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Restricted multiple three-wave interactions: Painleve analysis
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Restricted multiple three-wave interactions, in which a set of wave triads interact through
one shared wave, are discussed. The integrability of this system is explored through the use

of Painleve analysis. Numerical results in the special case where there are only two triads
are also reported. The results are consistent with the Painleve analysis.

I. GENERAL INTRODUCTION

Three-wave interactions, because they are the
lowest-order nonlinear wave coupling possible, play
an important role in every branch of physics where
nonlinear wave phenomena can occur. The simplest
possible interaction of this sort is a conservative
single-triad interaction, where the system consists of
only three interacting waves. This system is com-
pletely integrable, a result which was apparently
first derived in the context of optical phenomena,
but has also been rederived in the context of Auid
dynamics and plasma physics. A dissipative,
single-triad interaction is already sufficiently com-
plicated to exhibit a wide variety of sophisticated
behavior, including strange attractors, '5 and is still
being actively investigated.

More comphcated three-eave interactions, involv-

ing two, three, ' or sometimes even more triads
have also been studied but, generally, when one con-
siders multiple three-wave interactions, it is simplest
to go to the limit of many waves and use the
random-phase approximation or some other related
statistical assumption. Unfortunately, in many if
not most cases, it is not at all clear from the litera-
ture that such assumptions are valid, and this ques-
tion clearly requires closer examination.

In order for most such assumptions to be valid,
the system must be "mixing" on the time scale of in-

terest, so that it rapidly loses all knowledge of its in-

itial condition. It immediately follows that the sys-
tern must be nonintegrable. If the system were in-

tegrable, then its trajectories would be bound to
specific hypersurfaces in phase space and its time
history, even averaged, could depend sensitively on
which hypersurface it was located initiall. Hence,
it is of great importance to determine under what
conditions three-wave systems are integrable. Ideal-

ly, we could find an analog to the theorem of
Bruns' which states that for an N-body gravitation-

al or Coulomb interaction (N & 3), the only algebraic
integrals of the motion are the classical integrals, ir-
respective of the masses of the interacting bodies,
and, as a result, the X-body system is almost certain-
ly nonintegrable for almost all choices of the masses.
Ho~ever, different types of three-wave interactions
can have different constants of the motion, and such
a global statement does not appear possible. Instead,
one must focus in turn on each type of three-wave
interaction.

In addressing the question of when three-wave
systems may be treated statistically, and more par-
ticularly of when they are integrable, we focus atten-
tion here on a test wave system which appears to be
the simplest possible multiply interacting, three-
wave system with an arbitrary number of waves. In
this system, one wave is common to all the triads,
which are otherwise noninteracting, as shown
schematically in Fig. 1. While this system is not the
most important three-wave system from the point of
view of applications, it has the great virtue of bring
sufficiently simple to analyze in detail for an arbi-
trarily large number of waves, and hence provides a
useful starting point from which to begin the
analysis of more complicated systems. To our
knowledge, this system was first studied by Watson,
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FIG. 1. Schematic illustration of a three-triad interac-

tion. Only the waves connected by solid lines interact
directly.
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West, and Cohen, "who used it to model the growth
of a low-frequency internal ocean wave due to the
interaction of a spectrum of higher-frequency sur-
face waves. In this case, the shared wave is a
daughter wave in each triad. Meiss' has studied
this system using a variety of statistical assumptions
and proposed it as a model for both ocean wave and
plasma turbulence. Paradoxically, he has also sug-
gested that this system may be completely inte-
grable. ' Our results indicate that the system is in

general nonintegrable, but, at the same time, the sta-
tistical assumptions are not generally valid.

Since the previously mentioned authors" ' were
primarily interested in the case where the shared
wave is a daughter wave in each triad, they have
focused attention on the Hamiltonian, written in
action-angle variables

N

H =cooJO+ g (ro„J„+co'„J„')
n=1

N—g e„(JOJ„J„' )' 'cos(8„—8„' —80), (I)
n=1

where Jp and 8p refer to the shared wave; Jn, 8n, J„',
and 8'„refer to the other members of the nth triad
besides the shared wave; and N is the total number
of triads. One can also imagine situations in which
the shared wave is a pump wave in each triad, in
which case the Hamiltonian becomes

N

H=cooJp+ g (ro„J„+co'„J„')
n=1

N

bo ————g e„b„'b„'+icoobo,n n n
n=l

b„'= ——e„blab„'*+i~„b„', 1&n &Nn 2 n

bn = nbpbn+ ~nbn, 1&n &N .n 2 n

Similarly, letting

ap = (Jp )' exp( —i 8p),

Qn =(Jn) exp( —l8n) ~

and

Qn =(Jn ) e p( ~8n)

Eq. (2) generates the equations of motion

N

Qo= g encnan i'(po ~

2 n=1

an = ~napan ~nan ~ 1 & n &Nn 2 n

Qn ~napan ~nan ~ 1 & n &Nn 2 n

~ N
~ e & ~ e ie e

ap ————~ ~nanan +~pap
n=1

an = ——e„aPQ„'+ice„a„', 1 & n &Nn 2 n

a„' = ——e„apa„+ice„'a„'*, 1&n &N .

(3b)

(4a)

(4b)

N—g e„(JoJ„J„')' cos(80 —8„—8„' ) .
n=1

Letting

bp= (J 0)'~'ex—p( i80), —

bn
—=(Jn)' exp( —i8n),

and

bn —= (Jn ) exp( ~8n )

Eq. (1) generates the equations of motion

N

bo ———g e„b„b„" iroobo, —
n n

n=1

bn = E'„bpb„—ice„b„, 1 & n &Nn 2 n

bn = ~nbpbn nbn 1 &n &Nn 2 n

as well as the complex-conjugate equations

(2)

(3a)

We consider both possibilities here.
This paper is the first in a series of three papers

devoted to studying the restricted multiple —three-
wave —interaction system just described. This sys-
tem is "restricted" in the sense that the only interac-
tion between the wave triads is through a single
wave which they all share.

