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Just as a finite temperature shift brings the critical viscosity down from its diverging
critical-point behavior, a finite frequency produces a similar reduction. We compute in de-
tail the frequency-temperature scaling function to single-loop order and apply it to the prob-
lem of critical diffusion. We also present detailed numerical estimates of the “rolloff” to be
expected in direct experimental viscosity measurements carried out at finite frequencies.

I. INTRODUCTION

As the critical point of a classical fluid is ap-
proached, a weak but nonetheless striking divergence
sets in in the hydrodynamic viscosity. This effect
has been extensively studied experimentally for both
the liquid-vapor phase transition of a single-
component fluid and for the consolute point of a
binary mixture. The dominant features of the effect
are well described by the decoupled-mode theory to
single-loop order."> Two years ago® we pointed out
an interesting modification that is predicted by the
decoupled-mode theory for the case that the viscosi-
ty is measured at a finite frequency w. This makes
the approach to the critical point qualitatively dif-
ferent, as soon as the characteristic order-parameter
relaxation rate drops below w. The system is then
no longer in equilibrium, and the singularity in the
hydrodynamic viscosity 7 is blunted. Instead of

ny(K) kT, (1.1)

where xk~! is the correlation length and z, is the

small critical viscosity exponent, the temperature-
and frequency-dependent viscosity n(k,w) acquires
at the critical point the frequency dependence

—z,,/(3+z") ) (1.2)

7(0,0) < @
The general k — dependence can be written as

—2,/3+z,) (1.3)

in terms of the scaling function S(z) of the scaled
frequency

N(k,0)=7:k)S

—iw
Z=—, 1.4
2«*D, (k) 14

where D,(K)o:xl+z" is the critical diffusion coeffi-
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cient in the hydrodynamic limit.
In order to illustrate qualitatively the behavior of
S (z) we used® the single-factor approximant

§1(Z)21+B02 , (15)

where B, is a coefficient specified below. The pur-
pose of this paper is to point out that for quantita-
tive purposes a much improved and reasonably satis-
factory fit to S(z) is provided by the somewhat
more elaborate three-parameter, two-factor approxi-
mant

Sy(2)~(14+B,2)P(14Byz)' 75 . (1.6)
Section II is devoted to a determination of the three
parameters of Eq. (1.6). In Sec. III we make use of
the spectral function for comparing Eq. (1.6) with
the exact, but rather unwieldy, expression for S(z)
that is obtained in the Appendix. In Sec. III we also
obtain an alternative analytic approximant for S(z).
In Sec. IV we apply Eq. (1.6) to the problem of criti-
cal diffusion in a classical fluid. Section V consti-
tutes a brief summary.

II. FREQUENCY DEPENDENCE

Because of z, <<1 we can linearize Eq. (1.3) in z,,
and work with InS(z). The single-loop decoupled-
mode expression for InS(z) is

. [®_dpp°
lnS_3f0 (p2+1)?

1
pZ(p2+1)1/2

1
oz 4pApi41)12 ]

4, [©_dpp?
—3zf0 (p2+1)72
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—162 52+ , (2.1)
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where the last line exhibits the low-frequency
behavior. It is worthwhile to study both the low-
and high-frequency behavior of S with the goal of
developing an approximant for .S in the form of Eq.
(1.6). This is what we now proceed to do in this sec-
tion.

The remainder in Eq. (2.1) is of higher order than
z? but is not expressible as a Taylor series with in-
teger powers. Substitution of Eq. (1.5) into Eq. (2.1)
and identifying the terms linear in z yields

By=--7=0.589, 2.2

the value used in Ref. 3. But Egs. (1.5) and (2.2)
give an accurate representation of S(z) only in the
range of small z. In the opposite limit for z >>1 Eq.
(2.1) becomes

® 3p* 3p?
In§ =~ fo dp (pz_:,l)S/z - z—€p3
=Inz +3In2—4=In(B_2), (2.3)
where
B, =8"%=0.146 . (2.4)

Thus we see that the coefficient of z in Eq. (1.5) has
to be regarded as a z-dependent quantity which un-
dergoes a considerable decrease in passing from the
low-z to the high-z region. This is effectively what
is accomplished in Eq. (1.6).

The three parameters of Eq. (1.6) are determined
by identifying the linear and quadratic terms of InS
with those of Eq. (2.1). The required third piece of
information is obtained by comparing the z >>1
behavior of InS with that of Eq. (2.3),

BB +(1—B)By=+, (2.5)
BB}+(1-B)Bi=+, (2.6)
BInB,+(1—pB)nB,=3In2—4 . 2.7)

The solution of these equations is facilitated by the
fact that B, has only a small effect in Eq. (2.5), is
completely negligible in Eq. (2.6), and dominates in
Eq. (2.7). Solution by iteration gives

BB,=0.526, (2.8)
so from Eq. (2.6) we obtain

B=0.173 (2.9)
and

B,=3.04. (2.10)
Substitution into Eq. (2.7) yields

B,=0.0778 . (2.11)

The resulting log-log plot of S vs z is shown by the

dashed curve of Fig. 1. The solid curve shows the
results of numerical integration, while the asymptot-
ic behavior specified by Egs. (2.3) and (2.4) is exhi-
bited by the dot-dash straight line. A comparison of
the two curves in Fig. 1 confirms that Egs.
(2.9)—(2.11) provide a reasonably accurate represen-
tation of InS with the maximum error at intermedi-
ate values of z of —0.2.

