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Diffusion-controlled cluster formation has been simulated on lattices of dimensionality
2—6. For the case of a sticking probability of 1.0 at nearest-neighbor sites, we find that the
radius of gyration (Rg) of the cluster is related to the number of particles (N) by R~-N~ (for
large N). The exponent P is given by P-6/Sd, where d is the classical (Euclidean) dimen-

sionality of the lattice. These results indicate that the Hausdorff (fractal) dimensionality (D)
is related to the Euclidean dimensionality (d) by D =5d/6 (d =2—6). Similar results can be
obtained from the density-density correlation function in two-dimensional simulations.
Nonlattice simulations have also been carried out in two- and three-dimensional space. The
radius-of-gyration exponents (P) obtained from these simulations are essentially equal to
those obtained in the lattice model simulations. We have also investigated the effects of
sticking probabilities (S) less than 1.0 on diffusion-limited cluster formation on two- and
three-dimensional lattices. While smaller sticking probabilities do lead to the formation of
denser clusters, the radius-of-gyration exponents are insensitive to sticking coefficients over
the range 0.1(S(1.0.

INTRODUCTION

The aggregation of particles to form floe or clus-
ters has, for a long time, been one of the central phe-
nomena in colloid science with important implica-
tions for problems such as the control of water and
air pollution, ' as well as for a very wide variety of
natural and commercial processes. The importance
of this problem has stimulated a large amount of
research including computer simulations of flo for-
mation by Void and Sutherland et al. While this
early work did include some of the effects of
Brownian motion by allowing single particles or
clusters of particles to approach each other from
random directions and with random orientations,
the most important effects of Brownian motion on
cluster formation have only recently been revealed

by the work of Witten and Sander. By means of
Monte Carlo simulations, Witten and Sander have
demonstrated that diffusion-controlled growth on a
"seed" particle in two-dimensional space results in a
cluster which has an associated fractal'
(Hausdorff -Besicovitch) dimensionality of about —,

in the limit of large cluster size. We have recently
confirmed the results of Witten and Sander and ob-
tained similar results for diffusion-controlled cluster
formation in three- and four-dimensional space.

Besides its importance in understanding aggrega-
tion phenomena in colloidal systems and other

dispersions, diffusion-controlled cluster formation
provides a relatively simple limiting case model for
other important phenomena such as dendritic
growth and polymerization processes.

In the present paper we present additional infor-
mation concerning the nature of clusters formed by

FIG. 1. Monte Carlo simulation of diffusion-controlled
cluster formation using a two-dimensional lattice model.
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diffusion-controlled processes in two-, three-, and
four-dimensional space together with results ob-
tained from Monte Carlo simulations in five- and
six-dimensional space. Because cluster formation in
three-dimensional space is the most important from
a practical point of view, this is one of the major
focuses for the present paper. However, cluster for-
mation in two-dimensional systems (surfaces) is also
of importance and is discussed in detail. Cluster
formation in four-dimensional space and spaces of
higher dimensionality has less physical significance.
However, results obtained from simulations in
higher dimensionalities should lead to a better
overall understanding of diffusion-controlled cluster
formation and its relationship to phenomena such as
polymer gelation, ' percolation, ' and other critical
phenomena. "

Results obtained for similar simulations of
diffusion-controlled deposition on surfaces and
linear nucleation sites (fibers) will be presented in a
separate paper.

FIG. 2. Two-dimensional cluster of 11 260 particles ob-
tained using the procedure illustrated in Fig. 1 and
described in more detail in the text. Sticking coefficient is
1.0 at nearest-neighbor positions.

T%0-DIMENSIONAL CLUSTERS

The simulation of diffusion-controlled cluster for-
mation in two-dimensional space has been described
by Kitten and Sander. Vhtten and Sander start
with a single sexi particle at the origin of a lattice.
A second. partlclc 1s added a long d1stancc from thc
origin and undergoes a random walk on the lattice
until it reaches a site adjacent to the seed and be-
comes part of the growing cluster. If the particle

reaches a position which is very far from the seed
particle, it is "killed" and started off again at a ran-
domly chosen position closer to the seed and the
random walk is continued. Eventually, the particle
reaches a position adjacent to the seed and becomes
part of the cluster. A third particle is then intro-
duced at a random distant point and undergoes a
random walk until it also becomes incorporated into

TABLE I. Results obtained from simulations of diffusion-controlled cluster formation on two-dimensional square lat-

tices with a sticking probability of 1.0 at nearest-neighbor sites.

