gases, and compare our results to experiment.

I. INTRODUCTION

The effort invested over many years in the inves-
tigation of simple nonequilibrium systems resulted
in the construction of several powerful techniques:
kinetic theory, ' mode-coupling theory, projection-
operator techniques, linear- and nonlinear-
response theories, information theoretical ap-
proaches, etc. All these techniques have certainly
improved our understanding of transport properties
and nonequilibrium phenomena. There are still,
however, many open problems and specific effects
to be understood.

In particular, it is not at all clear that the existing
approaches always yield equivalent results. It is
therefore important to look for and explore simple
nonequilibrium systems in order to develop our
nonequilibrium understanding and intuition and
check our theoretical tools.

In the past few years there has been progress in
the understanding of simple nonequilibrium steady
states. It has been shown that the fluctuations in
these states differ both qualitatively and quantita-
tively from those in equilibrium states, even if these

steady states are close to equilibrium. The theoreti-
cal results " were obtained, using methods rang-

ing from kinetic theory ' ' to phenomenological
fluctuating hydrodynamics. ' ' " Encouragingly, all
these methods led to the same results. Moreover,
they seem to be confirmed by experiments. '

In this series of papers we propose to examine
another simple nonequilibrium situation known as
thermophoresis. There exists a wealth of experi-
mental and theoretical information related to this
problem. ' The reason for this situation is the
relevance of thermophoresis to aerosol, dust and
smoke dynamics, colloid chemistry, geophysics, as-
trophysics, and many areas of chemical engineering.

The thermophoretic effect is the motion of small
{for example, 1 pm in size) but macroscopic parti-
cles suspended in a fluid which has a steady tem-
perature gradient. Early observations of this effect
were reported by Tyndall' in 1870 and an early
theory, ' due to Einstein, was proposed in 1924.

Most of the experimental work related to thermo-
phoresis has been performed on aerosols. These ex-
periments face many difficulties {e.g., it is difficult
to create aerosol particles of uniform size and corn-
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position or to create electrically neutral particles).
In spite of these problems, it seems that different
experiments in which different techniques are used
agree with each other. The interested reader is re-
ferred to some excellent reviews for details. ' ""' '

The theoretical situation is somewhat less satisfy-
ing. The successful theories seem to depend on a
number of free parameters which makes their agree-
ment with experiment somewhat questionable.

Naively speaking, one can explain thermophoresis
as follows: A particle (to be called henceforth a "8"
particle) suspended in a Auid which has a steady
temperature gradient is hit by "hot" fluid particles
on one side and "cooler" Quid particles on its other
side. The result must be a net force leading the 8
particle towards the colder region. Such an ap-
proach mas taken by Einstein, ' "who also assumed
that the mean-free path of the host Quid particles
mas much bigger than the size of the 8 particle.

Einstein's model tacitly assumed that the density
of the host gas was uniform, which actually means
he did not consider a steady state. In a steady state
the prcssure is uniform (p-1/T) and a calculation
similar to Einstein's mould yield no net force. This
should come as no surprise since the tota/ force in a
steady state vanishes. As has been noted by
Chapman, ' ' ' mean-free-path theories (of which
Einstein's is an example), may lead to manifestly
wrong results when applied to a diffusion, and
thermal-diffusion problems. He concludes that
mean-free-path theory is "unsafe to use in searching
for new phenomena and scarcely satisfactory to
make it the basis of a theory even in cases where it
gives approximately correct results —better no sim-

ple theory than one based on unsafe or erroneous ar-
guments. " In all fairness, Einstein's model is in
qualitative agreement with experiment in the Knud-
sen regime.

A morc successful theory mas proposed by %ald-
mann. His theory, based on the Chapman-Enskog'
approach to the Boltzmann equation, is restricted to
the density region where the mean free path of the
Auid particles is much larger than the size of the 8
particle. He took the host fluid to be a Maxwell gas
and the 8 particle an infinitely massive sphere. In
addition, he assumed that a fraction of the gas par-
ticles colliding with the sphere are thermalizcd.
Similar assumptions mere used in other kinetic ap-
proaches, ' mainly for mathematical simplicity.

In contrast to the above microscopic approaches,
which are, strictly speaking, restricted to low densi-
ties of the host fluid and ignore internal structure of
the 8 particle(s), Epstein proposed a pheno-
menological theory. ' He assumed that the host

Quid was described by linear hydrodynamics. Thc
boundary conditions he used at the sphere were not
the standard free (slip) or rigid (stick) conditions.
The latter imply zero thermophoretic force. In-
stead„Epstein assumed, on the basis of Maxwell's
kinetic approach, ' that the velocity of the fluid at
the 8 particles (which mas taken to be a sphere, as
in all other theories) had a tangential component
proportional in size to the temperature gradient.
This assumption led to an expression for the veloci-

ty of the 8 particle and for the thermophoretic
force (known as "Epstein's formula" ) which are in
reasonable agreement with experiment for poorly
conducting 8 particles in fairly dilute host gases.
Brock, ' still using the hydrodynamic approach,
employed more sophisticated boundary conditions
and achieved a very good fit to experimental data.
The weakness of his theory, from a practical point
of view, is the fact he had four free parameters. Al-
though these parameters are, in principle, measur-
able in separate experiments, they rarely are.

A different point of view in treating the problem
mas put forward in the work of Mason and Chap-
man. ' Instead of concentrating on a single "large"
particle fixed in a fluid, they regarded the suspend-
ed particles as a dilute second component. This ap-
proach is justified by the understanding that the
only difference betmcen the usual dilute solution
and the present case is the size of the solute mole-
cules. Employing the Chapmann-Enskog tech-
nique, they obtained results that are qualitatively
similar to %'aldman's (they differ in overall pre-
factors of order unity). Unlike the phenomenologi-
cal approaches, it is difficult to include internal

properties of the 8 particles (e.g., heat conductivity)
in the Mason-Chapmann approach, or for that
matter in the other kinetic theories.

In addition to the theories mentioned above, there
are many other works. ' ' ' One of them, due to
Zubarev and Bashkirov is referred to in Sec. II.

To summarize this short (and incomplete) review

mc feel that the following several points should be
stressed.

(1) There is no microscopic theory of thermo-
phoresis that is valid over a wide region of densities
of the host fluid.

(2) The phenomenological hydrodynamic theories
employ boundary conditions that are taken from a
dilute kinetic regime, where hydrodynamics may
not apply. This makes their validity questionable.

(3) From a purely hydrodynamic point of view

(employing free or rigid boundary conditions), a
particle in a fluid with a temperature gradient does
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not move. As is shown in Landau and Lifshitz2
the full nonlinear Wavier-Stokes equation for a fluid
containing a stationary spherical particle, with slip
or stick boundary conditions and having an asymp-
totically constant temperature gradient, admit the
following solution: velocity—:0 everywhere with
the pressure constant. The temperature profile is
determined by the heat-conduction equation. This
immediately implies that the thermophoretic force
corresponding to this solution vanishes. This con-
clusion remains valid for any boundary conditions
as long as they do not directly couple velocity and
temperature gradients at the particle's surface. In
addition, it ean be shown that the above solution is
stable for an incompressible fluid. Compressibility
allows for sound modes in the fluid. Both mode-

couphng calculations (see below) and an application
of a generalized Faxen's theorem show that the
latter are irrelevant for thermophoresis.

