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In the N-level atom (or molecule) model, a set of conditions are developed whereby (i) a
band of reaction channels can be approximated by a single reaction channel, and (ii) this sin-

gle reaction channel can be approximated by a population-loss term. The reactions are re-

stricted to those which remove the system from the laser-excited ladder.

I. INTRODUCTION

There is an increasingly extensive literature on
experiments in laser-induced chemistry and dissocia-
tion, and several methods' have been developed for
predicting the results of these experiments. One
method, commonly referred to as the X-level atom
(or molecule) model, considers the energy levels of
the molecular system (reactants and products) to be
known, and couples these levels by one or n1ore of
the following: (i) hght tuned to the neighborhood of
the resonance frequencies, (ii) intramolecular energy
transfer processes connecting levels near resonance,
(iii) intermolecular energy transfer processes and/or
chemical reactions levels near resonance. Popula-
tion loss and dcphasing terms are added phenomo-
logically.

The usefulness of this n1odel is attested to by the
growing list of general formalisms with respect to
it, and to its use in both analytical and computation-
al solutions, in the literature. One of the major dif-
ficulties in using this model is thc large nun1bcr of
levels that are generally involved in real molecular
systems. As the number of levels involved is large,
one requires exceedingly large core computers (and
computer budgets) for the computations. This prob-
lem has led us to consider conditions whereby (i) a
band of reaction channels can be approximated by a
single reaction channel, and (ii) when this resultant
channd can be approximated by a population-loss
term.

In a previous paper" we considered the wcll-
studicd two-lcvcl model coupled to a dcnsc mani-
fold of states as a simplified model of laser-induced
chemistry and dissociation, and developed criteria
for the reduction of the effective number of levels in
this system. In particular, a laser-driven molecular
species A, represented as a two-level system, was
taken to react forming finite-level molecular sperics
8. CIItcrla werc dcvclopcd that, when satlsfltcd, cll-

abled this model to be approximated by a two-level
molecular A system reacting to form a single-level
molecular speries 8. Further criteria mere then
developed which, when satisfied, enabled this model
to be approximated by a two-level molecular species
A with irrcvcrsiblc populatlo11 loss.

In this paper we extend this concept to a laser
driven N-level n1olecular species A (reactant), in
which each of the levels k can react, producing a
finite level Bk (product) molecular species. Both the
A and 8 moleculcs are also able to be connected to
reservoir degrees of freedom. %e shall develop cri-
teria whcI'cby thc fiilitc-lcvcl 8k spccics can bc ap-
proximated by a single-levd Bk species. Further cri-
teria will be developed whereby these single-level 8~
speries can be approximated by irreversible popula-
tion loss out of levd k of the A system.

%C shall confine oursdvcs to systems where the
reaction eliminates the system from the excitation
ladder. Examples of systems satisfying this criteria
are those (i) involving radiationless transitions, to an
excited electronic state, such as singlet to triplet (as
frequently occur in polyatomic molecules, for exam-

ple, lll thc Rrolllatlc llydl'ocRI'bons); (11) 11lvolvlllg col-
llslonal dlssoclatlon pl'occsscs; (111) Illvolvlllg cllcllll-
cal reactions wherein the final molecular species is
(are) not the same as the original molecular species;
(iv) and those wherein one laser excites a spcrific vi-
brational manifold of thc system, while a second
laser excites a vibrationally excited level to an elec-
tronically excited level of the system. Energy
transfer mechanisms not satisfying this criteria arc
those involving nonlaser induced excitations or de-
excitations taking place within thc laser excited
ladder. Examples are ener'gy transfer mechanisms
involving intramolecular or intermolecular V-V or
V-R processes.

In Sec. II we will derive the conditions for the ap-
proximation of a reaction band by a single reaction
level. In Sec. III we will derive the conditions for
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the approximation of this single reaction level by a
simple population-loss term. Section IV will be our
conclusions.

