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A method for calculating the first quantum corrections to the moments of depolarized

interaction-induced light-scattering spectra has been applied for a many-body system. Clas-

sical averages have been evaluated via the molecular-dynamics simulation technique. The

numerical evaluation of the first quantum correction to a "static" and a "dynamical" prop-

erty is given for simple fluids. We also find that systems which are usually considered clas-

sical from the point of view of static properties may exhibit a non-negligible quantum con-

tribution to their "dynamical" behavior.

I. INTRODUCTION

In a recent paper, ' hereafter referred to as I, we
have derived, by means of the application of the
signer method in quantum statistical mechanics,
expressions for the quantum correction up to A' to
the moments of a general spectrum. This theory,
which has been developed for a many-body system
of identical particles which obey Boltzmann statis-
tics, is useful when exchange effects are negligible
and the system is "almost classical" in the sense that
the fi series expansion of the property under con-
sideration converges rapidly.

The main result of the theory developed in I is
that the quantum corrections to the moments, for
the case of a spectrum which is related to a correla-
tion function of quantities which depend only either
on the space coordinates (r) or on the momentum
coordinates {pI, can be written as classical averages
and therefore calculated for a many-body system by
means of a computer-simulation technique. Hansen
and Weis have applied the Monte Carlo method for
the evaluation of the quantum corrections of a static
property of a Lennard-Jones system, namely, the
free energy, and then they have derived the behavior
of the equation of state of neon near the triple point.

Here we will concentrate our attention on two
properties of the depolarized interaction-induced
light-scattering (DILS) spectrum, namely, the zeroth
moment (integrated intensity) and the second mo-
ment. The first quantity, i.e., the integrated intensi-

ty, is of static nature and therefore the quantum
behavior resembles what has been already found by
Hansen and leis. The other one, i.e., the second

moment, reAects a dynamical aspect of the system;
this is the first time that computer simulation of a
classical system is applied to the determination of a
property which is connected to the quantum-
mechanical dynamical behavior of an N-body sys-
tem. The calculation will show a great difference in

the behavior of the first quantum correction to the
"static" and "dynamical" quantities. We have here
concentrated our attention only on the first quantum
corrections to the DILS moments since our primary
interest was (a) to verify, with the present computer
facilities, the feasibility of the calculation of both
the static and dynamical properties of an N-body
system; and (b) to establish the order of magnitude
of the quantum corrections. Moreover the long
computational time which is required at present for
that type of calculation prevented us, for the time
being, to determine the next quantum correction of
order fi . Since DILS experimental results are avail-
able, ' and more work can be done further in sys-
tems where quantum corrections are non-negligible,
it seems important to have the possibility of per-
forming such a type of calculation. However, pre-
rise comparison with experimental results requires
the determination of the convergence of the series
expansion in A and therefore the calculation of at
least the corrections up to A .

Section II is devoted to the explicit derivation of
the expressions of the first quantum corrections for
the moments in terms of pair properties. In Sec. III
we give the expressions of those quantum correc-
tions for the DILS spectrum of a Lennard-Jones
fluid in which only the lowest-order dipole-
induced-dipole anisotropy of the interacting pairs is
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considered. Section IV deals with the description of
the calculation of the previously mentioned quanti-
ties by means of the molecular-dynamics computer-
simulation technique, while in Sec. V we discuss the
result of the calculation when applied to the noble

gases He, Ne, Ar, Kr, and Xe and to the molecular
systems H2 and CH4.

this case the expressions for the zeroth and second
moments Mp and M2 of a spectrum which is related
to the self-correlation of a space variable A (r) (r is
the 3N dimensional space vector) have been derived
in I and up to the first order in A' can be written as

Mp =Mp +is Mp
II. THE FIRST QUANTUM CORRECTION

TO THE MOMENTS

Let us consider a system of N identical particles
in a volume V which obeys Boltzmann statistics. In

I

M2 ——M2 '+Pi M2 ',

where

(2)

Mo ——(A ), (3)

M"= (A'(Ve)') —2(A'(V Va ))+MD" ((V.VC ))
24m (kT) (kT)

(4)

(2)M2

(7)

By defining

a (k, k) =$(k, k) =0

the sum in (7) and (8) can be extended and made symmetric with respect to the indices. Thus we write

((VA)') (5)
m

((VA) (V4) ) — [((VA) (V V4&)) —((VA VA):(VV@))]
24m (kT) 12m (kT)

+,((VVA):(VVA))+, MI,"(V VC ), (6)
4m 24m (kT)2

4 is the total interaction potential, kT is the Boltzmann energy factor, m is the mass of one particle, V and the
dots mean vector gradient and scalar product, respectively, in the 3N dimensional space of the configurations
of the N-particle system, and the averages are performed over the classical distribution function.