The first two papers of this series are concerned
with determining the integrability of this system.
This first paper consists of two essentially indepen-
dent parts. In the first part (Sec. II) we examine the
analytic structure of the equations of motion, Eqs.
(3) and (4), in the complex time plane. In particular,
we wish to determine for what values of the cou-
pling coefficients e„and the frequencies cop, co„, and
co'„, all movable singularities in the complex plane
consist of simple poles. This property, called the
Painleve property, has proved to be an excellent in-
dication of when simple Hamiltonian systems are in-
tegrable. ' ' Our system turns out to have this
property when all the coupling coefficients are
equal, E'1=E'2= ' ' =E'N, regardless of the frequen-
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cies or when e& ——e2—— ——e~ ——2e~+ &

=2@~+2——. ——2m~ and

=2k~+, ——25~+2 —— . ——2h&, where
=~„—~„' —cop in the case of Eq. (3) and

=Np —N —co in the case of Eq. (4). When the
coupling coefficients are not equal, the singularities
are algebraic except in the case where

=E'~ ——2E~+i = ' ' ' =2~&, where they
are logarithmic if they are not simple.

In the second part (Sec. III) of this paper, we spe-
cialize to the case when N =2 and present numerical
evidence which indicates that the system is in gen-
eral nonintegrable when e~&e2 and e&&2e2. The
procedure we use is to first reduce the system to two
degrees of freedom using the quadratic constants of
the motion (Manley-Rowe relations), and then make
surface-of-section plots for the reduced system.
These plots generally show the stochasticity and
higher-order island structure indicative of nonin-
tegrability. In one case, we have calculated the
Lyapunov exponent in a stochastic region and
shown that it converges to a definite positive value.

In the second planned paper of this series we
demonstrate that when e& ——e2 —— . ——e~, our sys-
tern is integrable, and we also obtain a number of re-
lated results. The procedure we use is to first turn
our set of ordinary differential equations, Eqs. (3)
and (4), into partial differential equations. We then
find the Lax pair for the partial differential equa-
tions and from it determine the constants of the
motion for the original ordinary differential equa-
tions. We further show that identical results can be
extracted from a formalism developed by Ablowitz
and Haberman. ' We then use their formalism to
show that the system of equations, Eqs. (3) and (4),
can be made integrable for arbitrary coupling coeffi-
cients by including further waves in the system. We
also use their formalism to show that a more general
class of three-wave interaction systems, of which the
restricted system under consideration here is a spe-
cial case, can be made integrable by an appropriate
choice of coupling coefficients. Finally, we show
how to reduce our system to quadratures of elliptic
functions in the special case where the shared wave
is a daughter wave in all triads and 6& ——52 ——

'~, where h„=(co„—co„' —cop).
In the third planned paper of this series, we exam-

ine the validity of standard statistical assumptions
for our system, in particular the random-phase ap-
proximation and the microcanonical ensemble ap-
proach. These two approaches will not yield identi-
cal results since our system possesses a phase-
dependent constant, namely, the Hamiltonian. In
the first part of this paper we establish certain
minimum conditions which must hold for the sta-
tistical assumptions to be valid. In the second part

of this paper we present numerical evidence indicat-

ing that these conditions are not met, except possi-

bly on a very long time scale for the microcanonical
ensemble approach.

II. PAINLEVE ANALYSIS

A. Introduction

No deductive procedure exists at the present date
for determining when a set of ordinary differential
equations is integrable and when not. This vexing
and difficult problem has remained unsolved (and is
perhaps insoluble in general) despite the continuous
effort that has been devoted to it for close to a hun-

dred years by mathematicians and mathematical
physicists. As a result, the demonstration that a
given system is integrable or nonintegrable remains
something of a hit-or-miss proposition. In this situ-
ation, any procedure which provides a reliable
means of "guessing" when a system will be inte-
grable is more than welcome.

For certain simple, yet important systems Pain-
leve analysis has proved remarkably successful in

identifying integrable cases. In this analysis, one
determines when the movable singularities of the
equations of motion in the complex time plane con-
sist of only simple poles. It is these cases which one
identifies as integrable. This procedure was first
used by Kovalevskaya' in the 1880's to study
rigid-body motion in a gravitational field. She
recovered all the cases then known to be integrable
for arbitrary initial conditions, as well as one more;
no other cases which are integrable for arbitrary ini-

tial conditions have ever been found. Recently, this
procedure has been applied by Tabor and Weiss' to
the Lorenz system, by Bountis, Segur, and Vivaldi to
the Toda lattice, coupled quartic oscillators, and the
Henon-Heiles system, ' and by Chang and co-
workers' ' to a variety of systems including several
of those already mentioned. In all cases, this pro-
cedure has succeeded in identifying the previously
known integrable cases as well as several new ones.

All these systems have polynomial equations of
motion. It is not known at this point whether that is

just coincidence or not. It is known that for some
slightly more complicated systems, notably the
Kepler problem, this method fails. It is also
known that even for polynomial systems, this

method does not necessarily succeed in identifying
all the integrable cases, since integrable systems have

been found which have the "weak Painleve" proper-

ty of possessing rational singularities with no loga-
rithmic terms. '

The system which we are considering, Eqs. (3)
and (4), has polynomial equations of motion, and it
is therefore reasonable to expect that the Painleve
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analysis should successfully identify integrable
cases. This expectation has been confirmed by the
numerical work to be presented in Sec. III of this
paper and the analytical work of paper II in this
series.

An unusual feature of this calculation is that the
number of waves allowed in the system, and hence,
the number of degrees of freedom, is arbitrarily
large, instead of 2 or 3 as has been the case in almost
all previous applications of the Painleve analysis.
This difference leads to technical difficulties, e.g. ,
the inversion of arbitrarily large matrices, but neces-
sitates no procedural changes.