A
YR

II. REDUCTION OF A BAND OF LEVELS
TO A SINGLE LEVEL

A

pj pj R

In this section we shall derive the conditions
whereby a system with several multilevel reaction
(and/or excitation) channels can be approximated by
one in which these multilevel channels can be re-

placed by single-level channels. We start by examin-

ing the equations for the total multilevel system.
We will then consider the equations for an identical
system except that one level in the laser-excited sys-

tem is coupled only to a single reaction (and/or exci-
tation) level of the product system. By comparing
the resultant solutions of both systems we will

derive the conditions whereby the first system can
be approximated by the latter one. By successive use
of this method, many of the multilevel channels

may be able to be approximated by single-level chan-
nels.

Consider a collection of laser-pumped molecules

of type A with a finite number N of accessible, "un-

dressed" modal levels k having energy ek, reacting
to form molecules of type Bk having a finite number

Mk of accessible, undressed modal levels j, having

energy gkj. This system is shown in Fig. 1(a). The
classically treated laser field of carrier frequency Np

and amplitude E pumps the molecules of type A into
their accessible levels with a coupling strength cok k,
equal to one-half the Rabi frequency for the transi-

tion k~k',
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where pk k is the matrix element of the transition di-

pole moment of A between levels k and k'. The re-
action rate of an A molecule in level k with energy
E'k reacting to produce a Bk molecule in level j, Bkj
with energy gkj is specified by the parameter gkj.
Population loss of level k of the A molecules via in-
teraction with reservoir degrees of freedom is
represented by a decay rate yk', population loss of
level j of the Bk molecules Bkj via interaction with
reservoir degrees of freedom is specified by a decay
rate ykj. Using the operator format developed by
Bowden et al. , of a method employed by Silverman
and Pipkin, the Hamiltonian of this sytem is given
by

R
Rj

FIG. 1. Schematic diagram of a laser-pumped N-level
A molecule reacting to form B molecules. Both the A and
B molecular levels are coupled to reservoirs. (a) Original
system, (b) the B~ levels are approximated by a single lev-

el, (c) the B~ level is approximated by a coupling to a
reservoir.
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where R is the coupling of the A and B molecules to reservoir degrees of freedom, and the rotating-wave ap-

proximation has been assumed. Notationally, ak and ak are, respectively, the (Bose) creation and annihilation

operators "' ' "for the kth level of the A molecules, and similarly the bJ and bJ are, respectively, the (Bose)
creation and annihilation operators for the jth level of the B molecules. Transforming to the interaction pic-
ture and neglecting the rapidly oscillating components, we obtain the following hierarchy of N+ gk, Mk

(complex) coupled linear first-order differential equations for the equation of motion for the amplitudes ak(t),
and hkJ(t) of the various states of the A and 8 manifolds, respectively:

at —— it—ol 2a2exp( —iQt qt) —i g g&jbljexp( itJ»—t) y&a—&, (3a)
j=1

ak = —talk-t, kak-texp(if4-l, k ) —itok, k~tak~texp( —iflkk+l )

Mk

i g—gk bkjexp( iok t—) ykak—, k =2, . . .,N 1—
j=1

(3b)

M~

,exP(i Q~, „t) l' g g„',—blvjexP( i&jlj t) —yNatt, —
j=1

bkj lgkj Qk exp( l 0'kJ' t ) pkjbkj j 1 Mk k 1 N

(3c)

(3d)

where the dot denotes the derivative with respect to the time 0;„ is the laser detuning between the ith and nth
level, given by

and hark k+1 is the reaction energy deficit given by okJ
——gkj —ek. We shall assume that initially all the A mole-

cules are in the ground state [a&(0)=1, a;(0)=0, i =2, . . . , N], that no 8 molecules are present [bkj(0) =0,
j=1, . . . , Mk], and we shall arbitrarily set all the phase angles equal to zero at t=0. Taking the Laplace
transform we can solve (see Appendix A) for ak(s), the Laplace transform of ak(t), obtaining

k —1

( —iso( (+1)
(=1

~k(s+ i~1k )= k=1, . . . , N
CkDk+cok 1 kDk

(4a)

bkJ (S +i 01k+i OkJ ) =

k —1

lgkj ) g ( tall, I+1)
(=1

2
k, k+1

(s +i~ 1k +i&kj +ykj ) Dk+1+
Ck+1

(4b)

where

2
k, k+1

Ck S + l Q lk + +P k +Gk
Ck+

(sa)
and

( —iso((+1)=1, (6b)