Number of
particles

for cluster 50%'
Radius-of-ityrat1011 expollcnt (Pi

75%b 0+ c

Density-density

correlation

function

exponent (c)

Aver age

coordination

11062
11 806

10240
7 740

7731
9658
8 827

0.577

0.582

0.590

0.552

0.599

0.599

0.545

0.576

0.583

0.610
0.568

0.602

0.615

0.561

0.587

0.570

0.604

0.588

0.607

0.611

0.568

0.587

0.569

0.605

0.595

0.608

0.612

0.566

0.273

0.294

0.367

0.348

0.329

2.193

2.185

2.183

2.198

2.197

2.188

0.578+0.020 0.588+0.020 0.591+0.016 0.592+0.017

'Last 50% of clusters formed.
Last 75% of clusters formed.

'Last 90% of clusters formed.
Last 95% of clusters formed.

0.322+0.047 2.191+0.007
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FIG. 3. Density-density correlation function calculated
for the cluster shown in Fig. 2.
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FIG. 4. Dependence of radius of gyration on cluster
size during the growth of a cluster of 12723 particles
under the conditions used to obtain Figs. 2 and 3.

the growing cluster. The procedure is repeated until
a cluster of sufficiently large size is formed.

Some additional details of our simulation pro-
cedure, including methods used to reduce computer
time requirements, are described in this section.
Since a particle undergoing a random walk starting
from a point a large distance from the cluster will
intersect a circle enclosing the cluster, for the first
time, at a point at random on the circle we start the
particle out at a random point on a circle centered
on the seed particle with a radius slightly (about 5
lattice spacings) larger than the distance from the
seed to the most distant particle in the cluster (the
maximum radius of the cluster, r,„; see Fig. 1).
The particle is then moved to the nearest lattice site.
If the particle reaches a point more than three times
the maximum radius of the cluster from the origin,
it is killed and a new particle is started. Simulations
in which the particle was killed at a distance of
2r,„gave results very similar to those presented in
this paper. To accelerate the calculation, the step
size was temporarily increased to 2 lattice units if
the particle was at a distance greater than r,„+10
lattice units from the origin and was increased to 4
lattice units if the particle was at a distance of
r +20 lattice units from the center. Similar in-
creases to 8 lattice units at &r,„+40and 16 lattice

units at &r,„+80 were included. Similar calcula-
tions in which the step size increases were carried
out at &r,„+5, &r,„+10,etc., gave very similar
results to those presented in this paper indicating
that these step size increases significantly reduced
computer time requirements without compromising
the accuracy of our results.

Fig. 2 shows a typical cluster of 11260 particles
grown on a square lattice with a sticking probability
of 1.0 at nearest-neighbor sites. The random walk
of the particles consists of transfers to nearest-
neighbor sites as indicated in Figure 1.

%itten and Sander showed that the density-
density correlation function

C(r)=N 'gp( r')p( r+r')

obtained in two-dimensional simulations conformed
to a power-law relationship

C(r)-r (2)

for distances r greater than a few lattice spacings
but significantly less than the size of the cluster. In
Eq. (l) the density p( r ) at position r is defined to be
1 for an occupied site and 0 for an unoccupied site.
N is the number of particles in the cluster.

The power-law form of the density-density corre-

TABLE II. Results for diffusion-controlled cluster formation on two-dimensional square lattices with a sticking proba-

bility of 1.0 at next-nearest-neighbor sites only.