We have noted that for some purposes we can use
the single-factor approximant

Si(2)~14 5z, (2.12)

which crosses the dashed and solid curves at z =3
and 12, respectively. This is of the general form of
Eq. (1.5) but with a choice of coefficient in between
B, and B,. Equation (2.12) gives a satisfactory fit
to S(z) in the intermediate region at the cost of an
error of —0.1 in the low-frequency region. The er-
ror changes sign at z~10 and increases monotoni-
cally in the high-frequency region, reaching 0.5 in
the limit z— . To this accuracy, Fig. 1 of Ref. 3
still describes the expected scaling behavior for a
finite frequency measurement of the viscosity, with,
however, an adjustment of the frequency scale by
the factor 4B, =3m/4~2.4. A more precise result is
obtained according to Egs. (1.6) and (2.9)—(2.11) by
making scale changes in Fig. 1 of Ref. 3 of 4B,
and superposing the results with weights of 8 and
1 — B, respectively.

In applying Eq. (1.3) to complex or purely ima-
ginary values of z = —i(Q it should be noted that InS
becomes itself complex. Im InS is, however, bound-
ed, so that by virtue of z, << 1, its exponentiation is
not necessary. It follows, to O(z,), that the scaling
factor in Eq. (1.3) can be put into the simplified
form

S

—2,/(3+z,) 1,
K " ~exp(— 7iz,Im InS)

X exp(— le,,Re InS)
~(1— iz, Im1nS)
X exp(— 7z, RelnS) . (2.13)
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FIG. 1. Scaling function S(z) vs reduced frequency
z=—iw/y. Solid and dashed curves show the exact
function and the two-factor approximant S, respectively.
Dot-dashed straight line is the high-frequency asymptote.
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As discussed in Ref. 3, the effective viscosity that is
measured experimentally is in fact proportional to
the sum of the real and imaginary parts, i.e.,

—z,,,/(3+z,,)

(Re+Im)S ~(1—52z,ImnS)

Xexp(— %z,,Re InS) .
(2.14)

It is convenient to divide Eq. (2.14) by the critical

. -2, /3+z,) , .
point value of ReS ™7 ' to give

(1—+z,Im InS)exp{ +z,[In(B , @) —RelnS]}

~exp(5z,H), (2.15)
where

H(Q)=InB_Q—RelnS —ImInS . (2.16)

III. SPECTRAL FUNCTION

A. Dimensional variation

An integration of Eq. (2.1) in closed form is
presented in the Appendix. But the resulting expres-
sion is so cumbersome as to have limited practical
application. We therefore follow a different tack in
this section. It is evident from Eq. (2.1) that the
scaling function can be expressed in terms of the
subtraction

InS(z)=J(0)=J(2), (3.1
where
9% dpp$ 1
J(z)=3 . (3.2
z fo (14922 z +pX14p)7 (

qp is the Debye cutoff, in units of k. With the vari-
able change

s =pX14+pH/?, (3.3)

Eq. (3.2) can be rewritten as

b fls)
J(z)= ds——, 34
(@)= [ s (3.4)
corresponding to a continuous distribution of purely
relaxational contributions. The weighting function,
or spectral function

6
_4_p° dp
f(s) 3(1_'_1,2)2 s (3.5)

is shown by the solid curve in Fig. 2.

Any given approximation to J(z), and thus to
S(z), can be examined and judged according to the
corresponding approximation to the spectral func-
tion. In this light, the single-factor approximant has
to be judged to be quite crude, corresponding as it

FIG. 2. Spectral function fp(s) vs s for spatial dimen-
sionality D =2, 3, and 4. Arrows show the corresponding
effective low-frequency cutoffs. Two-step function is the
spectral function for the two-factor approximant S,.

does to the single-step spectral function
0, 0O<s<Bg'

(3.6)
1, By'<s

f1(3)=

The two-factor approximant of Eq. (1.6) is clearly
better in that its two-step spectral function is a
somewhat more realistic representation of the con-
tinuous monotonic function of Eq. (3.5). The steps
at s =B le are of height B and 1—p, respectively.
Using the values of B, B;, and B, from Eqgs.
(2.9)—(2.11), we obtain the two-step spectral func-
tion f,(s), as shown in Fig. 2. f,(s) is an improve-
ment over f,(s) in that the small step at
s =B !=0.3 simulates the threshold behavior of
f(s). However, f,(s) deviates significantly from
f(s) in the intermediate-frequency region, as is
directly evident in Fig. 2 and as is also indirectly
manifested by the error of —0.2 in Fig. 1. This
difference is sufficient to warrant the further im-
provement that we now proceed to describe.