(4) In constructing a theory of thermophoresis
one may employ either the single-particle point of
view (e.g., %aldmann) or the dilute solution ap-
proach (e.g., Mason and Chaprnann).

(5) Most of the above theories have not addressed

themselves to the relation of thermophoresis to
Brownian motion. After all, typical Brownian par-
ticles are of the same size as typical aerosols or dust

particles which are dealt with in the theories of
therm ophoresis.

(6) Most theories, with the exception of Brock's,
do not compare well with experiments in moderate-

ly dense gases.

In this series of papers, we study some of the
theoretical problems described so far. %e believe

that we have a qualitative understanding of thermo-

phoresis as well as quantitative results to be com-

pared with experiment. Our approach can be classi-
fied as a dilute solution theory. The two main

theoretical points we make are that the thermo-

phoretic effect is of nonhydrodynamic origin and

that thermophoresis is closely related, both qualita-

tively and quantitatively, to the Soret effect.
The paper is organized as follows. In Sec. II, we

employ microscopic considerations to derive a for-
mula for the average force acting on a 8 particle.
These considerations are very general, and in partic-
ular, do not assume anything about the density of
the host fluid. The latter could be a dilute gas, a
dense gas, or a liquid. It is shown, that due to the
fact that Brownian (or momentum relaxation) time
scales are very fast compared to typical thermo-

phoresis time scales, there is no separate "local-
equilibrium" contribution to thermophoresis (in dis-

tinction to the Zubarev-Bashkirov approach). In
addition, a simple connection between the Soret
coefficient and the thermophoretic force coefficient
is derived. Thus, it suffices to calculate the Soret
coefficient for a dilute suspension.

Section III is devoted to hydrodynamic calcula-
tion of the Soret coeHicient in the following sense:
It is well known that the Stokes-Einstein diffusion
coefficient can be derived from mode-coupling
theory by assuming a smal/ "bare" diffusion coeffi-
cient and attributing the observed values of that
coefficient to a "renormalization" due to the non-
linear terms in the Navier-Stokes equations. Thus,
Stokes-type diffusion is regarded as being of hydro-
dynamic origin. A similar calculation performed
for the Soret or thermal-diffusion coefficient is
presented in Sec. III. The result is that the part of
the Soret coefficient which is due to mode-coupling
or hydrodynamic effects is negligibly small. Soret
diffusion is a nonhydrodynamic (bare) effect. The
basic reason for this is the absence of a coupling of
the heat flux to momentum in hydrodynamics.
This is why the hydrodynamic solution contained in
Landau and Lifshitz is stable. It is worthwhile
mentioning that unlike the theories of fluctuations
in simple nonequilibrium steady states, ' dif-
ferent approaches (e.g., mode coupling versus kinet-
ic theory) are not equally useful. The reason is that
the mode-coupling calculations show that the quan-
tity of interest is determined entirely by its bare
part. This cannot be calculated using mode-

coupling techniques.
Section IV offers a short summary of this paper.

In the next paper in this series we employ some
modern techniques of kinetic theory to calculate the
Soret coefficient. It turns out that the necessary
couplings are of nonhydrodynamic nature and de-

pend strongly on the details of the 8 fluid interac-
tion. It is well known from the Chapmann-Enskog
kinetic theory that the Soret coefficient is highly
sensitive to details as well as to mathematical ap-
proximations (unlike, e.g., the viscosity) in molecu-
lar mixtures. It should thus come as no surprise
that the same is true when one of the species be-

comes macroscopic in size. The resulting formulas
compare well with experiments for both dilute and
dense gases.

II. CONNECTION TO SORET AND DUFOUR
PHENOMENA

A. General considerations

It is well known that mixtures subjected to tem-
perature gradients will respond by establishing con-
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centration diffusion fluxes. This effect is known as
the Soret effect (the opposite effect, i.e., heat flux
caused by concentration gradients, is called the
Dufour effect). Phenomenologically, for small

enough temperature and concentration gradients,
the mass flux j; corresponding to species "i" can
be written as

j;=—QLJV(13pJ. )+L; rV'p,
j

(2.1)

gF 5(R—rJ ) ~a(t)

F~F(R,t)—:
+5(R—rJ. ) ~a(t)
j

(2.2)

where Fj is the total force felt by the jth particle at
position rz, and ( )~a(t) is a nonequilibrium en-

semble average at time t and where the sums over j
include only the large particles. Note that F~~(R, t)
is the total force felt, on the average, by a particle at
position R and thus contains frictional as well as
thermophoretic effects. In steady state, this force
vanishes in the absence of external fields. We seek
an expression for F~q in terms of the state variables
of the nonequilibrium system.

Before continuing, it must be stressed that Eq.
(2.2) defines the average force felt by a particle at

where the sum is over all different species, L,j are
the Onsager diffusion coefficients, L; T is the Soret
coefficient, P is llktt T (ka is the Boltzmann con-
stant and T is temperature), and (p~ I are the chem-
ical potentials per unit mass. The L;J's are not in-

dependent because of Onsager's reciprocal relations
and the fact that g, L;~ =0. .(Note that our defini-

tion of the Soret coefficient is somewhat different
from that in Ref. 25. The connection between the
two definitions is trivial. )

The Soret phenomenon can be thought of as ther-
mophoresis on a molecular level, i.e., the only real
difference between a fluid mixture and a fluid with
macroscopic particles immersed in it is basically the
size of the "solute" particles. Unfortunately, Eq.
(2.1) cannot be directly applied to the problem of
thermophoresis. This is so because the chemical
potential for a single macroscopic particle in a fluid
is not known. To overcome this difficulty, we shall

derive an expression for the thermophoretic force,
which, when combined with Eq. (2.1), does not con-
tain the chemical potential of the large particle. To
do so, we employ a microscopic approach.

The thermophoretic force is related to the none-

quilibrium mean force felt by the large particle.
That is,

point R. In order to use this force to determine the
motion of any one particle, fluctuations must be
small and/or quickly average to zero. This is quite
reasonable for a large enough particle. On the other
hand, in molecular systems, the force fluctuations
are expected to be relatively large and their time
scale comparable to that of the molecular motion.
Thus, the use of Eq. (2.2) in a one-particle equation
of motion for a microscopic particle would be quite
meaningless.