Dk ——(S+i 01[k 1]+Gk 1+@k 1)Dk
(a'(t(, m+1/Cx+1) =—0, coo, 1DO

—=0, D1 ——1 (6c)
2 2

in which

+k —2, k —1Dk —2 ~

I gkj I

'

,=l [(s+ykj)+t(f11k+akj)] '

(Sb)

(6a)

We now compare the above system with a system
of laser-pumped N-level A molecules [Fig 1(b)], in.
which every level k&p is the same as the above sys-
tem, but level p, which can be connected to A reser-
voir degrees of freedom so as to undergo population
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loss at a decay rate yp, can also react to produce
only a single-level Bp (product} molecule, which is,
in turn, coupled to reservoir degrees of freedom so
as to undergo a population loss at a decay rate yp.
Namely, every level k&p is the same for both sys-

tems, and we are attempting to replace the band of
levels Bpj in the first system, by a single level Bp in
the second system.

The equations of motion for the operator ampli-
tudes for the second system are identical to those of
the first system, Eqs. {3)for k&p, with the equation
for the pth level being

ap loop ] pap ]exp{iQp & pt )

ic—o p+~ap+~exp( iQ—
p p+~r)

—igp bp exp( —i op t ) —y pap

and

bp ———igpapexp(i opt ) —ypbp,

(3b'}

(3d')

where op, the reaction energy deficit, is given by

op ——qp
—ep. Assume the same initial conditions as

the previous case. Taking the Laplace transform,
we obtain Eqs. (4) for all levels k&@,and for level p

p —1

( —ENI I+1}
1=1

ap(s+i A&p) =
Cpap+~p —i pDp -i

(4a')

bp(s ~i Qip ~i op )=

p —1

( igp)—g ( ice((—~))
1=1

2

(s+i 0&p+i op+ yp ) Dp+ &+ Dp
Cp ~ I

where Eqs. (5a) and (5b) and (6a)—(6e) hold for k~p
and Gp is given by

Gp- (6a')s+EQip+io +y

~here yp is the population-loss term of level Bp and
represents the coupling of Bp to its reservoir.

Let us now compare the solutions for both sys-
tems. The A system interacts with bp only through
ap. Therefore, as can be seen from Eqs. (3) [or, al-
ternatively, Eqs. (Al)], if the solutions of ap given
by Eqs. (4a) and (4a') are equivalent, then the total
solutions for both systems will be equivalent. Now
the only difference between the solution of Eq. (4a)
with k =p, and that of Eq. (4a') is the Gp term given
for the two systems by Eqs. (6a) and (6a'), respec-
tively. This difference mill show up in the solutions
for the respective roots of Eq. (4a) with k =p, and
Eq. (4a'}. Now the Gp terms will only be important
when the denominator of either Eq. (4a) with k =p,
or Eq. (4a') with Gp set equal to zero, is less than, or
of the same order as Gp,

' namely, relatively small.
Therefore, let the roots of Eq. (4a) with k=p and
Eq. {4a'), where Gp ——0, be specified by s =f1+iII,
where RI and II are real numbers. Substituting these
roots into Eqs. {6a) and (6a') and rationalizing the
results, one obtains from Eq. (6a} for k =p

I gpj I [(&(+ypj ) i (I(+Q (p ~op—j )]G . Pj PJ P PJ

[(&I+yp, )'+(I(+Q,p y ~p, )']

I

and from Eq. (6a'),

[(It~+yp) —(I~+Q p+
[(RI+yp) y(II yQ)p pop)']