Let us assume now that both the interaction potential 4 and the OILS property A can be expressed in sums
of pair contributions, namely,

N N

A =g g a(ij),
i =1j=l

J)l
N N

0&=g gp(ij). (8)
i =1j=1

J)i

N

A = —, g a(ij),
ij =1

N4= —, g p(ij) .

(7')

(8')

(10)
i=1

With the pairwise additivity assumption the various expressions which appear in the M„'"' can be written in
terms of the properties a (ij ) and p(i,j) of the pair (i,j) and assume the form

N 2 r(
~

(V V@)= g p"(ij)+ (9)
r(i,j)

N

(VA) = g A)(i) A)(i),
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N

(V4)'= g 41(i) 4)(i),

N N

(VA VA):(VV@)=g A|(i) 42(i) Al(i)+ g A|(i) [V;Vip(ij )] A&(j), (12)

N N

(VVA):(VVA) = g A2(i):A2(i)+ g [V;Via(i j)]:[V;Vja(i j)], (13)

where the prime and the double prime in Eq. (9)
mean first and second derivative with respect to the
argument, and V; is the three-dimensional gradient
with respect to the ith particle. In Eqs. (10)—(13)
the local tensorial functions B(i), B1(i), and B2(i),
where B can be either A or 4, are defined as

a ~(i,j)=
3

r (ij )re(i j }
x 5p—3

r (i,j)
(16)

N

8 (1)= g b (i,j ), (14a)
j=1

81(i)= V;B(i),

B2(i)= VI V;B(i) . (14c)
It is worthwhile to notice that 41(i), as it has been
defined, represents minus the force acting on the
atom i due to the other (N —1) atoms, so that Eq.
(11) could also be written

(V4)2=+F(i) F(i) . (11')
I

If a model form is given for the pair property a (i,j)
and the pair potential P(i,j), the classical averages
which appear in Eqs. (3)—(6) can be calculated via
the molecular-dynamics (MD) computer-simulation
technique and the first quantum corrections, for a
many-body system, compared with the classical
values of the moments.

(14b)

III. MOMENTS OF THE DILS SPECTRUM
IN A DID-LJ FLUID

From the general expressions we have given in the
preceding section we can now evaluate the moments
M0 and M2. For the potential we have chosen the
familiar 6-12 Lennard-Jones (LJ) type, i.e.,

' 12 6
CT CT

r(i,j) r(i,j)
and for the property a(i,j) we will assume a form
which is proportional to the dipole-induced-dipole
(DID) model of pair polarizability, namely,

A*= h

5~me ' (17)

where m is the mass of a molecule, Eqs. (1) and (2)
can be recast in reduced form as

2

Me =M(0)» A M(2)»
0 0 + 02'

M2 —— M2ma' (19a)

(0)» A
M2 ——M2 2'

M(2)»
2 (19b)

Since we will be using only reduced units, the aster-
isks will be omitted in the following, and the expres-
sions for the M„'"' are given as

In the previous expressions r(i,j) is the vector dis-
tance between the jth to the ith particle, r (i,j) is its
modulus, a and P label the Cartesian components
x, y, z of the vectors, and 5 p is the Kronecker sym-
bol. The expression for the pair property a ~(ij}
has already been written in a reduced dimensionless
form which is the most suitable for computer simu-
lations. The parameters used for reduction are those
of the Lennard-Jones potential, i.e., e and 0. To be
consistent we also define a reduced pair potential

1p'(i j )=—p(r 1 /o ),
E

temperature T*=kT/e, density p~=po, and gra-
dient V~=oV. Moreover, if we define, following
De Boer, a reduced action A~ as

Mo ' ——((A ~) ) (20)

(2)M,"'= (A i')' (vc)' — v va + ' (v.ve),
24T 12T 24T

(21)
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M',"=T((v~ t')'},

((v~ t'v~ t'):(vve)}+ (v~ I')' (vc )'— (v ve)
12T 12T

+ -,
'

((VVA t'):(VVA I') }+ (Vv~p },
24T

and the quantities appearing in the above expres-
sions take the reduced form which is reported in the
Appendix. The above expressions (18}—(23) allow

us to evaluate the first quantum corrections to the
zeroth and second DILS moments for a Lennard-
Jones Auid within the DID approximation and,
most important, this calculation can be performed

by means of classical MD.
Before discussing the details of the MD experi-

ment it should be pointed out that even though we
know that the LJ potential and the DID polarizabil-
ity anisotropy are only rough approximations for
describing the DILS spectrum of real fluids, '

nevertheless, it is a necessary step to know the rela-
tive importance of the first quantum corrections to
the spectral moments in order to discuss the prob-
lem of DILS in simple dense fluids. Moreover, the
majority of the previous DILS MD calculations of
classical quantities have been performed with this
model system, and therefore comparisons are better
made within this approximation.