For this work we assume that the macroscopic
state of the system is specified by the averages of
the densities of the conserved (i.e., "slow" ) quanti-
ties. We denote the corresponding phase functions
as A(r, t). More specifically, when the solvent con-
sists of a single component, the A ( r, t) consists of
N ( r, t), N ( r, t), P( r, t), E( r, t), the fluid mass den-

sity, the large-particle mass density, the total
momentum density, and the energy density at a
point r at time t, respectively. The microscopic de-

finitions of these densities are given by

N (r, t)= g m5(r —rJ(t)),
jEf

(2.3a)

N (r, t)—= g M5(r —rJ(t)),
jEB

(2.3b)

and

P(r, t)—=g pJ(t)5(r —rJ(t)),
j

(2.3c)

E(r, t) =g 5(r —rf(t))
J

X p,'/2m, + —, g u(jj')
j wi

(2.3d)

In the above definitions, m and M are the solvent
and large-particle masses, respectively, pj is the
momentum of the jth particle, mJ C (m, Mj is its
mass, and the sums on j include both types unless
otherwise noted. f denotes the set of j's corre-
sponding to fluid particles and 8 to large particles.
In Eq. {2.3d), we have assumed pairwise additive
potentials u (jj') for concreteness. This assumption
is not needed in this section.

In order to compute the nonequilibrium averages
appearing in Eq. (2.2), we use a generalization of
response theory. The main result of this approach
is that
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(&(r ) )Np(t) = (&(~))h, ( r, t)

+f dr~dr2(8(r, t)A(r~))h, (r, t) {A(r~,t)A(r2))h, (r, t)(rz —r) Va(r, t), (2.4)

where a(r, t):—(A(r})NE(t) and (B(r))NE(t) is the
nonequilibrium average of a dynamical variable
8(r). In Eq. (2.4), the symbol ( )h, (r, t} denotes
an equilibrium grand-canonical average where the
equilibrium average values of the A's are chosen to
coincide with the actual ones at the point r and
time t,

A(r ', t)—=A(r ', t) —(A(r '))s, (r, t) (2.5)

f dr&(A(r, t)A(r~))h, .(A(r~, t)A(r'))h, '

=15{r —r '), (2.6)

defines the inverse (A(r, t)A(r '))h, with I a unit
matrix. Equation g.4) neglects nonlinear terms in

Va as well as terms in V Va, etc. Thus, this result

is valid for systems where the average spatial
nonuniformity is small. The "horn" averages sim-

ply account for the local-equilibrium state. %e re-

mark that if Eq. (2.4) is linearized around full

equilibrium, then the usual linear-response theory is

obtained. Since we consider only systems which are
translationally invariant when in equilibrium, all

the horn correlation functions appearing in Eq. (2.4)
depend only on differences in the spatial coordi-
nates inside the average.

The mean force vanishes in equilibrium; there-

fore,

Qpt5(r —r ) (r, t)=0
j horn

and hence to linear order in the gradients

(r, t) (A(r&, t)A(r2))ham(r, t)

g 5(r —rj)
jEB horn

(r, t) .

FNE(r, t)= f dr, dry g F,(t)5(r —rJ(t))A(r, )
j&8 horn

g(r2 —r).Va(r, t) (2.8)

The denominator on the right-hand side (rhs) of Eq. (2.8) is the local number density of large particles

which we write as p~(r, t)/M. Note that space and time, in general, appear both explicitly inside the averages

as well as implicitly in the definition of the horn distribution function. The latter is not a dynamical depen-

dence and is completely parametric. Consequently, we can treat the averages appearing in Eq. (2.8) as full

equilibrium averages and at the last step replace the chemical potentials, temperature, and velocity by their

nonequilibrium values at the point r at time t. VVe exploit this property and rewrite Eq. (2.8) in Pourier repre-

sentation, namely,

g Ft(t)e ' A -„(A-„(t)A
Bik k =0 horn

(r, t) V'a(r, t) . (2 9)

The Fourier transform is defined by

fk =f dre'"' 'f(r) .

dPj (t)
Fj(&)= =—Pj(&) (2.11)

and using the "dot-switching" property of equilibrium averages (i.e., stationarity) gives

F~E(r, t)pg(r, t)/M = g p;t~v, )jEB jc8
horn

where we have performed the k derivative, set k =0 in the result, and used the conservation laws, namely,



THEORY OF THERMOPHORESIS. I. GENERAL. . .

(2.14)

where the "dissipative flux" I z has been made orthogonal to the A's (in the sense of projection operator

theories). Thus,

pB(r, t) pjpj A )
A,

FNa(r t) = g Ar —g P AT (AzAr) (AT Jr) —g P (t) IT
jEB jEB jEB

A„:—ik. J (2.13)

The quantities J are the fluxes corresponding to the A' s. Lastly, the subscript T denotes the k =0 value (i.e.,
total).

Since the A s are conserved, the first average in Eq. (2.12) is time independent. The flux appearing in Eq.
(2.12) contains two parts: a slow part proportional to A and the rest. More specifically, we write

-+J,= I,+—( J,A, )(A,A, )-'-A, ,

(ATAT)h,
' (r, t) Va(r,.t) . (2.15)

The only time dependence in the coefficient of 7'a (ignoring that associated with horn) comes from the corre-

lation function

C(t)=— g P, (t)IT (2.16)
jGB

Roughly speaking, there are three characteristic time scales associated with C(t): (1) microscopic times

r~ —10 ' sec; (2) intermediate times related to the Brownian motion of the large particle rB -(gB /M)
is the friction constant. For aerosol particles, rB -10 sec. (3) Hydrodynamic times. Since the correlation
function C(t) is a correlation between quantities orthogonal to the hydrodynamic variables, it should, barring
nonlinear effects, decay on the vB time scale. This is considerably shorter than relevant experimental times

and thus
T

pB(r, t) PJPJ A
FNE(r, t) = g Ar — g P~AT .(ArA) '(Az Jr)

jGB jEB
~ (A,A, ) -'Va(r, t) (2.»)

on the experimental time scale. For what follows we choose a frame of reference where the average velocity at
point r and time t vanishes. The equilibrium averages appearing in Eq. (2.17) are easily calculable. Using the
definitions of the A's easily gives

g PJAr (AzAr) (Ar Jz ) = (Pr J r),
PB Pr

(2.18)

where pF is the mass density of solvent particles. Note that stationarity (dot switching) implies that

tk. (r-„A -„)=(P-„J -„) tk, (2.19)

where rk is the stress tensor (momentum Aux). These correlation functions are either rank two tensors or
vanish due to time reversal (i.e., for A =P). As such, they must be proportional to the unit tensor at k =0,
and therefore,

( r,A, ) = -,
' Tr( r,A, }=(P,Z, ) .

Combining Eqs. (2.18), (2.20), and (2.17) yields

(2.20)

pB(r, t) PJPJ 1 pB
FNE(r t) = g —— TrVT AT (r t) (AzAr)h (r t) Va(r t) .