These two equations will obviously be equivalent if

opj~o'pks JsA 1p ~ ~ ~ p Mp

ypj=ypj J k =1, . . . , M
(8a)

and we set

~p =~pj

yp ypj '
M

I gp I

= $ I gpj I

(Sb)

for all l (9a)

and we set

More generally, these two equations will be
equivalent if
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M

Igp I'= 2 Igpj I'
j=~

M' lgpj I ypj
yp —~ 2 7

Igp I

M 2' lg»l &pj
0'p =

By equating the numerators we are fitting the ampli-
tudes of the various terms in the solutions. As the

denominators, by Eq. (9a), are required to be ap-
proximately the same, the approximations of Eqs.
(9b} should be slightly better than those of Eqs. (8b).
We note that owing to the similarity between the
parameters g„and cok „ in Eq. (2), similar types of
approximations, Eqs. (8) an1 (9), are applicable to
laser pumping, i.e., we may be able to approximate a
band of laser-pumped levels by a single laser-
pumped level.

What errors might we expect from these approxi-
mations'? A formal solution of Eq. (31) [or Eq.
(31')] is

bpj (t') =bpj (0)exp( ypJ t ') +—f igpi—ap(t" )exp(io pj t ")exp[ ypj
(t' —t ")]dt"—. {10)

Substituting this expression into a formal solution for Eq. (3b) with k =p [or Eq. (3b )] we obtain

a&{t)= az(0)exp( —y~t)

+ f iso
&

a &(t')exp(iQ
&

t') t'~
p+&

a—p+&( t)exp( iQpp—+&t') —igpbp(0)exp( ypt )—
t'

f g I g„. I
'a, (t")exp[i~»(t" —t')]exp[ —y»(t' —t")]«" exp[ y, (t—t')]«—.

j=]

e difference between the formal solutions of Eq. (3b) with k =p, and of Eq. (3b'), is

g' Pf g I gp, I
~ap(t")exp[iop, (t"—t')]exp[ ypj(t' t"—)]dt"—

j=l
ys f I g I

ap(t")exp[iop(t" —t')]exp[ —yp(t' t")]dt—

Let us consider when these solutions differ. Firstly,
until a&(t") reaches some significant value, both
solutions will make no contribution. Set

~~uj=~w ~s-

If the y's are negligible, the solutions will be approx-
imately the same for time intervals ht, where

Aopj Jeellt 4 some fraction of 7T

say m. /10, for any j . (14)

Let us now consider the effect of the y's. Assume
all the y~j's are approximately equal to y&. Thc y's
are damping coefficients, with damping times of thc
order, At=1/yz. Thus, from Eq. (14) the solutions
will be approximately the same if

y& &10, for aB j .

Therefore, for negligible decay rates out of the B~
system, the approximation should be good until a
time of the order of m/(10ho. ) past the time the lev-
el was significantly populated. If the decay rates out
of the Bp system satisfy Eq. (15), then the approxi-
mation should be reasonable, in general. Since Eq.
{14) generally gives rather short times, its use is
somewhat limited. The condition Eq. (15) assures
that the population decays before the frequency
differences, ho&J, cause significant differences in the
time dependences of the population amplitudes,
wherein whose equations the o~j's appear in the
form sinozjt and cosozjt. In particular, we note that
the approximation of a large or infinite number of
level B system with no (or negligible) decay terms
present, by a smaller number of level B system, must
be used with care. An example ~ould be the ap-
proximation of the continuum in models of laser-
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induced dissociation (using this method with

gN ~up „where v is the continuum level) by a finite
number of levels with no decay terms present.

In conclusion, we have shown that if the original
system has a band of levels Bpj for which the reac-
tion energy deficits opj are approximately equal, or
if (oz —a&J) is negligible compared to other rate
parameters, and if the decay rates ypj from these
levels are approximately equal, then the N+ gk Ms
level system can be approximated by an appropriate
N+ 1+ g&+z Mk level system. These assumptions
frequently hold for reactive processes. One tech-
nique useful in determining the applicability of Eqs.
(9) is given in Appendix B. As noted previously, in
addition to reaction this method can also be applied
when a second laser causes the transition between
the laser-pumped A system, and the 8 system.