IV. THE MOLECULAR-DYNAMICS
SIMULATION

Here in this section we will discuss the details of
the MD computer simulation of the first quantum
approximation to the first two even moments of the
DILS spectrum in a Quid which interacts by means
of a pairwise additive 6-12 Lennard-Jones potential
[Eq. (15)] and whose total polarizability anisotropy

is given by the sum of pair terms of DID type [Eq.
(16)].

For the computer experiment we have chosen four
different thermodynamic points, two in the liquid
and two in the gas phase (see Table I), which should
give a good overall picture of a Lennard-Jones fluid
over the entire density range.

For the first point we set the reduced temperature
and density to values which are close to the triple
point. The second one was chosen in the liquid
phase, on the liquid-vapor coexistence curve inter-
mediate between the critical point and the triple
point, and the third density was set equal to the crit-
ical density with a temperature slightly higher than

T, (T, =1.35, our T is 25% higher). %ith the po-
tential parameters listed in Table II, the fourth point
corresponds to He at room temperature and 366
amagat for which some experimental results exist.

The computer experiment was performed with
108 atoms in a cubic box with periodic boundary
conditions. The configurations were generated by
using Verlet's algorithm with a reduced time step of
0 005 for states 1—3 and 0 002 for the high-
temperature state. The cutoff used for the calcula-
tion of both forces and polarizabilities was always
half the box length, i.e., 2.53, 2.81, 3.38, and 4.32,
for states 1, 2, 3, and 4, respectively.

The experiments were done in part on a PDP
I I/34 at the ProzePrechenanlage Physik (zeroth mo-

ments) and in part on a CYBER 170-720 (second
moments) of the Interuniversitares EDV-Zentrum,

TABLE I. MD results in reduced units. The column of (Mo '),„ is equiva1ent to —8 as was defined by Alder et al.
The errors quoted are estimates based on the rate of convergence of Mo ' and M& '.

Time

&Mo" &; &Mo" &., steps

(Mi '),„Time
(M',"},„xIO-' a~cps

0 2 2 2

0 2 0 0

0.61 1.15

0.35 1.69

0.167 27.6

0.833 0.75 0.16

1.01

—1.5
+0.5
—2.1

+0.7
—3.4
+0.5
—0.13
+0.03

200000

100000

100000

60000

56

2.8+0. 1 10000

2.0+0. 1 10000

1.020. 1 10000

0.9+0.1 10000

5.33 43.1

18.07 4.15
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TABLE II. Reduction parameters and values of (A/2m) for various simple systems. N& is Avogadro's number. The
values were taken from Hansen and McDonald (Ref. 10).

e/K (K)

He

10.2

Ne

35.8

Ar

119.8

Kr

166.7

Xe

225.3

H2

36.7

CH4

148.2

o (A) 2.556 2.75 3.405 3.68 4.07 2.959 3.817

M=mN~ (g)

(A/2~)2

4.0

0.182

20.2

0.008 87

39.9

0.000 875

83.8

0.000 256

131.3

0.000099

2.0

0.0755

16.0

0.001 40

both at the University of Vienna.
The convergence of the second moment was satis-

factory after 10000 time steps in all four cases,
while for the evaluation of the zeroth moment a
much longer time had to be spent in order to obtain
some degree of reliability. In fact, we had to run the
experiment corresponding to the first thermodynam-
ic state (triple point) for as long as 200000 time
steps while the second and third simulations were
run for 100000 time steps and the fourth for 60000
time steps. Since a purely classical calculation of
the zeroth and second moment requires a sample on
the order of 10000 and 1000 time steps, respectively,
it is not surprising that the quantum corrections
which essentially are fluctuations of these classical
properties are more difficult to obtain. Table I
shows the results which we obtained in units which
are suitable for a comparison with other classical
calculations. In fact, by multiplying both M0 and
M2 by (4/N), where N is the number of atoms used
in the simulations, we find that (4/N)M0 ' is identi-
cal to the quantity S"» l = —,S ) which was defined

by Alder et al. in DILS computer experiments.
The quantities which are given in Table I are there-
fore defined as

4 — 4M= —M M= —M0 N 0 2 N 2 (24)

and are expressed in reduced units.
By comparing our triple-point value for (Mo ')„

with the value of S published by Alder et al. , we
find an excellent agreement in spite of the fact that
we used only 108 atoms instead of 864. This is due
to the fact that the cutoff on the local field was vir-
tually the same in both calculations (-2.5o at that
density).

From Table I no irnrnediate conclusion can be
drawn since the value of the corrections depends
upon A which in turn is a function of the molecular
system under consideration. A thorough analysis of
the results for a number of systems will be the sub-

ject of Sec. V.