&CB PB+PF horn

Finally, equilibrium fluctuation theory allows us to rewrite Eq. (2.21) as ( V is the system s volume)

(2.21)



1622 ISAAC GOI.DHIRSCH AND DAVID RONIS

pg g {Tr7-r &

FNa(r, r}ps(r, r)/M= g PJPJ MV
BQ .~g 3(P~+PF) Ba V

(r, t) V'a(r, t)

horn

pg(r, t)
=V g P,P, (MV) (r, r) — ' . V{Tr(rz/V))„,(r, r) .

j68 horn 3[ps( r, t)+pF( r, t)]

Of course,

g PJPJ (MV) =1pskiiT/M (2.23a)

(where for a binary mixture, L~~ ———LBF). More-
over, the diffusion Aux is nothing more than

jEB j n(r, r)=pg(r, t)v~(r, r), (2.26d)

(2.23b)

where pI, is the hydrostatic pressure. Inserting Eqs.
(2.23) into {2.22) gives

FNE( r, r) = V [ps( r, t)ks T( r, t)]
p~(r, t)

M
TpI, (r, t) . (2.24)

[ps(r, t)+pp(r, t)]

Notice that Eq. (2.24) reduces to the usual expres-
sion for the mean force in equilibrium (T and pI, are
both constant).

Since p~ appears explicitly in (2.24), it is still not
straightforward to find out what happens to a single
large particle. We will eliminate ps using Eq. (2.1)
which, for the present case, may be rewritten in the
familiar form

j D(r, t)= psD(V lupi+—krV lnT+kpV lupi, ),
(2.25)

where vs(r, t) is the mean [in the sense of Eq. (2.2)]
large-particle velocity.

We now substitute Eq. (2.26) into Eq. (2.25), solve
for V lnp~ and use the result in Eq. (2.24), thus ob-
taining

AT
Fzz(r, t) = — v&(r, t)+(1—kT) V(kz T)

M
pi, +ksTkp V lupi, .

ps +Pf

(2.27)

As is well known, the friction coefficient g is relat-
ed toDby

(2.28)

and thus, in the laboratory frame [v ( r, t) is the total
mass average velocity]

FNE(r, t)= —g[v (r, r}—v(r, r)]

+(1 kT) V [kg T( r,—t)]

dP(pa pf}—
8 lnpz pI, T

the barodiffusion ratio,

8 lnp~
kp = —ua

~A T, [p~ —pf]

and the thermal-diffusion ratio,

Lgy 8 lnpgkr=
~(P~ —Pf ) Tp„

—T
9 lnpg

T p& [pg pf)]IT

where the diffusion constant is given by

(2.26a)

(2.26c)

AT+ kp Tp~(r t) .
(Pa+PF ) PI

(2.29)

The first term on the right-hand side (rhs} of Eq.
{2.29) is the drag force felt by a particle moving
with velocity v~ relative to the Quid moving with
velocity v. The third term is the barophoretic
force. Notice that the barophoretic force constant
is given solely in terms of thermodynamic deriva-
tives (i.e., not in terms of kinetic coefficients). Fi-
nally, the second term is the thermophoretic force.
Notice, that the only assumption used so far was
that spatial gradients be small. In particular, we
did not assume that p~ or pF were small or that the
8 particles were large. Thus Eq. (2.29) should hold
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gp ——kg(k~ —1) . (2.30)

Consequently, irrespective of densities, etc., the
therrnophoretic force constant and "molecular"

for molecular systems as well as suspensions of
macroscopic particles. This does not mean that Eq.
(2.29) can be used in calculating a single-particle
trajectory for small particles. As mentioned after
Eq. (2.2), the mean force equals, to a good approxi-
mation, the actual average force felt by a single par-
ticle when fluctuations are small. This is not the
case for very small particles. Thus, the validity of
(2.29) is very general but its usefulness when the
motion of a single particle is of interest is limited to
the regimes where fluctuations in FNz can be
neglected. Most important, the therrnophoretic
force constant nr [the coefficient of VT in—Eq.
(2.29)] is given by

thermal-diffusion ratio are trivially related. In the
remainder of this work we specialize in the case
where the B species is very dilute.

B. Dilute suspensions

In the limit of high dilution of the B particles,
one can easily calculate the thermodynamic quanti-
ties that appear in the preceding section. Since in

actuality, the experiments probing thermophoresis
are performed on dilute suspensions, this limit is
appropriate. To leading order in p~ we use ideal
solution theory.

First, we calculate the barophoretic force coeffi-
cient. From Eq. (2.26b) and the Gibbs-Duhem
equation [i.e., dph

——(PB+pf )deaf at constant T and

pB pf] it fo—llows that

kg T 1 8 lripg
kp ———

Ph (PB+Pf ) r)pPf r uh uf—1

(pa+pf)pa

The thermodynamic derivatives appearing in
correlation functions. These in turn may be
out in Eq. (2.31) gives

(2.31)
appf p,u,

+
appB

Eq. (2.31) are easily related to the (NB) and (NBNf ) static
expressed in terms of pair-correlation functions. Carrying this

k~T
+kF = pB f dr [g (r) —1]+pfJ dr [g f(r) 1]—

(p~+pf ) pq (p~+pf )
(2.32)

where g and g are the pair-correlation functions
for a B-B and B-fluid pair of particles, respectively.
The coefficient of the O(p~) term on the rhs of Eq.
(2.32) is (up to a factor of —2) the second osmotic
virial coefficient. For dilute suspensions (assuming
no long-range interactions) this term is negligible.
The remaining term on the rhs of Eq. (2.32), when
used in Eq. (2.29), yields for the barophoretic force

FNs(r, t)= J dr [g (r) —1]Vph+O(pB)

~B~Jh

(2.33a)

(2.33b)

where &z is the volume of the B particle. The
second expression follows by assuming that outside
the B particle g vanishes on a distance which is
much smaller than the size of B. This of course
precludes long-range forces. The force given by Eq.
(2.33b) is exactly the force acting on a body irn-

mersed in a constant pressure gradient —as calculat-
ed from the usual Navier-Stokes hydrodynamics
(see, e.g., Ref. 23).

In the same fashion it is easily shown that

p&D =L&&/M+O(pz) (2.34)

[cf. Eq. (2.26a)]. Finally, in order to evaluate the
thermodynamic quantities appearing in kq, we note
that

dpi' 2=(eo+Ph)"p PF0dpPF+O(—PB) (Ph const)

(2.35a)

h
dPIJ, F = dP [ph P(p'B pF) const]

(p~+pF )

(2.35b)

where h is the enthalpy per unit volume. Combin-
ing Eqs. (2.35a) and (2.35b) thus yields

where p~a and e0 are the mass and energy densities
of pure solvent at chemical potential PpF and tem-

perature T. Also, using the Gibbs-Duhem equation
gives
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T
a l~,

BT pg, @pg—pF

M
h

pF, O pF —1 + pF, O

( )
pFka T pa pa

T and chemical potential pF. Alternately, the rhs

of Eqs. (2.37) can be expressed in terms of P and

IpF derivatives of the osmotic pressure.
To make further progress we need the explicit

Green-Kubo relations for Lz~ and LzT. ' These

are

+o(pg )

In addition, it is easy to show that

(2.36) L.„= ' f dt (Ps(t)Ps(0) }+0(pz )