Number of
particles

for cluster 50%
Radius-of-gyration exponent (P)

75% 90% 95%

Density-density
correlation

function
exponent (a)

Average
coordination

number

5980
4934
6973
5569
5604

0.572
0.568
0.598
0.615
0.565

0.573
0.587
0.582
0.605
0.569

0.580
0.600
0.574
0.602
0.569

0.593
0.613
0.579
0.608
0.573

0.347
0.265
0.272
0.340
0.250

2.208
2.199
2.219
2.239
2.217

Avg. 5812 0.584+0.027 0.583+0.018 0.585 +0.019 0.593+0.022 0.295 +0.056 2.216+0.019



lation function (Eq. 3) is consistent with a fractal
(Hausdorff -Besicovitch) diinensionality D of d —a
where d is the "normal" Euclidean dimensionality of
the cluster. The Hausdorff dimensionality can also
be obtained from the radius of gyration (Rs) which
has a power-law dependence on the number of parti-
cles for sufficiently large N:

(3)

The Hausdorff dimensionality is given by

Figure 3 shows the density-density correlation func-
tion C(r ) as a function of distance (r) in the form of
a double-logarithmic plot.

The essentially constant slope over the range
Og lnr &4.5 indicates that C(r)-r over dis-

tances from a few lattice spacings up to greater than
50 lattice spacings. The maximum radius of the
cluster r,„ is 200 lattice units. Figure 4 shows how

the radius of gyration increases with increasing clus-
ter size during the simulation of a cluster of 12723
particles. This figure illustrates that Rg is related to
N (the number of particles) according to Rg-N~
(for large N). Table I shows the results obtained for
seven clusters grown on square lattices with a stick-
ing coefficient of 1.0 at nearest-neighbor positions.
The radius-of-gyration exponents (P} shown in this
table were obtained by using a "least-squares" pro-
cedure to fit the values of ln(X) and the correspond-
ing values of ln(R) obtained during the addition of
the last 50%, 75%, 90%, and 95% of the total par-
ticles added during cluster formation. The correla-
tion function exponents (a) were obtained using the
values of ln[C(r)] obtained from the final cluster for
distances over the range 5&r &50 lattice units.
From the correlation function exponent a
=0.322+0.047, ' we obtain a corresponding
Hausdorff dimensionality (D =2—a) of
D = 1.68+0.05. Using the radius-of-gyration ex-
ponents to obtain the Hausdorff dimensionality we
find D~= 1/P=1. 73+0.06 froin clusters obtained

0.50
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FIG. 6. Dependence of cluster density on distance

from the origin for a two-dimensional cluster of 10200
particles grovrn using the same conditions as earlier fig-

ures.

during the last 50% of cluster formation. The cor-
responding results for the last 75%, 90%, and 95%
of particles added are 1.70+0.06 (for 75%),
1.69+0.05 (for 90%},and 1.69+0.05 (for 95%).

As the cluster grows, the average coordination
number of the particles rapidly approaches an al-
most constant value (Fig. 5). Additional results are
given in Table I. The average coordination number
for large clusters is 2. 191+0.007.

Figure 6 shows how the cluster density decreases
with increasing distance from the origin for a large
cluster (10 200 particles). While there are substan-
tial fluctuations, the overall behavior in this and
other clusters is for the density to decline continu-
ously with increasing distance from the center with
no "plateau" region of constant density. This
behavior is closely related to the overall decrease in
density with increasing cluster size and the "fractal"
characteristics of the cluster. At distances small
compared to the overall size of the cluster, but large
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FIG. 5. Average coordination number as a function of
cluster size for a two-dimensional cluster grown on a
square lattice with a nearest-neighbor sticking probability

of 1.0.

FIG. 7. Typical two-dimensional cluster of 6919 parti-

cles obtained by incorporating the "diffusing" particles

into the growing cluster at next-nearest-neighbor sites

only.
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TABLE III. Exponents obtained from two-dimensional nonlattice simulations with a stick-
ing probability of 1.0 at nearest-neighbor sites.

Number of
particles

for cluster 50%%uo

Radius-of-gyration exponent (P)
75%%uo 90%

Density-density
correlation

function
exponent {a)

0.594
0.616
0.576
0.563

0.582
0.611
0.583
0.568

0.576
0.595
0.581
0.570

0.571
0.584
0.582
0.569

0.298
0.345
0.324
0.312

Avg. 8 500 0.587+0.032 0.586+0.025 0.581+0.015 0.577+0.011 0.320+0.028

compared to the size of a lattice site, the density
should decrease with increasing distance from the
center with the same power-law relationship as the
density-density correlation function. While the
Hausdorff dimensionality could, in principle, be ob-
tained from the data displayed in Fig. 6 this pro-
cedure would lead to very inaccurate results.