N

bp ————g e„b„*b„',n n n
n=1

(7b)

bn = ~nbpbn ~n n ~ (7c)

The coupling coefficients may be considered posi-
tive, since, if any of them are not, they can be made
so by adding ~ to the appropriate phases. Equation
(6) generates the equations of motion

N

bp ———g e„b„b„",n n n
n=1

B. Preliminaries
bn = — enb()bn + knbn, 1 & n &X (7d)

To determine the integrability of Eq. (4) for a
given set of coupling coefficients and frequencies, it
is sufficient to determine the integrability of a sys-
tem in which the shared wave is a daughter wave in
all triads, for the same set of coupling coefficients
and frequencies transformed such that cop becomes
—cop, con becomes —con, and con' stays the same. To
demonstrate this result, it is sufficient to note that
Eq. (4) can be brought into the same form as Eq. (3)
by making the transformation ap ———bp, ap ——bp,

transforming the frequencies as just described.
Hence, any constant of the motion for Eq. (3) can be
made into a constant of the motion for Eq. (4) by
suitably transforming variables and vice versa. It
should be noted that this transformation is
equivalent to extending the real and imaginary parts
of b p and b„ into the complex plane.

In the Painleve analysis, one needs to extend the
real and imaginary parts of bp, bn, and b„' into the
complex plane. That can be done most conveniently
by treating Eqs. (3a) and (3b) as independent. Here-
after, the asterisk will be taken to refer to the now-
independent variables, b 0, b„', and b„" and not to in-
dicate complex conjugation.

We now put the equations of motion in a useful
canonical form. Using the generating function

N
F= —tppfpt —

2 g [(ri) +Co' +tpp)J
n=1

b„' =—e„blab„+ —A„b„', 1 & n &Nn 2 n n 2 n n (7e)

b„'"=— e„bp—b„"— b„b„'*, —1&n &N . (7f)

b"= g a, (z —z, ) +J,
j=p

BALANCE EQUATIONS

NO NOT P-TYPE
ARE EXPONENTS

R AT I ON AL?

YES

DETERMINE
RESONANCES

ARE EXPONENTS
INTEGRAL?

YES

NO

A version of the Painleve analysis has been dis-
cussed in some detail by Ablowitz, Ramani, and
Segur, ' and the procedure is shown schematically in
Fig. 2. Essentially, one attempts to determine the
solution to the equations of motion as a power series
in the neighborhood of each singularity in the com-
plex time plane and show that each variable b can be
written in the form

Eq. (1) becomes

+ (to„+to„' —tpp) J„' t], (5) DETERMINE
COEFFICIENTS

.------ —--------------- YES
ARE LOGARITHMIC

TERMS NECESSARY?
N

H= g J„— J„'2" 2" NO

—n( 0 n n ) COS(~n —~n —~0) P-TYPE

FIG. 2. Flow diagram of the Painleve analysis.
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where z is complex time, zo is the singularity loca-
tion, and m and p are any integers. In the first step
of the process, one must show that I and p are in-
tegral or, equivalently, that there exists an expres-
sion for b,

S= g a, (z —z, ) +J,
J=0

where p is rational. Second, one must show that
when one adds up the number of arbitrary coeffi-
cients in the expansions of all the variables of the
problem, the number of arbitrary coefficients must
equal the number of variables. Third, one must
show that no logarithmic terms enter the expansion.
In general, this procedure breaks down at some
point indicating that the singularity is algebraic or
logarithmic. This procedure does not identify essen-
tial singularities; however, that is not a serious
drawback since these singularities appear not to be
present in simple systems of the sort which we are
considering here.

C. Balancing the equations of motion

Designating complex time by z and any particular
singularity by zo, we shall attempt to expand bo, bo,
bn, b„*, b„', and b„'* in a power series about the point
z =zo, which leads to the expression

No +o+Jbo=ao(z —zo& + g ao (z —zo&

00
Po 4'o +J

bp =ao(z zpf + g ap (z —zof
j=1

where we have defined the 2)&1 column matrix

bo =(bo, bo ), the 4)& 1 column matrices

are analogously defined, so that

N 0+l SO+X e Zo +J
apJ'(z —zp J = [apj'(z —zp(,a pj(z —zp f ]

and

a J(z —zp)
~+j

Jl'n+ j ~„+j= [aqj (z —zp(,Q~J (z —zp f

Equations (8) may be even more compactly written

00

b=a(z —zp){-'+ g a (z —zp)-+',

where b—:(bo, b1, . . . , b~) is now a (4N+2)&1
column matrix, ' and a, aJ, and P are analogously de-
fined.

To determine p, we first note that sufficiently
close to the singular point zo,

where g—:z —zp. We then substitute Eq. (9) into Eq.
(7) and balance the most singular terms.

Since b„ is always one order more singular than
6„, b„mstube balanced by the term (i /2)e„bpb„' in
Eq. (7c). Similar conclusions hold for Eqs. (7d),
{7e),and {7f),leading to the relations

00

b„=a„(z—zo) "+ g a„J(z zo)"—
J=1

00

b„'=a'„(z zo) "+ g a„'J(z ——zo)"
j=1

l 00 t

b„'=a„'(z —zo) "+ g a„'J(z —zo)"
J=1

I l 4
Pn 1=Po+Pn ~ Pn 1=Po+Pn

1 4
Pn 1=Po+Pn ~ Pn —1=Po+Pn s

from which it follows immediately that

Po= —1 —x s Po = —1+x
l 4

Pn —Pn =X s Pn —Pn

(10)

b„"=a„"(z—zo)'" + g a„", (z -zo)'" +',
j=1

(8')

where we recall that the asterisk does not indicate
complex conjugation, and that 1&n &N, which
from now on will be understood for all the following
equations except where some other restriction on n
is specifically noted.

Equations (8) may be written compactly in the
form

ho=~a(z —zo) + g aoj(z —zofNo+2

j=1

b =a {z—zp)-"+ g a„j(z —zp)
j=l

where x is arbitrary. From Eq. (11), it then follows
that whatever terms balance in Eq. (7a), the corre-
sponding terms will also balance in Eq. (7b).