(2.38a)

and

e —eo

pa
=—( (E}~

—(E}0)+O(ps ) =&E/M1

M

(2.37a)

and

Lzz f——dt ( Pz( t) I z z(0) }+ 0 (pz ),

(2.38b)

PF —PF,o

pa
( (NF }&

—(NF }p)+ 0 (ps )
1

M
where Pz is the momentum of a B particle and
where the dissipative energy current

=~F/M (2.37b) IE,T= JE, T PT
PF

(2.39)

where ( }; is a semigrand-ensemble average~6 con-

taining "i"B particles with solvent at temperature
I

Thus, combining Eqs. (2.36)—(2.39) and (2.26c)
gives

pa
kT —— dt P~(t) I E T-

Lggkg T
h pF, o pF —1

PF Pa

(e —eo )
Pg (0) (2.40)

Moreover, taking the internal degrees of freedom for the B particle to be separable from the rest, allows us to
write

2

IEr= gjE'F

Pg

2M
+HInt—

Mh pg
+ —, g [u(B j)+r»'F»]

pF .~F M
(2.41)

pa

where H;„, is internal Hamiltonian for the B particles. As we shall discuss below, this decoupling of the inter-
nal degrees of freedom limits the applicability of the theory. Inserting Eq. (2.41) in (2.40) gives

2
Pa - - Pa hM PF,o—PF (e —eo )

kr = f dh Ps(r) I@~+ + (H;„,}— ' — M
La@ a 2M '"'

p p

1 Pg+ —, g [u (&j )+ r»'F» ]
jEF

(2.42)

where I E F corresponds to the terms in pj in Eq.
(2.4 1 )~

Some of the terms in Eq. (2.42) are negligible in
the limit of large M /m. To see that we rewrite
(E}~

and (N~ }~ appearing in Eq. (2.37) as follows: (NF }] = (NF }0 &BPF+PfsS,

(2.43a)

(2.43b)

(E }&
——(H;„,}+, k&T+Se, +((E}p——Weep),
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where S is the surface area of the B particle, P"B its
volume, e, the surface energy density, and pf, the
Gibbs excess mass density. Both e, and pf, can be
of either sign. Using {2.37) and (2.43), the expres-
sion inside the square bracket in (2.42) can be
rewritten as

2
~B h——,kBT—S e, — pf, , —pl ~B
2M pF

+ —, g [u(Bj) +rsJFgj] .
j EF

(2.43c)

P /m-(m/M)'/ c (2.44)

Note that the internal energy (H;„, ) has disap-

peared. This cancellation is exact only when the
internal degrees of freedom of the B particle are
rigorously decoupled from all the other degrees of
freedom.

All the terms in (2.43) contribute negligibly to
k~. To see this we estimate the contribution of the
terms in the square bracket and compare to the size
of IEF terms. On the average, the largest terms in

Eq. (2.43c) are of the order of ks TpF &~ lm (con-
sider, e.g., an ideal system). On the other hand,
I E F contains the effects of fluid particles, many of
them, typically pFSl/m, will correlate with PB(t) (l
is the mean free path). The energy flux associated
with each fluid particle is O(kBTc), where c is the
mean fluid particle speed. Noting that

The calculation of (2.46) is undertaken in the
remainder of this work. Once kT is obtained, the
thermophoretic force constant follows from Eq.
(2.30).

C. Local-equilibrium limit

Zubarev calculated the thermophoretic force as-

suming an initial local-equilibrium distribution
function for the host fluid (his local equilibrium
differs from the horn average used here).

To see the connection to Zubarev's theory we

rewrite Eq. (2.16) as

C(t)=C(0)+ f C(t')dt'

= g p, Ir + f dr, QF, (r, )Ir
jGB j EB

(2.47)

where FJ is the total force acting on the jth particle.
Moreover, if the correlation function decays quick-

ly, then the limit of integration may be extended to
infinity. Using Eq. (2.47) in (2.15) results in

pB(r, t)
FNE( r, t)

PjPj

jEB jGB

1/2
m

M

gives for the ratio of these two contributions
' 1/2~B m

Sl M

—f dr, g F, (r, ) IT (r, r)
jEB

(A TA T )horn( r, r) V'a ( r, r), (2.48)
' 3/2 ' 1/2

R
l

(2.45)
l

'

where R is the typical linear dimension of the B
particle and r of the host-fluid particle. The above
estimate assumes the density of the B particle is of
the order, or more than the "density" of a fluid par-
ticle. This is certainly true for all cases of interest.
Since obviously r/l &1, the ratio of the contribu-

0

tions is at most (r/R)' . Typically, r-1 A and
R —1 qm, hence, (r/R)'"= 10-', so to t e accura-

cy of a few percent the terms in the square brackets
make a negligible contribution. To summarize Sec.
II B, we have shown that the thermal-diffusion ratio
for a large B particle is

1& =0
(2.49)

This when used in Eq. (2.48) results in the Va term
obtained by expanding the local-equilibrium aver-

age. The time integral in Eq. (2.48) is estimated in
Zubarev's theory. In our notation this corresponds
to letting (est is estimate)

where Eq. (2.14) has been employed &n obta1n&ng

this expression.
Using the dot-switching property allows us to

rewrite the first two terms on the rhs of Eq. (2.48)
as

C(t) =C(0)+est . (2.50)

T= f dr(Ps(t)IsF)
MDkB T {2.46) On the other hand, we have argued that C(t) van-
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ishes on the Brownian-motion time scale; a time
scale much shorter than the duration of the experi-
ment. Hence, Eq. (2.50) is invalid for the size of
particles used in experiments. For very large parti-
cles (i.e., 6mqR /M -1 sec ', g is the viscosity) Eq.
(2.50) may be valid, although the inertial terms in
the equation of motion would make the observation
of the thermophoretic force quite difficult.

its renormalization. In many cases, the hydro-
dynamic renormalization term is much bigger than
the bare coefficient. In this fashion, Keyes and Op-
penheim derived the Stokes-Einstein expression
for the self-diffusion constant. As will be shown,
the renormalization of the Soret coefficient and
thus of the thermophoretic force constant is negligi-
bly small. The significance of this result will be
discussed below.

D. Summarizing remarks

In this section, we have established a general con-
nection between the phenomena associated with
molecular diffusion (and of course the associated
cross effects) and the forces felt by a large particle
in a nonequilibrium system. In doing so we have
established an almost trivial connection between the
thermal-diffusion ratio and the thermophoretic
force constant, the former simplifying for a large,
massive particle. We reiterate that the only signifi-
cant approximation so far has been the separability
of the internal and external degrees of freedom of
the large particle. This should be most justified for
poor heat conductors. The case of good conductors
must be considered separately, a point to which we
will return later.