Once the N+ gkMk level system has been
reduced to an N+ 1+ g&+ Mk level system,
there may exist conditions such that the
dr+i+ ge Me teeet eyetem mey be reduced tu

++2+ p+p~ p2 Afk level system, etc. By re-

peating this approximation method successively for
all p levels desired, the original A system with
several levels coupled to multilevel reaction (or
laser-pumped) channels may be able to be approxi-
mated by one wherein several of these levels are only
coupled to single reaction (or laser-pumped) chan™
nels.

Let us now consider the application of this
method to a hypothetical system, the parameters of
which are given in Table I. The total population of
the A system is given in Fig. 2(a); the population of
the A system's first, fifth, and seventh levels are
given in Figs. 2(b)—2(d), respectively. Starting with
the 20-total-level system the restriction, Eq. (15), is
satisfied for the A system level 5. %e can thus ap-
ply the approximation Eq. (9b) and thereby obtain
the 16-level system. The differences between the
graphs of the 20™and the 16-total-level systems, in
the scale of Fig. 2, are too small to be seen. (In Fig.
2 we only plotted the graphs of the 20-total-level
system. ) The level populations of the A system in
the 20-total-level system are thus well approximated
by those of the 16-total-level system. The restriction
of Eq. (15) is not satisfied for the A system level 7.
Figures 2 show the result of using the approxima-
tion (9b) anyway, thereby reducing the 16-total-level
system to a 12-total-level system. As can be seen,
the results are not as good as those of the previous
reduction, where the restriction was satisfied.

III. REDUCTION OF A SINGLE LEVEL
TO A POPULATION-LOSS TERM

Having reduced the band of levels to a single lev-

d, let us now find when this single level can be ap-
proximated by a population-loss term. Thus, con-
sider an %+1+ gk& Mk level system in which the

TABLE I. Parameters for the hypothetical 1evel systems. All parameters not explicitly given are taken to be equal to
zero. e;=1000{i—1); i=1,10. yty;;+) ——1.0; i =1,9. bio ——0.1.

10

qs) ——3998

qs2 ——3999

gs3 ——4000

qs4 ——4001

ass ——4002

ps' ——3998

qs2
——3999

gs3
——4000

s4 =4001

ass ——4002

gs ——4000

ys
——0.5

s=4OOO

ys=o

g5y
——1/V 5; i=1,5

y;=0.5; i=1,5

g7) ——6001.6

g» ——6001.7

q73
——6001.8

pe ——6001.9

g7s ——6002.0

g =(—)'~~i' i =1 5ss

g7; ——6; i=1,5

gs =1/v 5; i=1,5

y;=0.5; i=1,5

g, =6001.90909

y7
——6

q7 ——6001.90909

y7 ——6
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FIG. 2. Plot of population vs time for the systems consisting of 20 and 16 ( ), (a)—(d) 12 (- - -) and (a)—(c) 11 (- - -),

(d) 11 ( ———), and 10 (———) total levels. (a) Total population, (b) 1st level, (c) 5th level, (d) 7th level, of the A system.

A molecule's pth level is only coupled to reservoir
degrees of freedom so as to undergo loss of popula-
tion at the rate yp+yp, ' namely, the previous loss
rate yp plus an additional loss rate yp which will be
used to approximate the Bp level. The equations of
motion for the amplitudes of the operators of this
system are given by Eqs. (3) for k&p, with the equa-
tion for the pth level being

ap
———cop & pap ~exp(iQp & pt)

—i cop p+ Jap+]exp( —i Qp p+ &t)

( A+ ~) (3b")

Assume the same initial conditions as in the previ-
ous systems. Taking the Laplace transform, we ob-
tain Eqs. (4) for all levels k&p, and for level p

ap(s+iQ&p) =

p —1

( —in& I+, )