In order to obtain an improved representation of .S
it is useful to generalize the single-loop integral of
Eq. (3.2) to arbitrary spatial dimensionality D. Thus

D+3
Jp(z)=D fqu zpﬁp;)z z+p2(1_:P2)D/2—l
3.7
and
InSp(2)=Jp(0)—Jp(2) . (3.8)

For D =3, Egs. (3.7) and (3.8) reduce to J;(z)=J(2)
and InS;(z)=InS (z). The corresponding generaliza-
tion of the spectral function is

D+3
_p P dp
f,,(s)_D(sz)2 = (3.9)

where
s =p2(1+p2)D/2—l . (310)

The prefactor of D in Eq. (3.9) ensures that
fp(w)=1 independently of D. The usefulness of
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introducing the parameter D comes from the fact
that the expressions for InS,(z) and InS,(z) are
much more manageable than the one derived in the
Appendix for InS3(z). That the cases D =2 and 4
bracket the case of interest, D =3, is established
from a comparison of the spectral functions. These
are exhibited in Fig. 2 by the dashed and dot-dashed
curves, respectively. The D =3 spectral function,
shown by the solid curve, is seen to be reasonably
well represented by a linear interpolation between
the D =2 and 4 curves.

B. Frequency scaling

We get an even better interpolation than the one
just described by paying attention to the high-
frequency asymptotes. For z>>1 we find, in analo-
gy with Eq. (2.3),

InSp(z)~In(B'P’z) , (3.11)
where

mB®=2 |y 241 —¢<1)]. (3.12)
Here,

zp(x)E—%x—) (3.13)

is the digamma function. The specific cases of in-
terest are

nB? = _1
and

InBY =_3 .

(3.14a)

(3.14b)

As expected, Eqs. (3.14a) and (3.14b) bracket the
D =3 result of Eq. (2.3),

InBY =B, =—4+3In2=—-1.92. (3.15)

The arrows along the s axis in Fiﬁi 2 show the effec-
tive low-frequency cutoffs at (B\>’)~! for D =2, 3,
and 4. From Egs. (3.14a)—(3.15) it is evident that
InSp(z) will be a much closer approximation to
InS;(z) if we scale the frequency by the factor

B(B)

0

(3.16)
These factors are specifically 7, =(2/e)*=0.398 and
rs=8/e =2.94. Defining the new approximation by

InSp(2)=In[Sp(rp2)] , (3.17)

we see that its high-frequency asymptote is indepen-
dent of D. The corresponding spectral function is

o) =fp(rpz) (3.18)

and is plotted in Fig. 3 as the dashed, solid, and
dot-dashed curves for D =2, 3, and 4, respectively.
These curves are much closer together than those for
fp(s) shown in Fig. 2 and in fact cross at z=9. The
arrow in Fig. 3 shows the effective cutoff at
z=B;'=¢*/8=6.8.

Because Eq. (3.8) in the form

. o ds fp(s)
InSp(z)=z [ iss-i"ﬂ

(3.19)

is a linear_operation on fp(s) we conclude that
InS(z) =InS;(2) is also accurately given by an inter-
polation between InS,(z) and InS4(z). These func-
tions are connected by Eq. (3.17) to

2
InS,(2)= | —2— | Inz + =2 (3.20)
z—1 1—z
and
3 2 1
lnS4(z)=lnz—3—;lnz+;+—21nz
¥4
5 1
+ [5S—=+— |R(2), 3.21)
z z

where

R(z)= - - . (322

InS, and InS, vs z are plotted in Fig. 4 as the dashed
and dot-dashed curves, respectively. _

_ The manner of interpolating between S,(z) and
S4(z) can be chosen by examining this low-
frequency behavior, because they already agree in
the high-frequency limit by virtue of the definitions
of r,4 and as illustrated by the long-dashed line in
Fig. 4. For 0 <z <<1 we have from Eqs. (3.8) and
(3.7

FIG. 3. Spectral function fp(s)=fp(rps), obtained
from Fig. 2 by scale changes r,=0.4 and r,=2.9, which
bring all of the effective low-frequency cutoffs together to
the same value BZ' =6.8.
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FIG. 4. Scaling function Sp(z) vs reduced frequency
z=—iw/y. By scale changes all of the high-frequency
asymptotes have been made to coincide, as shown by the
long-dashed line. Spectral function for Sp(z) is the fp(s)
of Fig. 3.

InSp,=B{z , (3.23)
where

B = (3.24)

f 0 (l+p2)D

rl2
D 2

=1 (3.25)

2 "2

The cases of interest are B =1 and BS":%,

which bracket By =Bo=— ﬂ' 0.59. Including the
frequency scale change glves

InSp =8z, (3.26a)
where
B =rpBP . (3.26b)

The numerical values are EBZ) =0.40 and
B“) =0.98. This behavior can be understood from
the following moment identity based on Egs. (3.26a)
and (3.19):

(D) °
Bo = fO

Figure 3 reveals that the D dependence of B(D) en-
countered above comes from the weighting of fp(s)
in the small-s range, where the curves fan apart.
But for z > 1 the small-s range no longer dominates
in Eq. (3.19). The crossing of the curves at s =9 as-
sures that any interpolating error will be negligibly
small for z in this vicinity and beyond.