A. Main ingredients of mode-coupling theory

The basic input of mode-coupling theory is a
nonlinear Langevin equation for the hydrodynamic
variables. In practice only reversible quadratic non-
linearities are included (which results in the usual
Navier-Stokes fluctuating hydrodynamics). More-
over, it is normally assumed that the random fluxes
are 5 correlated in time and have Gaussian statis-
tics. In the standard notation, the basic nonlinear
equation of motion is

A -„(t)=M p(k)Ap 1, (t)

yQx A (t)
dk'
(2 )3 k;k —k', k' P, k —k'

III. MODE-COUPLING ANALYSIS
XAy k,(t)+F k (t), (3.1)

The main aim of this section is to show that ther-
mophoresis is not a purely hydrodynamic effect in
the sense that Stokes friction is.

Mode-coupling theories are usually employed to
calculate the influence of the nonlinear couplings
among fluctuating linear hydrodynamic modes on
the observed values of the various transport coeffi-
cients. A typical result for an Onsager (transport)
coefficient would consist of the bare coefficient and

where A are the different hydrodynamic variables
indexed by a. In Eq. (3.1), the matrix M is the
linear (bare) hydrodynamic matrix, V is the bare
vertex function, and F is the random force.

The nonlinear term in Eq. (3.1) is usually treated
perturbatively. The resulting expression for A(t) is

multiplied by A(t =0)(AA ) ' and averaged. Sub-
sequently, standard resummation techniques are
employed and the renormalization of the transport
coefficients is identified. The general result is

dk' e5 ger 5 erg —k ——k
k L p(k)=k L'p'+4 I 3

dt V-„.-„-„,-„,G-„-„,(t)U-„,(t)V-„' '-„,.
2m

where the correlation function

(A q(t)A 1, )—k ——k

(3.2)

(3.3a)

Gq(t)=(A q(t)A -) (A q(0)A 1, )

and where the vertex function was taken to be symmetric, i.e.,

v-- -, -,=v&-, --k;k —k', k' k;k', k —k'

(3.3b)

(3.3c)
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where

7 t

From stationarity it follows that

(3.4a)

~~Py Pyv-- -, -—:V-- -, - (A, - -A - -)(A -A - )/V'k;k —k', k' k;k —k', k' P', k —k' P, k' —k y', k' y, —k' (3.&b)

Note that V~ is symmetric in Py in the same way as V [cf. Eq. (3.3c)]. Using Eq. (3.4) one can easily show
that

k2L p(k)=k'L'II(k) —2J drf, V+.-„-„|,G~|, |, (r))G-„(r))V|,. |, (3.5)

Equation (3.5) is the starting point for our calcula-
tion of the renormalization of the Soret coefficient.
We remark that, strictly speaking, Eq. (3.4) is valid
only for Gaussian statistics. Nonetheless, Eq. (3.5)
can still be obtained using some simple aspects of
non-Gaussian statistics combined with ¹rdering
arguments. This brief introduction has omitted
practically all details. The interested reader is re-
ferred to the review by Keyes.

B. Mode-coupling theory for the Soret
coefficient

As in Sec. II, the variables A are the densities of
the host fluid and the B particles, the momentum
density, and the energy density. For convenience,
we transform to a set of variables in which the total

I

mass density replaces the fluid mass density.
The nonlinear hydrodynamic equations describ-

ing such a system are well known, see, e.g., De
Groot and Mazur. The bare vertices in hydro-
dynamics (small-k limit) can be written as

.~Pr i.— B(J')
aa&aa

(3.6)

If (3.6) is used only in its k ~0 limit, one has to cut
off the resulting k integrals in Eq. (3.2).

Keyes and Oppenheim have considered Eq. (3.5)
for a=P corresponding to ps (self-diffusion). We
need a=ps and P=E, corresponding to the Soret
coefficient. In addition, we need the propagators.
The easiest way to find both the vertices and the
propagators is to read them off the nonlinear
Navier-Stokes equations for binary mixtures

5pk(t)=ik. pk(t), (3.7a)

dk) pa
5p -(t)=ik 5p - - — 5p- - +ik pp~/pBk (2 )3 Bk —k)

p
k —kl k

—k L~~2 de & + de
& + de

ap,
+

ap p, ,, p +
ae „,pPB, k+ Pk+ 5e-

k

'

ap ap ap+»
~ Pak+ ~

Pk+~pg, ' ~p p~, 8 p~ p
(3.7b)

p-k=ik
Qpp, Bpg Bpp

5p 5p~+ 5ek —k v, pk —k k(vI —v, ) pk,
Bpg ' Bp p, 88 p, p

(3.7c)



and

dki5e- =i k ~ p-
(2 )3

BH aa
PBk —k)+ g Pk —k)+

p8 p g p py

aH 5e-
Be p~p

k —k

+i k p zH+k~LsE 5pz z+ 5p-„+
dps ' Bp ps, e 88 ps, p

k 2L de 5 + de 5 + dPP

~pg ' ~p p, g Be p, p

In writing out the hydrodynamic equations, only the quadratic terms needed in the renormalization of the

Soret coefficient [cf. Eq. (3.5)] have been included. In addition, we have expressed fluctuations in the chemi-

cal potentials (via Pp), inverse temperature P, pressure and enthalpy per unit mass (H) in terms of the vari-

ables 5', 5p, and 5e. (5 denotes the deviation from equilibrium. ) The dissipative coefficients have their

standard meaning and

Their relevant vertex functions are trivially obtained from the first terms on the rhs of Eqs. (3.71) and (3.7d}.

Physically, the mode-coupling terms account for convective transport of the 8 particles and heat convection.

Not all of the terms appearing in Eq. (3.7) are required in our calculation, since we need the Soret coeffi-

cient only to linear order in ps. (As inentioned before, we need the limit ps~D. ) With the use of (3.7a) and

(3.71) it is easy to see that

P

—Dk2(f —f
&

)—k dt)e
0

BPp,

Bp p

G'-„'(t, )+

—LaT
8P B,a BP p, aG-„' (t, )+ G-„' (t, )

Bpa Qp

Be p,p
(3-9)

where D is given by Eq. (2.26a). Note that all terms but the first on the rhs of Eq. (3.9) are O (p& ) as p& ~Q.
In addition, using Eq. (3.7b) to find the vertices and Eq. (3.S) gives

& (LgT —IBT)=—— dt ik. G- (t) G ' (t) — G~(t) V-.&2 [0) Pa gy Pg p
0 Itl(g (2 )3 k —k) kl p

k k;k —kl, kl

(3.10)

where we have used the fact that 8 vertex must involve momentum and either of p or p~. The combination of
propagators appearing in the square brackets is exactly what appears on the rhs of Eq. (3.9). Thus there are
only two possibihties: (1) y=B for which (see below) V" =5 p O(ps) or (2) y+8 in which case the propa-

gators in square brackets are 0 (p~). To linear order in p~, we can now write
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k (LBT—LBT)