There are evidently a large number of different
ways to balance the terms in Eqs. (7a) and (7b).
It turns out that the only singularities which
are realizable are those for which bo is included
among the terms which balance in Eq. (7a) and, con-
sequently, bo is included among the terms which
balance in Eq. (7b). The proof of this assertion is
contained in Sec. II F. Letting n = 1,2, . . . , M
designate those terms which balance with bo and bo
and n =M+ i+I+2, . . . , X designate those terms
which do not, we find relations
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po —1=pn+p„", 1 & n &M

—po —1&pn+p„', M+1&n &X

which, using Eq. (11),becomes

—2=Pn+Pn =Pn +Pn

—2&pn+pn =p„'+p„'*, M+1&n &N .

From Eq. (13), it immediately follows that

Pn= —1 —3'n s Pn = 1+3'n s

pn = 1 3'n+& s Pn = —1+/n —& s

(12}
(16c)—(16f), we obtain the further relations

a;aj ——aja,' snd a';aj' ——a~a," (1 &i &M;1 &j
&M). Multiplying Eq. (16a) by Eq. (16c) and Eq.
(16b) by Eq. (16d), and using these relations, it fol-
lows that

2 M

pop„=pop„= ——~ aeae
4 e=l

from which we conclude x=0, so that po ——po
=p„=p„'=p„'=p„"=—1 {1&n&M).

To determine the exponents when X&n &M, we
first note from Eq. (15}that pn =p„' = —un —y„and
p„'=p„'*=—un+yn. From Eq. (17), it then follows
that either tl„=O of y =0. Dividing Eq. (17) by
the relation 1=—(e /4)aoao, we find that when

en &e (M+1&n &X), four possibilities exist,

Pn = un 3'n s Pn = un+3'n s M+1 &n &+
(15)

Pn = un 3'n+& s Pn = un+3'n

M+1&n &N

where yn is arbitrary and un & 1.
To further sperify these exponents we need to ex-

amine the coefficients of the most singular terms.
These are

Pn =Pn =Pn =Pn =&n~& s

Pn =Pn =Pn =Pn
I » g»

Pn —Pn ——Pn = —Pn =&n~& s

I » p»
Pn =pn = —Pn = —pn

M+1&n &W . (20d)

%'hen e„&e (M+1&n &N), the second possibility
(20b) is eliminated, because it implies un & 1.

M

poao= X 4anan
n=1

(16a) D. Determining the resonances

M

poao= ~ &nanan s
2 n=1

(16b)

I
Pnan = &naoan s

2
e»» &» r»

pn an = ——enaoa
2

(16c)

Pn an = &naoan s2

g» I»
Pn an = — &naoan .

2

Multiplying (16c) by (16e) and (16d) by (16f), we
find

2

PnPn =PnPn = — aoao ~ (17)

p„=p„' = —1 ——,1&n &M
2

'

pn =pn = —1+—,1 &n &M
2

'

and also that e~
——e2 ——. ——e~ —=e. Fxom Eqs.

Using Eq. (14), it follows, for 1 & n &M, that
y„=x/2. Hence, we find

In order for the possibilities described in the last
section to be realizable, it must be possible to contin-
ue the expansion in such a way that there are as
many arbitrary coeffirients as there are variables. If
the number of arbitrary coefficients is smaller than
the number of variables, then the expansion corre-
sponds to a special choice of initial conditions and is
not realizable in practice.

To investigate this question, we first determine
how many of the coefficients ao, ao, an, a'n, a„', and
a„"may be chosen arbitrarily. From Eq. (17), it fol-
lows that ao determines ao. Similarly, from Eqs.
(16c)—(16f), it follows that a„determines a'„and a'„
determines a„". Finally, from Eq. {16a) or Eq.
(16b), it follows that one of the a„' (1&n &M),
which we may choose to be ai, is determined from
the other a„' {1& n & M) and the an (1 & n &M).
Another arbitrary coefficient comes from our free-
dom to pick the real part of zo, corresponding to the
origin of time. Hence, we have found a total of
2N+ 1 arbitrary coefficients.

The system we are considering has 4%+2 vari-
ables, and the other 2%+1 arbitrary coefficients, if
they exist, must come from the expansion of the
solution. As one expands and equates terms of
equal order, one finds that at each order one obtains
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a system of linear equations for the new coefficients
in terms of nonlinear combinations of the old coeffi-
cients. If the determinant of the linear, homogene-
ous part of this system of equations is nonzero, then
a unique solution exists for the new coefficients.
However, if the determinant is zero, then at least
one of the new coefficients is arbitrary. To deter-
mine this linear system at any given order r, it is
sufficient to take the combination

(21)

substitute it into those terms of Eq. (7) which were
balanced in the previous section, and extract the
combinations linear in P, . Since the terms we bal-
anced in the previous section were the lowest-order
terms, any other combinations involving P, will be
of higher order than those which we are keeping.

This procedure yields the system of equations

R~ H1 H2 H3

—1 1rV D 0 0

—2 — —2rV 0 D 0

M p, = V3 0 0 D3,

HN

0

0

HN

0

0

Po.

P2,

=0, (22)

P 0 0 ~ ~ ~

DN —1r 0

0

PN —1, r

where

—e„a„ 0 l
pn —r &nap 0

1 —r 0R—=
p 1

', ~V—:

0

0

l
&nan

l an n

l
@nap pn

0 0

0 0

e
pn —r — &nap

l—
2

&nan 0 0 0
l

&nap pn

(23)

l—ea n 0 0 l—ea

0
l y l——ea ——ean 2 n 0

1&n&M

0000
p p p 0 & M+ 1 &n

nr

nr

Evaluating detM, one finds

N

detM, =(r +1)r (r —2) (r —3) g [(r +p„) —p„][(r+p„') —(p„') ] .
n =M+1

(24)



C. R. MENYUK, H. H. CHEN, AND Y. C. LEE 27

The evaluation of this determinant, while tedious, is
essentially straightforward as long as one keeps in
mind that the number of factors from H„must
equal the number of factors from V in any given
term. We have also made use of the relations

bo =0 ' g ao,4'
j=0

b„=g ' pa JP, 1&n&M
j=0

(27)

2
—1=—'a~~0

4
(25a)

b =g ' g a„JP, M+1 &n &1V .
j=0

M
—1=—g a'„a'„',

4 n n
n=1

(25b)

~2 M
1=—g a„a'„.