(4a")
COpip+ &

p+ C +rp+rp Dp+ D 1

p+1
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We want to compare the solutions for this system
with the solutions for the onc-level p reaction chan-

nel system. The levels for p&k interact with the pth
level through az. Therefore, as can be seen from
Eqs. (3) [or, alternatively, Eqs. (Al)], if the solutions

of a& given by Eqs. (4a') and (4a") are equivalent,
then the total solutions for both systems will bc
equivalent. The only difference between these two
solutions is the Gp term in Eq. (4a') versus the yp
term in Eq. (4a"). As in the previous case, these

terms will be important in their respective equations

only when the denominators of these equations with

6& ——0 and y&
——0, respectively, are of the same order

or less than 6& and y~, respectively; namely, rela-

tively small. Therefore, let the roots of Eq. (4a')

with Gp=0, and Eq. (4a") with yp =0 be specified

by s=RI+iII, where RI and II are real numbers.
Substituting these roots into Eq. (7a') and setting it
equal to y& we obtain the requirement

I g, I'[(lll+y, )- (lt+Q„+,)]
(&t+yp )'+(It+ Q)p+ rrp )'

Now consider the case when

y& &g other rate constants

and thus

yp &&ill& It» I gp I & &p» Qlp»

for all I . (18)

Then the imaginary component is relatively small as

it is proportional to
I gp I /(yp), and thus can be

neglected. Therefore, if we set

y' =Reyp ———
Ip

(19)

Eq. (16) will approximately be satisfied.
What errors might we expect from this approxi-

mation7 A formal solution of Eq. (3b') is given by

Eq. (11) with Mp=l. Assuming yp is sufficiently

large, such that, as in Eq. (15),

10
ys +

1
ap(t")=ap(t') for all t' t" & ——

yp

then neglecting exp[ yp(t' t")—] for-
t' —t"g 1/yz and using Eq. (19),

ft

f I gp I
'ap(t")exp[itrp(t" —t')]exp[ —yp(t' —t")]dt"=ypap(t')[1 —exp( ypt')] . — (22)

Substituting this expression into Eq. (11) (with M& ——1), and differentiating the resulting equation with respect

to t, we obtain

ap(t) = itop t—pap I(t)exp(i Qp I pt) itop p+—,ap+I(t)exp( iQp p+—(t) igp bp(0—)exp( ypt)—
—ypap(t)[1 —exp( ypt)] ypap(—t) . —

Since terms proportional to exp( —yet) can be
neglected for t &y1/y~, and since we assumed cz(t)
does not vary significantly over the time interval
t &1/y&, the terms proportional to exp( —y&t) can
be ignored, and Eq. (23), which was obtained from
Eq. (3b'), becomes Eq. (3b"). Thus, we see what er-
rors are introduced by our assumptions. The re-
quirement that ap(t) be approximately constant over
the time interval 1/yz implies that y& be greater
than all other rate parameters affecting a&(t), and is
therefore satisfied by Eq. (18). For a specific sys-
tem, one can see if the approximation of Eq. (19)
will work, either by (i) solving for the roots
s=Rt+iIt (with Gp;=0, i =1, . . . , M, ) and check-
ing if Eq. (18) is satisfied, or (ii) knowing that y&
satisfies Eq. (20), and yp is relatively small for the
system under consideration, usc the approximation,
Eq. (19) and check to see that ap(t) is approximately

I

constant over any time interval 1/y&. Thus, we can
only approximate a single-level reaction channel by
a decay term if the decay out of the reaction product
is relatively very fast. Physically, this requirement
simply states that the population loss of the product
must be sufficiently fast that we can ignore any re-
action from the product 8 back into system A. The
condition Eq. (17) is much inore restrictive than the
approximation of many reaction channels by a sin-
gle channel, Eq. (15). In particular, Eq. (15) only re-
quires y& to be significantly greater than the spread
in the reaction deficits, he&~. On the other hand,
Eq. (17) requires yp to be greater than lgp I2, Qp,
and oz itself, as well as the R~ and II, for all I.