00 dk) p p —Dk f =M, P,B PB -~PP
dt ik-6- - (t)e ' V-- - - — v--

P p k &k I~ i3 k —k
&

k, k —k), k) k, k —k), k)
P

—ik.G k k (t)k) dt)ep f —Dk2(g —f ) BR

P p~e

ap—LB
Bp p&, e

6+k (t))

app L ap+ ~BB BT
ppg Be ppg

G k (t) )
Ey

X Vk k k k +O(PB), (3.11)

where the term resulting from that containing Lsr(ap/aps)G on the rhs of Eq. (3.9) has been dropped
since its contribution is O(pB). This follows from the fact that the term would involve the vertex with y=B,
this supplying an additional factor of pB. For similar reasons, in the sums over a and y in Eq. (3.11) we can
omit those terms for which a or y equals B. The remaining propagators involve only the solvent variables and

can thus be evaluated at pB ——0. The explicit evaluation of the propagators for a pure fluid is straightforward,
tedious, and the result appears in Appendix A. In addition, the explicit forms of the remaining vertices follow
from Eqs. (3.6) and (3.7), yielding

A.

aH
E,P,a E,a,P PkB ~
kk —k),k)= kk], k —k]= ' Ba, V

0, otherwise

a+P (3.12)

where the small-k (hydrodynamic) approximation has been used. The susceptibilities can be expressed as ther-
modynamic derivatives, thereby obtaining

B

appF p,~
(3.13a)

and

V =V =—ikPkBT
a ppy, pvF—

(3.13b)

VEPB=VEBP= 'kPkBT
app p, pup

(3.13c)

We now have all the information needed to evaluate Eq. (3.11). The integrations are straightforward and the
result is

k, BH
BT BT

3n p(v +D) app 8,+ p app &@, apIJ, g& ap pu,p —p H +

X LBB
aPp, aPs

Bp,pz B& p,pq

app, ape

p pg Bp pg

ap ap„

Bp e,p~ B8 p,p~

ap aA
Be pp Bp,p

(v, +I r)co] (3.14)
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(3.15)

where yz is the thermal-expansion coefficient and where Eqs. (2.37) and (2.34) have been used. This equation
must be solved for L~~,' the result is

k, kgTpg kk T
[bE H(b—Np+M)] 1+ + BT YT +LBT +

3m. p(v, +D) , +r~ 3~'p(, +D)(,+ r&)Lax

where unless stated otherwise the thermodynamic quantities are taken to be functions of p, p~, and e. In
deriving Eq. (3.14) terms O(k, v, /co) were omitted. As defined in Appendix A, co is the adiabatic sound

speed, r~ is the heat mode damping constant, and Cz is the heat capacity at constant pressure per unit mass.
With the use of thermodynamic identitites, contained in Appendix 8, Eq. (3.14) can be written as

k, k~ Tp~ D 2 LBT
(Lgr Lg—p)= ~

[bE H(—bNF+M)] 1+ +k~T yr
3 ' (,+D) (vg+rT) p8(vt+rT)

(3.16)

Before we calculate the thermal-diffusion ratio
kz and the thermophoretic force constant gz, we
need the mode-coupling result for the diffusion con-
stant. In the same way we obtained Lzz-, it fol-
lows that

k, kgT
D —Do ——

3vr p(v, +D)
(3.17)

+.kgT yrI . (3.18)

With the use of Eqs. (3.16), (3.17), (2.36), (2.37), and
(2.26c) it is easily shown that

Lar(0)

kp —— + Ty~
kg TED

(3.19)

and consequently, it follows [cf. Eq. (2.30)] that

Lar(0)

'1/T = +kg(Typ —1)
TpgD

(3.20)

where the term 0[D/(v, + I r)] was dropped.
The second terms explicitly proportional to kz in

Eq. (3.20) are far too small to explain the observed
values of gz. ,

' in fact, for a gas yq-1/T and thus
they drop out all together. For a liquid Tyz &&1
and hence the resulting contribution to the thermo-
phoretic force is +k~ V T, again negligible for mac-

What is usually assumed is that Do is negligible and

that k, -O(R '), i.e., the inverse-particle radius.
If this is justified, then D has the Stokes-Einstein
form (ignoring the small differences arising from
different boundary conditions). Moreover,
D &&(v, +I ~) and thus

Lsr =L~r'+ p~D [ [bE H(bNF +M—) ]

roscopic particles. This implies that the dominant
contribution to gz is

Lax Lax(0) (0)

2
pg TD pgkg T

where the second equality follows from the defini-
tion of the friction constant g [cf. Eq. (2.28)]. Thus,
the mode coupling has renormalized the friction
(diffusion) constant and nothing more. Moreover,
the therm ophoretic velocity in steady state
( rir/(VT) —would involve only bare quantities.
Hence, unlike the case of the diffusion constant,
here, neglecting the bare quantities makes the ther-
mophoretic force too small. Mode coupling, as
used above, provides no information about "bare"
transport coefficients and is not useful in calculat-
ing the thermophoretic force. It does show that the
source of the effect is of nonhydrodynamic or bare
nature. As we show in the next paper, the cancella-
tion of the hydrodynamic part of the Soret coeffi-
cient (i.e., the renormalization) in the thermophoret-
ic force constant also occurs when kinetic theory is
used. The result will be of exactly the same form as
Eq. (2.31), although kinetic theory gives us the bare
quantities.

It should not come as a surprise that the mode-
coupling approach presented above does not renor-
malize g~. One of the main ingredients of the
mode-coupling theory was the convective nonlinear
couplings in the energy-transport equation. From
Eqs. (3.13) and Appendix B we see that the required
vertex functions involve AE, the energy increase
when one 8 particle is added to the fluid. This en-

ergy has contributions from degrees of freedom
which are almost perfectly separable from the
translational degrees of freedom (e.g., nuclear
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forces). Nonetheless, this energy is convected along
and thus appears in the vertex function. The final
results must, of course, be independent of this kind
of internal energy and thus the cancellation which
did occur should indeed be expected.

In conclusion, we have shown that mode cou-
pling, (i.e., nonlinear fluctuating hydrodynamics)
does not lead to any significant renormalization of
the thermophoretic force coefficient. This is some-
what of a surprise since even the crudest mode-
coupling theories (at least qualitatively) describe the
renormalization of the diffusion coefficients. The
thermophoretic force constant is essentially a Soret
coefficient. In gases it is mell known that Soret
coefficients are extremely sensitive to details, e.g.,
potential form, unlike quantities like the viscosity
and diffusion coefficients. Consequently, a good
theory of thermophoresis must include much more
microscopic information.

IV. SUMMARY

This paper contains two main results. First, me
have established a connection between the Soret and
Dufour phenomena and that of the thermophoresis.
This connection ls given qllantltatlvelp hp Eq. (2.30)
and it serves as a basis for the rest of our work.
Our second result, which follows from the mode-
coupling calculation (Sec. III), is that the usual non-
linear hydrodynamic couplings cannot possibly be
responsible for the observed size of thermophoretie
force. Indeed, their contribution is negligible. %'e
conclude from these results that unlike, e.g., the
Stokes-Friction phenomenon, thermophoresis can-
not be explained or calculated on the basis of a
purely hydrodynamic theory. This is somewhat
surprising since the thermophorcsis is really a mae-
roscorpie effect, i.e., in experiments the sizes of the
"moving" particles are of the order of IMm—and un-

like Brownian motion, this is not a fluctuating
phenomenon. Moreover, it is easy to show that a
hydrodynamic solution in which a 8 particle has
zero velocity (and thus one solves only the Fouricr
heat equations) is linearly stable for an incompressi-
ble Quid. Taking into account compressibility will
not change the result.