V. RESULTS AND DISCUSSION

From the values reported in Table I and expres-
sions (17)—(19) we can now evaluate the first quan-
tum corrections of DILS moments for various sys-
tems at four thermodynamic states and therefore
determine the importance of the quantum behavior
with respect to the classical one for the properties
we are concerned with. Table 'II gives the values of
the parameters we have used to determine the value
of A for the noble gases He, Ne, Ar, Kr, and Xe and
the molecular systems H2 and CH4. We can then
calculate, for the zeroth and second moments, the
ratio between the values of the first quantum correc-
tions and the classical parts. Table III gives the
values of those ratios for the four thermodynamic
states considered here. The first comment we can
make on those results is that, since the ratio
M2 '/M2 ' is between 4 and 11 times bigger than

M0 /M0 in all cases, the importance of the
quantum-mechanical behavior on the dynamical
properties is greatly magnified with respect to the
static properties. This immediately leads to the fact
that for systems like Ar and CH4 which could be
considered with very good approximation to be clas-
sical as far as static properties are concerned, there
is a non-negligible quantum-mechanical contribution
to the DILS second moment in the liquid phase
since the first quantum correction here is between
4% and 15%, while even krypton and xenon near
the triple point have corrections on the order of 3%
and 1%. The same holds for He and H2 at very
high reduced temperature (T =27.6) where their
second moment correction is 17% and 7%, respec-
tively.

Low-temperature high-density He and H2 show a
completely quantum-mechanical behavior, as is well
known; however, our results indicate that while for
the static property a second-order calculation (up to
the order R ) may give a satisfactory account of the
quantum-mechanical behavior within Boltzrnann
statistics, for the second moment, quantum mechan-
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TABLE III. Relative weight of the first quantum correction to the moments for various simple systems at four thermo-
dynamic states.

WM0(2}

M(0)

fiM' '

~(0)

0.833

0.61
0.35
0.167

0.833

0.61
0.35
0.167

0.75

1.15
1.69

27.6

0.75

1.15
1.69

27.6

He

1.76

0.97
0.79
0.024

19.5

7.8
3.3
0.17

Ne

0.086

0.047
0.039
0.001

0.951

0.382
0.160
0.008

0.005
0.004
g10

0.094

0.038
0.016
0.001

0.002

0.001
0.001
g10

0.027

0.011
0.005
(10

0.001
g10
&10

0.011

0.004
0.002
g10

Hp

0.73

0.40
0.33
0.010

8.1

3.3
1.36
0.071

CH4

0.014

0.007
0.006
g10

0.150

0.060
0.025
0.001

ics is overwhelming. On the basis of what we have
discussed here, we may say, as a final remark, that
the present calculation demonstrates the importance
of the quantum-mechanical behavior for the deter-
mination of DII.S spectra in high-density low-

ternperature simple fluids, which will eventually
show up for any type of system at sufficiently high
frequency.

Moreover, it is also interesting to note that quan-
tum corrections to the spectral moments appear to
be, in principle, quite strongly dependent upon the
form of the potential [Eqs. (4) and (6}]. This may
show to be an important fact in comparison between

theory snd experiments where "real" potentials
should be used.

APPENDIX

In this appendix we report the explicit expressions
for the reduced quantities we need in order to calcu-
late the quantum corrections to the zeroth and
second spectral moments [Eqs. (20)—(23)].

We like to remember that o. and P label the Carte-
sian components of the polarizsbility tensor, and the
reduction parameters are those of the intermolecular
potential. The parameter Z which has been intro-
duced is defined as r /o. .

(A ~)'= —, g ~ ~(i,j),
i j=l

N N

( v4) = g 4 &(i) 4 ~(i}=g F(i) F(i)

(A 1)

N

[F(i)] =g 24 48 Za

Z Z Z z z[

528 l20

i,j =1 Z Z=Z(i,j}
N

(va i'}'=g A;~(i) A&~(i),

ap N 3 Za Zp Z& ZaZpZy
[A, ()],=-g, ~&,+ Z ~.,+ Z f-i 5-

j i Z Z Z=Z(1~J)

(v~.i'v~ I'):(vv~) =g [A, (i)].[42«)l.[A (i)l
i=l

{A6}
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672 192 ZeZp
Zt4

—
Zs z =z(ij }

l4;„(t,&)].p= l0—;,( I)}p
N N

(VVA p) (VVA

p)=+Asap(i):A2
(i)+ g a; J(ij):a;,(ij),

i=1 ij =1

[~2p(i)]~= g la, (t j)}g

{A10)

{A12)

fttt, i (IJ))ra=, (4Psra+5 /PS+~ a~Pr)
3

S

Z2 y2 (5 pZ„Za+5 gpZa+5, aZpZr+5thZ Za+5psZ Z„+5„aZ Zp)

+ Z+ZpZyZQ
35

z =z(i,j}

{A13}
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