In order to carry out an interpolation between S,
and S, which is accurate for z—0 we give these
functions the relative weights B and 1—p, respec-
tively. Thus we represent S by the two-factor ap-
proximant

S(2)=58)S} "B , (3.28)

Lhots). (3.27)

where the weighting is fixed by the low-frequency
condition

BBY +(1—-B)BY =B

which gives B=0.67=+. Thus S§=53"’5}", which
is exhibited by the solid curve in Fig. 4. The differ-
ence between InS(z) and the exact function InS(z) is
everywhere too small to be shown in Fig. 4. Equa-
tion (3.28) can be regarded as a definitive solution to
the problem of an accurate determination of S(z) in
closed form.

By =By=—m,  (3.29)

C. Kawasaki function

In this subsection we examine an approximation
which we introduced implicitly into our work at the
very start. The wave-number dependence of the re-
laxation rate in the denominator of the integral in
Eq. (2.1) has been taken to be proportional to

pX(p*+1)"2. The correct expression includes the

correction factor'?
o(p)=(1+p*’K (p), (3.30)

where
p 2[ +p“+(p°—p~"Ntan™ p] 31

is equivalent to the well-known “Kawasaki func-
tion.” o(p) increases monotonically from its lower
limit o(0) to its upper limit

awzcr(oo)=%1r=l.l78 . (3.32)
The corrected version of Eq. (3.2) is
q 6
J@)=30,, [° _dpp__

(p2+1)?
% 1
z+p2(1+p2)1/20.(p)
=3 qu dee6
o (p241)?
1
, (3.33)
z+(1_p)p2(l+p2)l/2
where
=2/, . (3.34)

Here we have introduced the difference function

plp)=1— —P—‘;( ) , (3.35)

0

whose limiting values are p( 0 )=0 and
8
0)=1——-—=0.151.
p(0) 3. 0.151 (3.36)

Because p(p) <p(0) << 1 for all p we can treat p in
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Eq. (3.33) as a small first-order perturbation. There-
fore we linearize with respect to p and proceed to
calculate the effect of p on J(z) to O (p).

From the denominator of the integral of Eq.
(3.33) we see that the relaxation rate breaks up into
zeroth- and first-order terms according to

s(p)=so(p)—As(p), (3.37)
where s((p) is defined by Eq. (3.3) and
As(p)=so(plp(p) . (3.38)

To find the spectral function according to Eq. (3.5)
we need the derivative

dp _ |, _dAs| i, _2dAs
ds [so dp =So +50 dp
=1 ,_]dAS
~ 2= (3.39
~So +So as (3.39)
Multiplying Eq. (3.39) by 3p%1+p2)~? gives the
spectral function
6
p dAs
flsi= 5o (14+p e T/0 g
d 3 pb dAs
f()S)+ P (l+p2)2 fO ds
fo
=fo(s)+s0 AP— +fo ) (3.40)

where in the large zeroth-order term we have al-
lowed for the shift produced by As in p as a function
of s. From Eq. (3.37) this shift is

Ap = _és_ , (3.41)
So

which substituted into Eq. (3.40) gives the first-
order spectral function change

_ _4fols _ dlpsf)
Af(s)=f(s)—fols)= s = ds

(3.42)

where in the final expression we have substituted
from Eq. (3.38) and have dropped the subscript on
the zeroth-order spectral function.

The spectral function change of Eq. (3.42) deter-
mines, according to Eqgs. (3.4) and (3.19), the pertur-
bations in the high- and low-frequency parameters

® ds
AlnB, = [ =af
and

® ds
AB,= [ SN

(3.43a)

(3.42b)

Substituting Eq. (3.42) and integrating by parts gives

AmB, = [~ —pf 61n2—4

6

—inZ =In1.172 (3.442)
e
and
ds
ABo=2 [~ 2pf =2p) [~ 3/=2p)Bo,
(3.44b)
where the weighted mean of p is
ds
IFa7
= —1-2(2 _6)=0.0949 .
(p) I & 2 S5 —G)
0 g2
(3.44¢)
G =0.91597 is Catalan’s constant. Thus B, is
changed by the factor
AB,
1+ =14+2(p)=1.188 . (3.444d)
By
The high-frequency asymptote is, from Eq. (3.44a),
6 6,—4
InS(z)=In %BQE =In 2e B,z
e ©
=In(B_z), (3.45a)

the final form ensuing from the numerical coin-
cidence 2% ~*=o0_, accurate to within 0.5%. Simi-
larly, the low-frequency behavior is
AB,
1 _—
+ B,

InS(z)= B()Z-: —0"—3022’B02

0
14—
+ B,

(3.45b)

with the final form resulting from the numerical
coincidence 14+ ABy/By=0 ., accurate to 1%. Ad-
ded to the high-frequency shift of 0.5%, this brings
the net low-frequency error to 1.5%. To this accu-
racy it follows from Eqs. (3.45a) and (3.45b), and as
confirmed by explicit numerical computation of InS,
that the Kawasaki function is adequately taken into
account by the appropriate choice of variables, as
defined above.