4 n n
n=1

(25c)

b=0-' y a, P'
j=0

(26)

in the neighborhood of any singularity, and is evi-

dently of P type (i.e., possesses the Painleve proper-
ty). The second case is e„=e (1&n &M), e„=e/2
(M+1&n &N). In this case, if there are no loga-
rithmic terms, a point which will also be investigat-
ed in the next section, then the solution in the neigh-
borhood of any singularity can be expanded in the
form

Equation (25a) corresponds to Eq. (17), Eq. (25b)
corresponds to Eq. (19), and Eq. (25c) can be derived
in the same way as was Eq. (25b).

From Eq. (24), we find one root at r = —1, corre-
sponding to the arbitrariness in the real part of z0,
we find 2N roots at r =0, corresponding to the num-

ber of the coefficients a0, a0, a„, a*„, a„', and a„'*
which may be chosen arbitrarily; we find 2M roots
at r =2 and one root at r =3; and, finally, we find
roots at r = —2pn and —2pn* (M +1 & n & N). Since
we are expanding in increasing powers of g, we can
only have resonances when r &0. It immediately
follows that in order to have the full complement of
4N+2 arbitrary coefficients, it must be the case
that p„&0 and p„' &0 (M+1 &n &N). Hence, the
only realizable singularities are those which corre-
spond to Eq. (20b), which in turn implies that
6n /E' ( 1 (M + 1 & n & N). We conclude that all
singularities in the complex time plane are of the
same type. The term or terms with the largest cou-
pling coefficient balance with b0 and bo in Eqs. (7a)
and (7b).

Two special cases emerge from this analysis. The
first is when all the coupling coefficients are equal.
In this case, if there are no logarithmic terms, a
point which will be investigated in the next section,
then the solution to the equations of motion, Eq. (7),
can be expanded in the form

While the singularities appear at first to be algebraic
because of the g

'~ dependence of the leading-order
contribution to bn (M+1 &n &N), this dependence
can be easily removed by making the replacement

n ~=(bn bn n n )( +
expansion of these variables, excluding for the mo-

ment the possibility of logarithmic terms, is evident-

ly of P type.
In all other cases, the singularities are generically

algebraic. For example, if we consider the case
e =e (1&n &M), e„=e/3 (M+1&n &N), even if
there were no logarithmic terms, the expansion
would be

bo=0 ' g ao,4 '",
j=1

b„=g 'gajg J~, 1&n&M
j=1

(28)

E. Determining low-order coefficients

As stated earlier, when we attempt to expand our
solution in the form of Eq. (8), we find at each order
an equation of the form

MjAj Sj(A 1 A2 Aj 1 ) (29)

where Mj is the matrix defined in Eq. (22) and Aj is
the jth order coefficient in the expansion. When
detMj is not equal to zero, Aj has a unique solution

Aj =Mj Sj(A1 A2 . . . Aj 1) (30)

However, at the resonances when detMj ——0, Eq. (30)
may not have a solution. The criterion for Eq. (30)

b =g '~' g a„jg '~', M+1 &n &N .
j=l

This expansion cannot be made P type by cubing the
variables or taking them to any other power. One
might be tempted to remove the algebraic nature of
the singularity by making the replacement r:
However, it must be recalled that there are an infin-
ite number of singularities in the complex plane, and
such a transformation can only make one of them
simple. To digress for a moment into generalities, a
system with a rational leading-order root and no
logarithmic terms can be made P type only if the
resonances are integral.
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to have a solution is as follows: Let ut, u2, . . . , ~U

be the eigenvectors of MJ and A, ~, A,2, . . . , A,~ the
corresponding eigenvalues. We suppose that A,„=O
(1(n &R) and A,„&0 (R +1 & n &E). We then
write

N

Sj'= g en' (31)

where the c„are constants. In order for a solution
to exist, it must be the case that c„=o(1 & n &R).

If this criterion is not met at every resonance,
then logarithmic terms must be added to the expan-
sion in order to satisfy the original set of ordinary
differential equations. Specifically, if we let r be the
first resonance where this criterion is not met, then
the expansion at that order has the form

R N

AJ= g c„u /+~lug+ g u P+J. (32)
n=1 n =8+1

Since the matrices MJ which we are considering
here are non-Hermitian, the eigen vectors are
nonorthogonal and in determining the existence of a
solution, it is simplest to resolve the matrix equa-
tion, Eq. (29), at each order where resonances exist.
Doing so, one obtains a number of solubility condi-
tions equal to the number of resonances.

As noted in Sec. I, there are two cases of interest
here. The first is when all coupling coefficients are
equal to some constant e. The second is when e„=e
(1&n &M) and e„=e/2 (M+1&n &N). If we al-
low M =N, then the first case can be treated as a
special instance of the second case. Since resonances
exist at r =1, 2, and 3, we must carry out the expan-
sion to third order to determine if a solution exists.
Writing out the expansion to third order, we have

2bo = a~ +(Poi+aoi )+(P02+a02 0
+(Po3+ao3 C'

b =a 0 '+(Pni+aiC'

+(p„2+a~x)g +(p„3+a~i)g

where p„=1 if 1 & n &M and p„=—,I if
M+1 & n &N; pj is the solution to the homogene-
ous equation, Eq. (22); and a~ is a particular solution
of the inhomogeneous equation, Eq. (29). The com-
plete solution Aj of Eq. (29) is just aj+pj. To
determine S~ (I = 1,2,3), the inhomogeneous term on
the right-hand side of Eq. (29), one substitutes Eq.
(33) into the equation of motion Eq. (7) and collects
terms of the jth order.