Despite the very open nature of the cluster, few if
any particles are added to the inner regions of the
cluster during the later stages of growth. This is a
direct consequence of the Brownian motion of the
particles, i.e., almost all Brownian trajectories will
intersect the outer "arms" of the growing cluster be-
fore reaching the inner regions. Consequently,
growth occurs mainly in the outer regions of the
cluster. This is responsible for the continuous de-
crease in average density as the cluster grows and
leads to the fractal characteristics.

k. a

&~~ J!IIL.

JK

~~-t, '

1

Figure 7 shows a typical two-dimensional cluster
grown by moving the "diffusing" particle to a
nearest-neighbor site during each step of the Monte
Carlo calculation and incorporating the particle into
the growing cluster if it reaches a next-nearest-
neighbor site with respect to the cluster. This clus-
ter has an even more open structure than the cluster
shown in Fig. 2. However, additional growth still
occurs mainly in the outer regions of the cluster, and
the density-density correlation function exponent
(a) and the radius-of-gyration exponent (P) have
values very similar to those obtained for sticking at
nearest-neighbor sites (Table II). Similar results
were obtained in simulations with a sticking proba-
bility of 1.0 at both nearest-neighbor and next-
nearest-neighbor sites.

Kitten and Sander have found that the density-
density correlation function exponent (a) obtained
from diffusion-limited aggregation on a two-
dimensional triangular lattice (a =0.327+0.01) has
essentially the same value as that obtained using a
square lattice (0.343+0.004). To further establish
the irrelevance of lattice details for the exponents a
and P, nonlattice simulations of diffusion-controlled
cluster formation have been carried out. In these
simulations a trial in the Monte Carlo calculation
consists of moving the center of a circular particle
with equal probability to any point within a distance
5 of its original position and testing for overlap with

5.0 I I I I I I I I I I I I

4.0

FIG. 8. Two-dimensional cluster of 10000 particles ob-
tained on the nonlattice model for diffusion-limited clus-
ter formation.

q 0 I I I I

3.0 4.0 5.0 6.0 7.0 8.0 9.0
In (NI

FIG. 9. Dependence of the radius of gyration {Rg) on
the number of particles {X)during the growth of the clus-

ters shown in Fig. 9.



1500 PAUL MEAKIN 27

TABLE IV. Results obtained in two-dimensional simulations with a sticking probability of
0.25 at nearest-neighbor sites.

Number of
particles in

cluster 50%
Radius-of-gyration exponent (P)

75% 90% 95%

Density-density
correlation function

exponent (x)

15 907
15 974
17018
15 148
14097

0.593
0.609
0.579
0.566
0.589

0.586
0.602
0.563
0.564
0.584

0.576
0.5c~9

0.563
0.568
0.586

0.566
0.592
0.568
0.571
0.584

0.293
0.313
0.269

0.321

Avg. 15 628 0.58720.020 0.58020.020 0.57820.018 0.57620.014 0.29920.032

the growing cluster. If overlap is found, the particle
is moved to the position where it first touched the
cluster and is incorporated into the cluster. In our
calculations the distance 5 was set equal to the di-
ameter of the circle. Smaller values of 5 could have
been used, but the computer time required to grow a
cluster of a particular size is approximately propor-
tional to 1/5 . Figure 8 shows a cluster of 10000
particles grown in this way with a sticking probabil-
ity of 1.0. In these calculations the diffusing parti-
cle was killed and a new particle started if the parti-
cle reached a distance of 2.5 times the maximum ra-
dius from the origin. This was done to reduce com-
puter time requirements. Nevertheless, a cluster of
10000 particles required over 20 hours of central
processing unit (CPU) time to generate on a Digital
Equipment Corp. VAX-11/780 computer. Values
for the density-density correlation function exponent
(a) and the radius-of-gyration exponent p are given
in Table III, and a plot of lnRg vs lnN where Rg is
the radius of gyration and 1V is the number of parti-
cles is shown in Figure 9.