The above result can be understood by examining
the spectral function change in more detail. The
factor ps which occurs in Eq. (3.42) is, like f, and
thus the product psf, a monotonically increasing
function of s. The derivative Af is therefore a posi-
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tive definite function, vanishing at the high and low
ends with a maximum in the intermediate range.
This can be compared with the change produced by
the frequency scale change a=1+Aq,

flas)~f(s)+Aad.f , (3.46)
where Aa << 1 and the derivative is
A.f =sf". (3.47)

Equations (3.45a) and (3.45b) imply that Af is can-
celed by Aad,f when Aa=0_'—1=—p(0). It fol-
lows that for the reverse sign Aa=p(0), 3,f must be
closely matched by Af /p(0).
It is straightforward to carry out the above com-
parison in the low- and high-frequency limits,
focs3? (3.48a)
and
|—f=-s—23, (3.48b)

respectively. The corresponding behavior for Eq.
(3.47) is

dof =5 =2.5f

and

(3.49a)

2
8of =5(1—f)=0.67(1—1) .
The correction from the Kawasaki function for
s<<lis

1 1 dpsf dsf 1
= ~——==f=3.5f.
p(0) Af pl0) ds ds i/ =351

(3.49b)

(3.50a)

In the high-frequency range it follows from Egs.
(3.30), (3.31), and (3.35) that

_ﬂ._____l__s—z/s )

= 3.50b
p(0)  2p(0) ( )
Equation (3.42) then gives
173
1 Afzi sp __1 ds
p(0) ds p(0)  2p(0) ds
S S V. S .
0"~ 13p0)
=0.51(1—1) . (3.50¢)

Although the coefficient in Eq. (3.49a) is somewhat
smaller than that in Eq. (3.50a), and the coefficient
in Eq. (3.49b) somewhat bigger than that in Eq.
(3.50c), it is clear that the two functions overall
match one another very well. This is the underlying
reason that the effect of the Kawasaki function can
be almost entirely absorbed by the frequency scale

change.

We conclude this subsection by describing a
second-order correction that completely removes the
low-frequency error of 1.5% that we found in Eq.
(3.45d). The correction is primarily of academic in-
terest, being too small to be of practical importance.
We therefore only sketch the procedure and do not
provide all of the details.

The lack of precise agreement in the value By is
clearly associated with the imperfect overlap of the
spectral functions Af/p(0) and 9,f. The former’s
low-frequency excess and high-frequency deficiency
are clearly responsible for the slightly larger value
By, according to Eq. (3.43b). The difference of these
spectral functions has a zero in the intermediate-
frequency range. In Fig. 3 it is evident that the
difference f4(s)—f,(s) has the same form. We can
therefore expect that the second-order correction
will be well represented by

S
A1nS(z)=o.oz41n—§i , (3.51)
2

where the strength has been normalized at the low-
frequency end according to Bg” —BE)Z) =0.58.

IV. CRITICAL DIFFUSION

A. General formulation

Diffusion in a classical fluid near its critical point
results from the transport of the critical fluctuations
of the order parameter by the Brownian motion of
the transverse shear modes.""> The effect is inverse-
ly proportional to the viscosity. The appropriate
average is defined further below and can be written
as

1 1 z /(3+z )
— S n
<n(K,w)> n,(k) ¢ )

. 1
(k)

1+%”<1ns> , @.1)

where we have substituted from Eq. (1.3). The
linearization in z, is justified by z, <<1. The de-
crease in the effective value of the viscosity is a
consequence of the retarded response of the critical
fluctuations, as expressed by the frequency depen-
dence of the viscosity. This weakening of the criti-
cal behavior can be represented by an effective
correlation length kg, smaller than k~'. Thus

Keff =0 retK » 4.2)

where a.; > 1 is a numerical factor of the order of
unity. Substituting Eq. (4.2) into Eq. (1.1) gives
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1
T’s(Keff) ns(K)

1
75(K)

z
K
ret

~

(14zylna,) . (4.3)

Identification of the factors in parentheses on the
right-hand side of Egs. (4.1) and (4.3) yields

Ing =7 (InS) . (4.4)

In this paper we confine our attention to the
long-wavelength, or hydrodynamic, diffusion. In
this case, p, the wave number of the transverse velo-
city field fluctuation, matches that of the order
parameter. In addition to this ‘“‘conservation of
momentum” condition there is also a “conservation
of energy” condition that requires a matching of w,
the velocity field frequency, to the frequency of the
order-parameter fluctuation. For small values of p
(this restriction is lifted in Sec. IIB) this is deter-
mined by the relaxation rate p*D;(k), so that

w=ip*Dy(k) . (4.5)

Substituting Eq. (4.5) into Eq. (1.4) and measuring p
in units of « gives

z=3p*. 4.6)

To a good approximation the critical fluctuations
of the order parameter contribute to the diffusion in
proportion to the Ornstein-Zernike function
(p2+1)~!. The average occurring in Eq. (4.1) is
therefore defined for an arbitrary function F(p) by

" g @7
0 p +1

Our goal in this section is to determine a numerical
value for a,,. As an illustration of the general ideas
involved we first apply Eq. (4.7) to InS| ,, the one-
and two-factor approximants of Sec. II. A more
precise numerical evaluation of (InS) will be car-
ried out in Sec. IVB. Substitution of Eq. (4.6) into
Egs. (2.12) and (4.7) gives

InS; =In(1+1p?) 4.8)

(F)E£
T

and

& 2 ® g 2
== [7 2
(In§))== IR Sy )

=2V1I(1), (4.9)
where
1 > _du 2
I0=— [, 3, I +u) (4.10)
andtz%.