It is now possible to resolve Eq. (29). To do so,
one begins by eliminating the first two rows of MJ,
to the extent possible, using the elements of D&
(1&n &M). Having completed that, one then con-

tinues with the elimination of the first two columns
and the off-diagonal elements of D J. Following
this procedure, the resolution of Eq. (29) is essential-
ly straightforward, although quite lengthy due to the
rapid proliferation of terms. At j = 1, if M &X, one
finds the solubility condition

lE g b,papap', M + 1 & n (N .

This condition cannot be satisfied in general for ar-
bitrary initial conditions. However, in the case
where b i

——b,2
—— . . ——b,~ =6, Eq. (34) becomes

M+1&n &N (35)

so that in the special case where

~1 ~2 ~M 2~M +1 2~N

Eq. (34) is satisfied for arbitrary initial conditions.
At j =2, one explicitly finds the condition, when
M&X, that all the mismatches for M+1&n &X
are equal. At j=3, no new conditions emerge. If
M=X, so that all the coupling coefficients are
equal, all the solubility conditions are identically
zero, and there are no restrictions on the
mismatches. The solution may be found explicitly
written out in the Appendix.

F. Demonstration that bo and bo must be included
among the terms which balance

(38)

where u ~ 1 and y„ is arbitrary; and also

The results of the Sec. IIE complete our deter-
mination of the conditions under which our equa-
tions of motion, Eq. (7), can be P type, subject to our
demonstration that bo and bo must be included
among the terms which balance in their respective
equations.

Suppose that these terms are not included among
the terms which balance. I.et 1&n &M indicate
those terms which balance and M+1 & n &W those
terms which do not. As before, Eq. (11)holds and

PO 1 X s PO 1+X

Balancing exponents and following much the same
reasoning as in Sec. II B, we find
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M N

g a„a„'= g a'„a„"=O.

Moving on to determining the resonances, we find
that M is the same as in Eq. (22), except that

0 0
8,=

Resolving the matrix equation M, P„=O, using Eq.
{40), one finds that the determinant is identically
zero for arbitrary r, indicating that an expansion of
the sort we constructed in the previous sections is
impossible.

III. NUMERICAL STUDIES
OF THE CASE N =2

A. Introduction

The S-triad system has 2J —1 degrees of free-
dom. It also has %+1 quadratic constants of the
motion, as we shall show shortly. It immediately
follows that the two-triad system can be reduced to
a system with two degrees of freedom, and the
method of Poincare surfaces of section' can be used
to investigate the integrability of this system. In
Sec. IIIB the reduced coordinate system is deter-
mined and the Hamiltonian appropriate to this sys-
tem is obtained. Numerical evidence is displayed,
indicating that when ei~ez and @i~0.5', the
motion is nonintegrable. When ei ——0.5', numerical
evidence is displayed indicating that when

5& ——0.5hz, the motion is integrable and that when

A&&0. 5hz, it is not.
Nearby nonintegrable trajectories diverge ex-

ponentially from one another. That is to say, the
distance between the trajectories is, in the limit
t —+ (x),

d =doexp(pL t), (42)

where pl is referred to as the Lyapunov exponent.
To provide further evidence of nonintegrability, we

M+1&n &N

where U„&u. Likewise, balancing coefficients and
following much the same reasoning as in Sec. IIC,
we conclude y„=x /2 (l & n &M), e„=—e (l & n &M),
and either U„=O or y„=x/2 (M+1&n &N). We
also obtain the relations

demonstrate in Sec. IIIC that such a divergence
occurs in one of the stochastic regions of the case

ei ——0.8', hi ——b,z ——0, and determine the Lyapunov
number.

B. Surface-of-section plots

Because Hamiltonian systems with one degree of
freedom are trivially integrable, systems with two
degrees of freedom are the lowest-order systems
which can be nonintegrable. We may label the
canonical coordinates of any system with two de-
grees of freedom qi, pi, qz, and pz. Suppose we fix

pz and the Hamiltonian H and consider a range of
values for qi and pi, with qz being automatically
fixed through the relation H(q, ,p~, q2,p2) =h, where
h is some constant. Suppose further that we solve
the equations of motion for each choice of (q&,p&)
and plot the result whenever pz returns to zero. If a
second constant of the motion, I', exists for this
choice of initial coordination, then all the coordinate
pairs (qi,p&) resulting from this mapping, are con-
strained to remain on a one-dimensional curve,
which is the intersection of the hypersurfaces
H(q~, p~, qq,p2)=h, F(q„p„q2,p2)=f, where f is
some constant, and pz ——0. By contrast, if I' does
not exist, the coordinate pairs resulting from this
mapping will cover densely some two-dimensional
region in a seemingly random fashion.

If the system is integrable, then I is a global in-
variant, and a/I trajectories (coordinate pairs result-
ing from the mapping of a single coordinate pair) lie
on one-dimensional curves. If the system is nonin-
tegrable, then F can only be a local invariant. More-
over, given a trajectory which possesses an invariant
I', there must be another trajectory arbitrarily close
which does not; otherwise the constant I" could be
analytically continued throughout the space. Hence,
nonintegrable systems have complicated structures
in which regular trajectories (those possessing local
invariants) and stochastic trajectories (those which
do not) are pathologically interwoven.

The two-dimensional surfaces which are deter-
mined by the intersection of H(q&,pi, qz,pz) =h and

pz ——0 are referred to as surfaces of section, and the
set of trajectories which one obtains numerically are
referred to as surface-of-section plots. These
surface-of-section plots are a powerful tool for
determining the integrability of a given system, be-
cause they allow one to obtain a feeling for the en-
tire phase-space dynamics at a single glance. Unfor-
tunately, no similar tool exists for systems with
more than two degrees of freedom.