A comparison of Tables I—III indicates that the
exponents a and P (and consequently the Hausdorff
dimensionality) are independent of lattice details.

In real systems, it is possible that the diffusing
particle may be repelled from the cluster at short
distances or may not stick on each contact. Conse-
quently, we have carried out simulations to explore
the effects that sticking probabilities less than 1.0
have on the exponents a and P and on the morpho-
logies of the clusters. Figure 10 shows a cluster of
9566 particles obtained in a lattice model using a
sticking probability of 0.1 at next-nearest-neighbor
sites only. This figure should be compared to Fig. 7
to see the effects of small sticking probabilities on
cluster morphology. A small sticking probability
leads to a denser cluster. Our values for the ex-
ponents a and P are shown in Table IV (sticking
probability of 0.25 at nearest-neighbor sites) and
Table V (sticking probability of 0.1 at next-nearest-
neighbor sites). The results shown in these tables in-
dicate that the exponents a and p are relatively in-

sensitive to sticking coefficients over the range
0.1—1. While we had expected that a and P would
be insensitive to lattice details before carrying out
the simulations presented in this paper, the insensi-
tivity to sticking probabilities was unexpected. Our
results are not precise enough to determine if the
sticking probability is an irrelevant parameter for

TABLE V. Results of two-dimensional simulations with a sticking probability of 0.1 at
next-nearest-neighbor sites.

Number of
particles in

cluster 50%
Radius-of-gyration exponent (P)

75% 90% 95%

Density-density
correlation function

exponent (a)

9 566
8 745

10520
11066
10571

0.602
0.599
0.619
0.554
0.560

0.604
0.578
0.621
0.568
0.577

0.587
0.572
0.607
0.573
0.589

0.578
0.572
0.588
0.574
0.595

0.243
0.271
0.270
0.260
0.309

Avg. 10094 0.587+0.035 0.590+0.027 0.586+0.018 0.581+0.012 0.271+0.030
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FIG. 10. Cluster of 7566 particles simulated using a
lattice model with a sticking probability of 0.1 at next-
nearest-neighbor positions only.
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the exponents a and P. However, the results
presented in Tables I, II, IV, and V do point strong-
ly in this direction.

THREE-DIMENSIONAL CLUSTERS

The methods used to simulate diffusion-limited
cluster formation in three dimensions are analogous

p I

~ r

FIG. 11. Three perpendicular projections and a cross
section |lower right-hand corner) for a cluster of 8257 par-
ticles grown on a simple cubic lattice.

to those used in the two-dimensional simulations
described above. As in the case of two-dimensional
cluster formation, both lattice and nonlattice models
have been used. In most of our three-dimensional
calculations the diffusing particle was killed if it
reached a distance of 2r,„ from the origin, and a
new particle was started at a distance of r +5
from the origin. As in our two-dimensional simula-
tion, the step size was increased to 2 for
r gr ~+10, to 4 for r &r,„+20, and to 8 for

TABLE VI. Experiments obtained in three-dimensional simulations of cluster growth with

a sticking probability of 1.0 at nearest-neighbor sites.

Number of particles
in cluster

8257
8000
7 676
6619
7662
6608

10000
7 805
7 870
6 896
8 787
9 219
9236
7 235
6518
7917

0.420
0.409
0.401
0.390
0.395
0.421
0.41S
0.382
0.411
0.381
0.373
0.393
0.398
0.429
0.416
0.404

Radius-of-gyration exponent (P)
75%

0.416
0.404
0,403
0.378
0.38S
0.408
0.415
0.377
0.404
0.390
0.380
0.388
0.396
0.429
0.430
0.397

0.409
0.407
0.404

0.379
0.394
0.406
0.382
0.403
0.393
0.394
0.389
0.397
0.424
0.444
0.397

Avg. 7899 0.402+0.009 0.400+0.009 0.401 %0.009
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FIG. 12. Density-density correlation function [C(r)]
for a three-dimensional cluster of 7762 particles grown
under the conditions used to obtain Fig. 11.
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FIG. 14. Dependence of average coordination number
on cluster size during the formation of a cluster of 7870
particles.

r & r +40, where r is the distance of the diffusing
particle from the origin.