Although I(t) can be expressed* in terms of hy-
pergeometric functions, we need it only for relative-
ly small values of ¢. In this range a simple approxi-
mant gives very accurate results. First we note that

1(0)=1, (4.11)
while a subtraction yields

1()—1(0)~—7V1 4.12)
for t << 1. We therefore approximate the integral by

I(t)=7i‘/—; , (4.13)
which we check at ¢t =1, where it gives % =0.667.
Exact integration yields

I(1)=In2=0.693 , (4.14)

indicating an error in Eq. (4.13) of 4%. As we do
not need Eq. (4.13) for ¢ >>1, the discrepancy with
the exact asymptotic behavior of Int /2V't that sets
in in this region is of no consequence. Evaluation of
Eq. (4.13) for t =+ and substitution into Eq. (4.9)
gives for the required average

—1
= 1 1 1 V2
(lnSl)——Tzl(;)—\/i 1+ 3 ]
=0.601 . (4.15)

We now carry out the corresponding calculation
for the two-factor approximant of Eq. (1.6). The
logarithm breaks up into two terms, each of the
form of Eq. (4.8), specified by

ty=5B,=1.52 (4.16a)
and
ty=B,=0.0389 (4.16b)

and of weight 8=0.173 and 1—p=0.827, respec-
tively. Thus from Egs. (4.9) and (4.13) we obtain

(InS,)=2BV11(t;)+2(1—BIW 1,1 (1;)
=0.173% 1.534+0.827x0.359
=0.561 . (4.17)

In Sec. IVB we will compare the above results ob-
tained from S, with the value of (InS) found
from exact numerical evaluation.

B. Retardation correction

In Sec. IVA we obtained the retardation correc-
tion as the appropriate average over the scaling
function. As an alternative way of arriving at the
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same result we now interchange the order of integra-
tion and do the averaging first. Thus the average
over Eq. (3.2) becomes

9% dpp®
(J)=3f0 —1’—3—(172“)2(
2)1/2

). (4.18)
zZ+s

where s =p%(1+p and z=g¢%/2 according to
Eqgs. (3.3) and (4.6), respectively, g being the variable
of integration in Eq. (4.7). Consequently, the re-
quired average in the integrand is, by Eq. 4.7),

<z+s>~_ 0 q+1) 24 2)
2
T V2s(14V2s)

and in subtracted form

(4.19)

e e v it -
S  z+4s s z4s|  s(14+V2s)
(4.20)

Substitution of Egs. (4.20) and (3.3) into Eq. (3.1)
gives the desired average value as

4
<lnS> 3f0 ( 2+1)5/2
X[1+V2p(p?+ 1)/~
=0.618, 4.21

by numerical integration. That this result exceeds
that of Eq. (4.17) by 9% is to be expected, because
S, is everywhere an underestimate of S.

The above calculation of the effect of retardation
on critical diffusion is based on the hydrodynamic
approximation of Eq. (4.6). This quadratic depen-
dence on g is grossly in error for ¢ > 1 and goes over
into a cubic dependence as ¢— . Therefore z, the
dimensionless frequency ratio, approaches asymptot-
ically a cutoff value z,. In the notation of Perl and
Ferrell® the corresponding cutoff value for InS was
found to be —30(1)=0.56. From Fig. 1 we find
that this implies z. =2. Defining an effective wave-
number cutoff on the hydrodynamic approx1matlon
by z. =gq; /2 gives g, =2. With the modification in-
troduced by the cutoff, the ¢ integration of Eq.
(4.19) splits into “hydrodynamic” and ‘“nonhydro-
dynamic” (NH) parts corresponding to the intervals
0<g<gq., and ¢, <q < «, respectively. For the
latter interval we take InS to have the constant cut-
off value InS(z,)=0.560, so the nonhydrodynamic
part of the average is trivially

_2 [=_d9_
(In8)u== [ Jiy 7St

=0.560%tan-‘i=0.165. (4.22)

qc

Imposing the cutoff gives for the hydrodynamic
part

_6 = _dpp° 1
(lnS)H_,n,fo (P +1 S(2S—]

V2s tan'l—q—é; —tan~g,

=0.100, (4.23)

by numerical integration. The sum of Egs. (4.22)
and (4.23) yields the final value for the retardation
correction,

(InS ), =0.265 . (4.24)

Comparison of Egs. (4.24) and (4.21) shows that
the cutoff effect has considerably reduced the effect
of retardation—by more than a factor of 2. Equa-
tion (4.24) has been used by Burstyn et al.® in an
analysis of the experimental light scattering
linewidth data. (Note that our InS here is three
times the InS of Burstyn et al.)