Some systems may have tw'o or morc lcvcls in
which the decay rates yk are relatively large for
several levels k, compared to the other rate parame-
ters of the system. Consider the case when two lcv-
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els p and q have relatively large decay rates y& and

yq, respectively. From Eq. (4a') one can readily see
that az will only be affected by yq through the C 's

and the D's. From Eq. (Sa) C& will be influenced by

G~ only when G~ is relatively large, which from E~.
(6a') will only occur when the real part of s=—y~.
From Eq. (Sa), when s= —y&, C& will be relatively
large due to the s = —yz term itself. Owing to the
recursion relation, Eq. (5a) other C's can only be af-
fected by co /C. Thus (since the co's«yp pq) oth-
er C's will not be substantially affected by the G&

term in Cz. From Eq. (5b) one can see that a similar
situation exists for the D terms. Thus, Gz will only
significantly affect the az term, and Gq will only
significantly affect the aq term. Therefore, the re-
quirements derived in Eqs. (16)—(19) will hold for
each level p and q. One can also see this generaliza-
tion from Eq. (23). This process can be extended to
any arbitrary number of levels. Thus, the single re-
action levels in systems which have relatively large
decay rates yk for several levels k can be approxi-
mated by decay terms provided the parameters of
each of the levels approximated satisfies Eq. (17)
(where the large y 's are excluded from the "other
rate constants").

Let us now consider the application of these ap-
proximations to the hypothetical 12-level system,
the parameters of which are given in Table I. In the
first reduction, the approximation of the coupling of
the 7th A level to a 8 system, by a population-loss
term, y7 is sufficiently large such that the approxi-
mation, Eq. (19), can be used. The results are shown
in Fig. 2. The differences between the graphs of the
12- and 11-total-level systems, in the scale of Figs.
2(a)—2(c), are too small to be seen. [In those figures

we only plotted the graphs of the 12-total-level sys-
tem. In Fig. 2(d) the discrepancies are greater, and
both graphs are plotted. ] The level populations of
the A system in the 12-total-level systems are thus
well approximated by those of the 11-total-level sys-
tem. In the second reduction, the approximation of
the coupling of the 5th A level to a 8 system, by a
population-loss term, y5 is not sufficiently large to
enable the approximation, Eq. (19), to be used. Fig-
ures 2 show the result of using the approximation of
Eq. (19) anyway, thereby reducing the 11-total-level
system to a 10-total-level system. As can be seen,
the results are not as good as those of the previous
reduction, where the restriction was satisfied.

IV. CONCLUSION

We have thus derived conditions as to when a sys-
tem of reaction channels can be approximated by a
single level, and when that single level can be ap-
proximated by a population-loss (decay) term.
While we did it for a single level p, the method can
be used sequentially to eliminate as many bands of
levels as is feasible. We would also like to note that
this method is not limited to reaction channels only.
As can be seen from the structure of the equations
of motion Eqs. (3), it can also be used to eliminate
levels coupled by the laser, i.e.,
gNj ~Nj s+Nj ~+Nj

ACKNOWLEDGMENT

The authors would like to thank Chris Rambin
for his assistance in obtaining the computer plots in
this work.

APPENDIX A

(Ala)

Taking the Laplace transform of Eqs. (3) and changing ak(s) to ak(s+i Qlk ) we obtain the set of equations

Ml

(s+r 1 )al(s) = I —ia112a2(s+iQ12) —i g gljblj(s+iolj),
j=l

(~ + ~ ~1k + rk )~k (~ + ~ ~ 1k ) ik —1,k ~k —1(~ + i~1(k—1)) ~ k, k + 1~k +1(~+ ~ ~1(k +1))

Mk

i g gkjb—kj(s+lokj+10, k), k=2, . . . , N I—
j=l

(A1b)

M~

(s+1+1N+rN)aN(s+1II IN) lajN —laN —l(s+i+1(N —11) 1 y gNjbNj(s+loNj +1+1N)
j=l

(~+ilk+iokj+ Vj )~kj (~+i+lk+iokj) = ~gkj ~k(~+i~1k ) ~

(A1c)

(A1d)



REDUCTION OF THE E&rsCTIVE MANIFOLD OF STATES IN. . .