The system we are considering here has 2%+1
degrees of freedom. However, it also has %+1 qua-
dratic constants
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l.5

I„=J„+J„', 1 & n &X

which do not include the Hamiltonian and can be
used to reduce the system to one with N degrees of
freedom. To do so, we operate on the Hamiltonian,
Eq. (6), with the generating function

N N
I" =IcHO+ g J„(8„—8'„—Hc)+ g I„H„',

(44)
and we find, up to an additive constant,

N

H = g (b „J„e„—V„c os 1(„),
n=1

0.0

SP
g

N

V„—:J„(I„—J„) Io —g J(
E=1

fn: Hn ——Hn —Ho i 1&«N .

1/2
Q Q — jC&X. g, X

I ~
l

X

q„=(2J„)'icos1(„, 1&n &N .
(47)

The variables J„and 1(„are canonical. We may
convert to rectangular canonical coordinates by let-
ting

p„=—(2J„)'~ sing„, 1&n &N

0.0

I'~"

X I

X" '

o

It should be pointed out that the integrability of
this reduced system does not always imply the in-

tegrability of the original system (except for special
choices of the initial conditions). Variables in the
original system appear as parameters in the new sys-
tem, and the new system can be and is integrable
for certain special choices of these parameters. This
situation corresponds to the original system being
locally integrable on a hypersurface of dimensionali-

ty lower than the phase space. By contrast, the con-
verse holds true. If the reduced system is nonintegr-
able, so is the original system.

Even restricting ourselves to the two-triad case,
the parameter space is vast, containing eight dimen-
sions H, Io, Ii, I2, ei, e~, Ai, and h2. Moreover, s
single surface-of-section plot for just one choice of
these parameters can manifest an enormous amount
of structure. Given this situation, we have concen-
trated on varying the parameters which are relevant
for determining the integrability of the original sys-
tem ei, e2, hi, and L2 and further concentrated on
the cases of interest suggested by the Painleve
analysis.

To integrate the equations of motion we used the
Gear-Hindrnarsh algorithm. Our data was sub-
jected to a number of numerical checks, including
the following: The Hamiltonian was determined to

- l.5

0.0

- l.5
-2.0 0.0

FIG. 3. Surface-of-section plots, varying e& ~ Each tra-
jectory contains 100 points and the initial value is marked
with a cross. Parameter values are H = —0. 1, Io——2.01,
I, =1.1, I =1.6, 8,=0.0, 5 =0.0, e =1.0; and (a}
e) ——1.0, (b) e) ——0.8, (c) e) ——0.4, (d) el ——0.1.
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be constant to within one part in 10', the equations
were integrated forward and then backward in time
and were found to be quite well reproduced, and in
conjunction with writing a different numerical algo-
rithm to solve the equations of motion for the third
planned paper in this series, we determined that it
reproduced the results obtained from the Gear-
Hindmarsh algorithm.

Shown in Fig. 3 are results for 5& ——h2 ——0,
e2 ——1.0, and varying e~. One hundred surface-of-
section points are plotted. There is evidence of
nonintegrability in all cases shown except when

e& ——1.0. We pursue no further in this paper the case
when coupling coefficients are equal, since we expli-
citly show this case to be integrable in the second
paper in this series.

Shown in Fig. 4 is the case ei ——0.8, e2 ——1.0,
4& ——42 ——0.0 of Fig. 3(b) once again. One thousand
surface-of-section points are shown in Fig. 4(a) for
two trajectories, one regular and the other stochas-
tic. The regular trajectory remains on a one-

l.5
(a)

dimensional curve, while the stochastic trajectory
fills a two-dimensional region densely. In Fig. 4(b),
the first 50 surface-of-section points of the stochas-
tic trajectory are shown. Over this time scale, the
trajectory looks like an eighth-order island. In ef-
fect, the trajectory starts near an eighth-order island
which is a "sticky point" for the system. This result
makes clear the necessity of following a weakly
nonintegrable system, like the one that we are con-
sidering, on a long time scale in order for its true
behavior to emerge.

In Fig. 5(a), we show the case e& ——0.5, e2 ——1.0,
and 6& ——A2 ——0.0. There is no evidence of nonin-
tegrability. In Fig. 5(b), we blow up a region sur-
rounding a hyperbolic fixed point. If the system
were nonintegrable, then this region would be the
best place to look for evidence, since a stochastic
layer would be expected to form there. Instead, all
trajectories look regular. We have blown up this re-
gion as much as the fundamental accuracy of the
computer we used would allow (14 digits). We only
gained two orders of magnitude near the hyperbolic
point because the trajectories shown approach each

1.5

0.0

'~
g

00 h&„

~ 1

—l.5

l.5
(b)

-1.5
-2.0 0.0 2.0

O.OI

0.0—

2

- I.5
-2.0

( ~ ~

0.0 2.0
-0.01

-0.77 -0.75
FIG. 4. Surface-of-section plots, with parameters as in

Fig. 3(b). In (a), 1000 points are shown for both a regular
and a stochastic trajectory. In (b), the first 50 points of
the stochastic trajectory are shown. On this time scale,
the trajectory appears to describe an eighth-order island.
Numbers indicate the order in which the trajectory goes
from island to island.

FIG. 5. Surface-of-section plots with e& ——0.5 and the
other parameters as in Fig. 3. In (a), a global view of the
surface of section is shown. In (b), a blowup of the region
surrounding a hyperbolic fixed point is shown. No evi-

dence of stochasticity is visible.
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other exponentially once they leave the immediate
neighborhood of the fixed point, and a large amount
of accuracy is needed to separate them.

In Fig. 6, we show more cases where ei ——0.5 and
e2 ——1.0 with various values of h~ and h2. When
hi ——hq/2, the system appears integrable, and other-
wise it does not, consistent with the Painleve
analysis.