V. SURFACE IMPEDANCE

In this section we want to discuss the possibility
of direct experimental verification of the frequency
dependence of the critical viscosity 17;+i7,. In Sec.
IV B we showed how the frequency dependence in-
fluences the scaling function for the linewidth of the
spectrum of the critical fluctuations. That is an in-
direct evidence of the existence of frequency depen-
dence in the viscosity. However, a direct experimen-
tal demonstration of the effect would be desirable.
Consequently, in this section we demonstrate what
an experiment which measures the surface im-
pedance of an oscillating disk or a vibrating wire in
a viscous critical fluid would observe. For the
binary-liquid 3-methylpentane—nitroethane we find
that at a frequency of 1 kHz the effect would set in
at a temperature of about 20 mK. Thus the experi-
ment should indeed be quite feasible.

As explained in Sec. II, the measured impedance
is proportional to the sum of the real and imaginary
parts of the critical viscosity. In Ref. 3 we had used
a logarithmic representation of the scaling function
for the viscosity. In Sec. II, we found that the two-
factor representation S, is a significant improve-
ment on the single-factor approximant and accounts
for the true scaling function obtained by a numerical
integration to within 15%. A more realistic simula-
tion of the function should have a continuous spec-
tral function rather than the one- and two-step
forms implied by the one- and two-factor approxi-
mants. This motivated the approximation
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Sp(l)=SD("DZ). We found in Sec. III that S, and
S, both give good approximations to S; with an er-
ror not exceeding 15%, as demonstrated in Fig. 4.
In this section we will use S,, which is slightly
closer to S; than S,. It furthermore has a much
simpler and more convenient analytic form.

The real and imaginary parts of S,(Q) are found
from Eq. (3.20) to be

- TQ;? ’ (5.1
e
- % : (5.2)

We see that ReS,(Q)~InQ as the critical point is
approached. Normalizing by the critical point value
of the viscosity and linearizing in the small exponent
z, we find that the drop in the real part of the
viscosity below its critical point value is

An; <In(B _Q)—RelnS,(Q)
=In(B ,Q)—RelnS,(r,Q) . (5.3)

The experiment measures
Any+m, < H(Q)=In(B ,Q)—Reln[S,(r,Q)]

—ImIn[S,(r,Q)],
(5.4)

as in Eq. (2.16). H () has been plotted as the solid
curve versus

r=0'=y/o (5.5)

in Fig. 5. The dashed and dot-dashed curves show
separately In(B_Q)—Reln[S,(r,Q)] and
—ImIn[S,(r,Q)], respectively. We note that apart
from a change of scale these curves are very similar
to the ones exhibited in Ref. 3. The change in scale
comes from the difference in scale between Figs. 5
and 1 of Ref. 3. In Ref. 3 we had used the low-
frequency behavior to obtain the logarithmic repre-
sentation. That choice, as discussed in Sec. II, does
not yield the correct asymptote in the high-
frequency limit.

The arrows in Fig. 5, shown for the choice
o/2m=1 kHz, indicate the temperatures AT =10,
50, and 250 mK at which the characteristic relaxa-
tion rate takes on the values y/2m=0.046, 0.3, and
23 kHz for the critical mixture 3-
methylpentane—nitroethane. These values follow
from’ (in MHz)

FIG. 5. Surface impedance function H of Eq. (5.2) vs
the scaled rate I'=Q7'=y/0. y is the temperature-
dependent characteristic relaxation rate, and o is the fre-
quency of the measurement. Dashed and dot-dashed
curves show the separate contributions to H from the real
and imaginary parts of the viscosity, respectively. Tem-
peratures indicated are those for the binary mixture 3-
methylpentane—nitroethane at the frequency of 1 kHz.

X =0.334AT)", (5.6)

2
where AT =T —T, is given in degrees Kelvin. The
effect of the finite frequency is indicated by the de-
viation from the linear behavior for I' < 1. As stated
before, the deviation, or “rolloff” effect, is already
pronounced at AT =20 mK. Because good tem-
perature stability and control to within 1 mK of the
critical point is generally attainable, it should be
possible to map out experimentally the entire scaling
function, assuming that the measurements can be
carried out at 1 kHz. As noted in Ref. 3 a deviation
from hydrodynamic behavior has been reported® for
a vibrating-wire measurement of the viscosity in
COy, near its critical point.