Assume a solution of the form

/=1
ak(s+iQlk )= 2

CkDk +k —l, kDk —1

~»J(s+1fbi»+ «a& )=

k —1

( ig—k ) g ( —icoi 1+1)
I=1

2
~k, k+1

(s+&O1k+&o'kj+gkj ) Dk+1+ Dk
k+1

2
k, k+1 A

Ck ——s+i Qlk+
' +6k+ yk

in which

M.

g Ig»J I'
j=l6k=

(s+~~lk+~okj+Xkj)

( —le@I i+1)=1, (A5)

and D» will be defined shortly. Substituting Eqs. (A2) into Eq. (Alb) we can obtain

(&+«ik+rk)A 1 k, k+1
2

(C»D»+co» 1,kDk —1)— (Ck —1Dk —i+co» 2, k —1D»-—2) (Ck+1D»+1+cc k»+1 k)

Gk

2
k, k+1

Dk+1+ C'
k+1

Define Dk such that
2

2 ~k, k+1Dk
CkDk+Mk-l, kDk-l =Dk+1+

Ck+1
(A7)

Now lets consider the recursion relation for the
Dk's Eq. (AS). Start with Di. Substituting Eq. (A2)
into Eq. (Ala), setting c001——0, and thus c00 1DO ——0,
we obtain

or by substituting Eq. (A3) for the Ck's, and letting
k~k —1,

Dk = (~ +1fbi(k —11+Gk —1+Xk —I )Dk —1

2+~k —2, k —1Dk —2 ~

s+$1 Nl 2' =1-
C2D2+ F1 2D 1

Gl

N12
D2+ "

Dl

Substituting Eq. (A7) into Eq. (A6) gives us Eq.
{A3). Thus we have consistency and the ak's and
bk's given by Eq. (A2) are the solutions of the set of
Eqs. (A l).

As Eqs. (A3) and (A7) define the Ck's and Dk's as
recursion relations, we must give some initial values.
Since c0N iv+1 ——0, the series for Ck, Eq. (A3) is cut
off at C~ by setting (ar~~+1/CN+1)=O. Then C~
is given by Eq. (A3), and all other Ck's starting with
C~ 1 and proceeding to Cl can also be obtained
from Eq. (A3).

or from Eqs. {A3)and (A7)
2

a)1 2D1
Cl ——D2+ ' =C D, .

C2

Thus,

(A1O)

Substituting Eq. (A7) into Eq. (A9), using Eq. (A3)
and then Eq. (A7), all with k = l, we obtain

2 2
A ~1 2 C01 2D1s+r 1+61+ ' =D2+

C, C,
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APPENDIX B

From the theory of the solution of a system of
linearly coupled equations, one knows that the roots
of Eq. (9a) are the same as those obtained by requir-
ing the determinant of the matrix (R) formed by the
coefficients of the Laplace transforms of the equa-
tion of motion as given in Eq. (A 1) to be zero.

Let (S) be a matrix where S"=s and all other ele-
ments S'J=O, i/j. Set

(A) =(R)—(S) . (B1)

Di ——1.
Using Eq. (A8) we can then obtain the Dk's for
k=2 to k=N.

In estimating the quantities to be used in Eq. (9a)
it is convenient to make use of a theorem by Gersgo-
rin ' and one by Bendixson-Kirsch. ' The Gersgo-
rin theorem states that the characteristic roots of a
real matrix B must lie inside the circles of center b"
and radius QJ, ~

b'1
~

for i =1,2, . . . , N.
The matrix (A), given by Eq. (A1), can be written

in the form B+iC, where B and C are Hermitian.
Let the characteristic roots of B be contained be-
tween b& and b2 and those of C be between c& and

c2. Then all the characteristic roots of A will be
contained within the rectangle in the complex plane
bound by b~+ic&, b~+ic2, b2+ic&, b2+ic2
(Bendixson-Hirsch). By using this technique one
can readily determine when the conditions, Eq. (9a),
are satisfied.
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