The results of this paper are valid as long as

If these hold, then the formalism developed here
should be valid for arbitrary densities of the host
fluid and for a wide range of particle sizes. The as-
sumption of the separability of the 8 internal de-

grees of freedom does not affect the connection to
the thermal-diffusion ratio or the mode-coupling
calculation.

As mentioned in the Introduction, hydrodynafnic
theories yielding thermophoretie forces do exist, but
they assume srpeeial boundary conditions that,
strictly speaking, are adequate only in the kinetic
domain and therefore there is no obvious reason
mhy they should be applicable in dense hydro-
dynamic regimes. It is morthmhile noting, based on
thc mode-coupling calculation, that no significant
long-time tail phenomena are expected for the
thermal-diffusion ratio.

It remains, therefore, to shorn the true source of
thermophoresis. In the next paper in this series, the
thermophoretic source is shomn to follow, at least
in a moderately dense gas, from kinetic processes
that occur basically at the surface of the 8 particle
and are not of hydrodynaxnic origin. The results
obtained from a resummed kinetic theory compare
mell with experiments and thus will substantiate the
main conclusions of this paper.
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APPENDIX A: HYDRODYNAMIC
PROPAGATOR

Thc hydrodynamic matrix for a simple Auid M~
is given by

M-„= . ikgp

(i) Linear-response theory holds.
(ii) The Brownian motion time scale is short

enough.
{iii) The particle is sufficiently large such that

fluctuations can be neglected in using a mean force.

(A1)
where the hydrodynamic variables are the mass, en-

ergy, and momentum densities. The quantities in
the matrix are defined through
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Bpa

Be

aT
Be

Kp= A,

apI
Xp

ap e
Xg

aT
Ke =A,

Bp

vi=(g+ —,i))/p, v, =r)/(p),

(A2)

where h is the enthalpy density, p is the mass densi-

ty, and )j., g, and r) are the thermal conductivity and
bulk and shear viscosities, respectively. e, T, and p„
are energy density, temperature, and hydrostatic
pressure, respectively.

The corresponding longitudinal block propagator
is given by

exp(Mko. )

1

2
2Cp

&+o(e + +e )X„/m+2e X,h/mn,
g'&o

X„h(e + +e —2e )/mn,
+o f cr /To

cpX„(e —e ),
$+o' g cT

X,(e + +e —2e T )/m,
)+a g' o g'Tcr

X,h(e + +e )/mn+2X„ /m,
o g cr (To

g'+o g o
cpX, (e + —e ),

f+o
cp(e + —e )/m

g+cr g cr
cph(e + —e )/mn

cp(e + +e )
o g cr

(A3)

where cp is the adiabatic speed of sound,

Cpr, =— ——1 r, +~,
2 c„

(ii) Let H be the enthalpy per unit mass, S, V,N
the entropy, volume, and number per unit mass.
With the use of standard thermodynamic identities
{for constant particle number)

is the sound damping coefficient, I ~ ——A, /pc& is the
thermal damping coefficient, cz is the specific heat
at constant pressure, c„ is the specific heat at con-
stant volume, and cz is c& per unit mass. The quali-
ties g+,gT are defined through

dH =TdS+ Vdp =ezdT+ V(1 —TyT)dp,

where

(B2)

g+(k) -+ikco k I, —,
gz(k)- —k I r .

(A4)

av
rT

—=
v aT,„

is the expansion coefficient and

APPENDIX B: SOME THERMODYNAMIC
RELATIONS

H dT ydp d p
T2 T+ T

it follows that

(B3)

In this appendix we derive the thermodynamic
expressions appearing in Eq. (3.14). Unless explicit-

ly stated, we use relations for a single component
fluid: (i)

Bp ~pi Bp dA

Bp , Be Be Bp

dH = Cp+ —(1—TyT ) dT

+T(1—TyT)d T

Consequently,

(B4)

Be
~ P

BpI

Bp e

aping

ae
Be ap

aa
8pp p

T

BP i)A l

p p kgT Cpyp
(81)

ka HT(1 —TyT) —T C +—(1—TyT)
H
T

where y~ is the compressibility.
—AT Cp . (B5)



THEORY OF THERMOPHORKSIS. I. GENERAL. . .

(ii) %e have then

Bpy Bps

Bp q,p 88 p,p&

BPy ~Ps

p,p~ ~p ~,p~

B(—P)
Bp g p~

BPy,

Bp C,pg

Ppg ppa ~p ~ pa

BPy, Be

pp P

B( —P)
88

e

p pa, ~p pa&a

0 p

, A pa

B—P
~p Sg pg

(86)

(iv) As is well known, the chemical potential pB
for the solute particles, in the limit of high dilution

is given by

~ (I)
MPya ——inn g —ln

p +O(ns), (87)

where bE= (E) ~
—(E)p is the difference in total

energy between the system with one solute particle
and pure fluid and bNf=(Nf)I (Nf)p has a
similar definition. Thus, for constant pB (or nB):

0=M dpy+bEd( p)+—(bNf+M)dpyF,

where M is the mass of the B particle.
Substituting (89) into (86) we obtain

where "'" is the semigrand partition function for
one solute particle and:" for the pure fluid.
Hence,

dnB
bEd—( p) —bNf—dpy, F

BPy

~p pg ~pg

B(—P)
p pg po

pa pi

B(—P)

pa%

BpyF+{~J+M)
~p pa»a

1= ——bE+(bNf +M)
BpyF

Fg~F

Using

BpyF = —H,
BP

(811)

0
ny =ny+nBklVf,

8 =e0+nBAE,

Jh PO+kBTnB s

(813a)

{813c)

8 p
&I pa

B( P)—
Bp &I pa

we finally obtain

[bE (bNf+M—)H—] . —
M

h =ho+nB(~+kBT)

and the enthalpy per unit mass H is given by

(813d)

where pO, n~, e0 are pressure„number, and energy
densities of the pure fluid. Thus, the enthalpy is
given by

(812)

(v) Next, we wish to calculate (BH/BPy)p p„ to

linear order to the B-particle number nB.

~+kBT PB
H =HO+ Hp(bNf/M+1)

M pp

(814)
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Using (B7), we find

BH BH

r3Pp pu, p , dip @,,p

an, @,, p a&p, p„,, p

aH aH
Mng ——M Pa

~ng ppF p ~pa ppF

(815)

Now, with the use of (B14)

Next using

BH
=kg T(1—Typ) .

r)PpF p

we find

r

BH p~

~Pp pl, ,p p &Pp

(817)

=M(H —H, )
aPp @., p =[AE+kp T H(ENf—+M)

=[l)E+kp T Hp (ENf—+M )]
p~

(816)
Pa

kpT(1 —T7—r )]
PF

(818)
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