VI. SUMMARY

We have been concerned in this work with the fre-
quency dependence of the critical viscosity. Because
of the long-range fluctuations the viscosity of a clas-
sical fluid near the critical point is enhanced above
its normal value and shows a weak divergence at
T =T,. This divergence is present only in the limit
of vanishingly small wave number and frequency.
The viscous hydrodynamic response of the fluid at a
finite frequency rises as long as the frequency is
small compared to the relaxation rate of the critical
fluctuations. However, as one approaches T, the
fluctuations become more and more long lived and
there comes a point when the relaxation rate of the
fluctuations equals the external frequency. If the
temperature is reduced further the system can no
longer follow the rapid oscillations of the external
probe, and the viscosity ceases to increase any fur-
ther. This frequency dependence can be expressed
by a scaling function depending only on the scaled
variable ) =w/y, where o is the external frequency
and v is the temperature-dependent relaxation rate.
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The integral which describes this frequency
dependence is unfortunately rather complicated and,
although exactly solvable as exhibited in the Appen-
dix, is of little practical use. For that reason we
have presented simple approximations to the true
function. The simplest such approximations, corre-
sponding to spectral functions with one and two
steps, have been treated in Sec. II. In Sec. III, we
develop a different approximation by varying the
dimensionality of the phase space. Section IV is de-
voted to an application of this effect—the calcula-
tion of the diffusion coefficient in the hydrodynamic
limit. The frequency dependence of the viscosity
causes a small but nevertheless observable effect on
the linewidth. Because of the very precise measure-
ments of the linewidth, detection of such small ef-
fects is possible. The direct observation of the fre-
quency dependence would, however, be more com-
pelling. That this is indeed a feasible proposition is
established in Sec. V, where we show what an exper-
iment carried out in the binary mixture 3-
methylpentane—nitroethane at 1 kHz is likely to ob-
serve as the critical point is approached.
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APPENDIX A: EXACT SCALING FUNCTION

Here we present an exact evaluation of InS. The
substitution p =tan6 reduces InS to

7/2 sin*@ cos’0d O

"5=3Jo Zeosttsine Ay
The further substitution of cos@=x leads to

In§ =3 01 % . (A2)
The denominator can be factored as

34z 1=x)=(x —a)(x —ay)(x —a3) ,

(A3)

where a, , ; are the roots of the cubic equation

x3—z"1x24z71=0. (A4)

But

3 34,
[[x—a) =3 —, (AS)
j=1

i=1 X —Q;

where
Ai= H(a,v—aj)_l . (A6)
J#i
For any function f(a;) of the three roots a; we can
write the weighted sum as the linear operation

{(fla)la= i Aif (a;) . (A7)

i=1

Thus by Egs. (A5) and (A7), Eq. (A2) becomes

InS =3{I(a)}, , (A8)
where
1 2
Ha)= [ ——(1—x**%dx . (A9)

For subsequent application we note here a series
of useful identities. Equation (A4) gives for n >3
the recursion relation

{a" =2z {a" 1}, —2z"{a" %, . (A10)
By direct substitution into Eq. (A7) we find

{1}4=0,

{a}4=0.

(Alla)
(A11b)

{a@?} 4 has to be computed explicitly. But from Egs.
(A10)—(A11b) it follows that all higher powers of a
can be reduced to a®. We will need

(@’)y=z""{?)4, (Allc)
'} y=z7 "}y =272a), , (A11d)
and
(@) a=z""{a*}s—z7 (a4
=z} =z O{a?}, . (Alle)

From Egs. (A1la)—(Alle) it follows that for the po-
lynomial

5
P@)= 3 a,a”, (A12)
n=0
(P@)}s4=[a,+a:z7 " +a,z 2
+as(z73—z"N]{a?}, . (A13)

To carry out the integration in Eq. (A9) we exhi-
bit first the algebraic simplication of the integrand

(1_x2)3/2___= (1_x2)3/2(x +a)

—a¥(1—xH)"Yx +a)

212
+a2(l—a2)%. (A14)
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Thus
2
I(a)= -;-+%1ra—g3——%1ra3
+a*(1—a¥(a), (A15)
where
(1_ 2)1/2 /2 Sln2
J(a)= f - fO cosb—a a
=-1—§m—(1_a2>x(a) (A16)
and
T/2 dé
Kla)= fO a—cosf
1 =02 +a)'”?
(l_aZ)l/Z (l—a)'/2+(l+a)'/2 :
(A17)
Substitution of Eq. (A 16) into Eq. (A15) gives
I{a)=P(a)—a*(1—a*)’K (a) (A18)

with
1 3 4 2 3 3 4 1 s
Pla)=5+jgma—sa*—yma’+a’+gma’ .
(A19)

By Eq. (A13) the weighted sum required for Eq.
(A8) is

224 2z a?),

(A20)

{P(a)}, =(—%—%1rz

As a demonstration of the method presented
above we apply it to the asymptotic region z >> 1.
All of the roots approach zero asymptotically so the
second term of Eq. (A4) can be neglected, leaving

x3+z71=0. (A21)
Thus
a;=z"'"B;, (A22)

where B; are the three cube roots of —1. Because
|a| <<1 it follows from Eq. (A17)

(1 —az)K(a)zazln_Ta

= —(7 Inz +1In2)a?

+a?n(—pB) . (A23)

Explicit computation yields

{@’In(—pB)},=0 (A24)
and

{a®],=1. (A25)

Substituting Eqs. (A23)—(A25) into Egs. (A16),
(A15), and (A7) and neglecting all the terms in
parentheses in Eq. (A20) except the first, gives final-
ly

InS =(Inz +3In2—4){a?],=In(B _z), (A26)
in agreement with Egs. (2.3) and (2.4).
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