C. Lyapunov exponent

If we linearize the equations of motion of a sys-
tem with X degrees of freedom, we obtain N new
equations. We may solve the 2N equations simul-

taneously, obtaining d, the distance from the origin
of the linearized coordinates, as well as the particle
trajectory. If the trajectory is stochastic, then, as
t~ao, d should increase exponentially in time;
whereas, if the trajectory is regular, then as t~ 00, d
should only increase linearly. Hence, letting

l. 5 1
JML

= lim —lnd,
t —+eo

(48)

QQ—

-l, 5

(b)

Q.Q

~ ~

I

gI
I

&g xx

I
*

~

I

t
I

I.
I

AK

I
I

I t
I ~

I

I

I

x .

.. X. we see that pl. , the Lyapunov exponent, is positive if
the trajectory is stochastic and is zero if the trajecto-
ry is regular.

For a weakly nonintegrable system of the sort that
we are considering here, numerical computation of
the Lyapunov exponent is not a trivial matter. The
exponentiation can be so weak that it is completely
overwhelmed on the time scale of the computation
by the linear separation.

To eliminate this difficulty to the extent possible
for the problem which we are considering here, we
chose the initial vector of the linearized coordinates
to be close to (but not exactly in) the direction of the
initial vector of the time derivatives of the standard
coordinates. We averaged over a time equal to 1000
surface-of-section points after eliminating a time
segment equal to the first 200 surface-of-section
points.

l.5
(c) 0.01-

C 0.0
'~

I
I

x
I

)

-0.01-

0.0 7000.0

-l.5
-2.0 0.0 2.0

0.02—

0.01—

FIG. 6. Surface-of-section plots with e~ ——0.5 and

varying frequency mismatch. Parameters are H = —0. 1,
Io ——2.01, I~ ——1.1, I2 ——1.6, e~ ——0.5, e2 ——1.0, and (a)
5&=0.1, 52=0.2, (b) 5)=0.2, 52=0.4, (c) 5& =0.2,
h2 ——0.0. In (a) and (b), no signs of stochasticity are visi-

ble. In (c), stochasticity is visible.

0.0—

-0.01—
I

0.0 7000,0

FIG. 7. Lyapunov exponent as a function of time. The

Lyapunov exponent is shown for two different trajectories

starting in the stochastic region of Fig. 4(a).
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The results of this procedure are shown in Fig. 7
for two trajectories in the stochastic region of Fig.
4(a). The first, which is started at ql

———1.0,
pl ——0.0 has a final value JML ——0.0115+0.0028 and
the second, which is started at ql ———0.9, pl ——0.3
has a final value pL ——0.0091+0.0022. The error is
computed by dividing the raw standard deviation by
(J—1)', where J is the number of data points.
This procedure is correct as long as the data
represents a stationary, random process, and the as-
sumption that the process is stationary is reasonable
since after 1000 surface-of-section points the sto-
chastic region is fairly well covered. The two final
values agree with each other to within their error,
which, the reader will note, is quite large (=20%)
even after the care we have taken to reduce it as far
as possible.

Because it is difficult to compute accurately and
because it gives no feeling for the global properties
of phase space, the Lyapunov exponent is a far less
powerful tool for studying the integrability of weak-

ly nonintegrable systems than are the surface-of-
section plots. It does, however, have the advantage
that it can be extended to systems with more degrees
of freedom than two, while surface-of-section plots
cannot.

IV. SUMMARY

This paper is the first in a series of three papers,
devoted to studying under what circumstances re-
stricted multiple three-wave interactions may be
treated statistically. We have focused attention on
this system, because it appears to be the simplest
possible multiply interacting three-wave system with
an arbitrarily large number of waves, and can be
analyzed in detail.

In this paper, we have used Painleve analysis to
investigate the integrability of this system. Nonin-
tegrability is a necessary (but certainly not suffi-
cient) condition for a system to be treated statistical-
ly. The Painleve analysis indicates that the system
is integrable in two special cases. In the first case,
all the coupling coefficients are equal and the fre-

quency mismatches arbitrary. The second case is
when some of the coupling coefficients equal one-
half the others and the corresponding frequency
mismatches equal one-half the others.

Specializing to the case where there are only two
triads, we have presented numerical evidence indi-
cating that the system is indeed integrable in the
cases which Painleve analysis indicates ought to be
integrable and is otherwise nonintegrable.
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APPENDIX

Recalling that the general solution of Eq. (29) Aj
may be written PJ +L2J, where Pj is the solution to
Eq. (22) and L2J is a particular solution of Eq. (29),
we find, through j =2, that

Pol =Pol =o

P„,=P„',=g', =P„",=0, 1 &n &M (Ala)

P.'l

Col

ap

~01

ap

Pnl Pnl Pnl M+1&n &M;
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+
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lE'~0 Pn 1 lE D0 ~nl E ~02
+— +

16 ao a„ 4 ao a„ 512 ao2

e2 &o Do
M+1&n &X

64 ao ao

2 iE' ~o ~el /6 Do P 1 g ~oQ ~ D+ 2 2

+16 ao a'„ 4 ao a'„ 512

E' &0 Do+—,M+1&n&N
64 ao ao

N

X anan
n =M+1

N

(a.P.'i+ a.'P. l ),
n=M+t

M

Do ——g
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In the case where M =N, Xo and X~ are zero. In the
case where M &N, the quantities enclosed in large
parentheses,

an2 lE ~0 Pn I lE D0 Pn l 3E~0'+—
16 ao a„ 4 ao a„ 512 ao2

Do E„Do
+ and

ao E ao
(A3)

s 4
an2

a~

E' &0 Do
M+1&n &X

64ao ao
'

lE ~0 Pn I le D0 Pn1

16 ao a 4 ao a,
3E' &o E' &0 Do

M+1&n &N;
2 ao2 64 ao ao

are zero. The solution at j=3 is not written down
because it is quite lengthy. Actually, it is not neces-
sary to determine this solution, but only to deter-
mine that the solubility condition

S03—,S03+—g (a„S„'3+a„"S„3)
ao 2 n=1

EE ao
+—,g (a„'S„'3+a'„S„'3)=D (A4)

ao n=t

is met.
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