Figure 11 shows a typical cluster of 8257 particles
grown on a simple cubic lattice with a sticking prob-
ability of 1.0 at nearest-neighbor positions. The
three-dimensional clusters grown under diffusion-
limited conditions have a low average density which
decreases with increasing cluster size. As in the case
of the two-dimensional clusters, growth occurs
mainly at the outer regions of the clusters despite
their very open structure.

The density-density correlation function C(r) for
a cluster of 7762 particles is shown in Figure 12. It
is not possible to simulate three-dimensional clusters
(and clusters of higher dimensionality) which are
large enough to obtain a linear region in plots of
In[C(r)] vs ln(r) over a range of distances which are
both larger than a few lattice spacings and signifi-
cantly smaller than the overall dimensions of the
cluster. Attempts to fit portions of inc(r) vs ln(r)
plots (such as Fig. 12) by a straight line give results
which are clearly dependent on the size of the clus-
ters even for clusters of 10000 particles, i.e., the ap-
parent value of the density-density correlation func-
tion exponent (a) decreases with increasing cluster
size. Fortunately, the values of the radius-of-
gyration exponents (P) do not seem to be nearly as
sensitive to finite-size effects, and we have relied on
the dependence of the radius of gyration (R~) on

cluster size (N) to obtain the Hausdorff dimen-
sionality via the radius-of-gyration exponent (p).
Figure 13 shows how the radius of gyration in-
creases with increasing cluster size during the for-
mation of a cluster of 4883 particles. After the first
few hundred particles have been added, we find that
Rs-N~ (P=0.4). The results obtained from 12
clusters containing from 6608 to 10000 particles are
summarized in Table VI. The results shown in
Table VI indicate that Rs N~ w-ith P approximate-
ly equal to 0.4. The corresponding Hausdorff
dimensionality is approximately 2.5. As the cluster
size increases, the average coordination number of
the particles in the cluster rapidly approaches an
essentially constant value (Fig. 14). From nine clus-
ters (average 7900 particles per cluster), we find that
the average coordination number is 2.251+0.006.

One quantity which can often be measured in real
clusters is the area of a projection of the cluster on a
plane. Figure 15 shows how the projected areas de-
pend on cluster size during the growth of a cluster
of 7870 particles. From Fig. 15 it can be seen that
the projected areas depend on cluster size according
to the power-law relationship P-N~ in the limit of
large N. From seven clusters (average 7600 particles
per cluster), we find that y=0. 870+0.017 using the
last 50% of the clusters formed. Using the last
75%, 90%, and 95% of clusters formed during the
simulations, we find y=0. 864+0.010, 0.861+0.004,
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2 00
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0.50
3.0 4.0 5.0 6.0 7.0 8.0
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I-

4.o
P 30
c 2.0
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In(NUMBER OF PARTICLES)

FIG. 13. Dependence of radius of gyration (Rg) on
cluster size (1V) during the formation of a cluster of 4883
particles on a simple cubic lattice with a sticking probabil-
ity of 1.0 at nearest-neighbor sites.

FIG. 15. Dependence of projected areas on cluster size
for a cluster of 7870 particles. Areas are the projections
on three mutually perpendicular planes calculated during
the growth of the cluster.
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0.26

0„22

0.18
Number of
particles ln

cluster
Radius-of-gyration exponent (P)
50% 75% 90%

TABLE VII. Results of three-dimensional simulations
of clusters grown on a simple cubic lattice with a sticking
coefficient of 0.25.

0.379
0.417
0.408
0.392
0.430

0.379
0.412
0.402
0.382
0.421

0.381
0.407
0.394
0.384
0.403

0.02

0

and 0,861+0.008, respectively. The Uncertainty esti-
mates' Rre only slightly reduced if the three project-
ed areas Rrc avcragcd fol each clustcl.

Figure 16 shows the density profile at several
stages during the growth of 8 thrcc-dimensional
clUstcI'. As in the case of two-dlIQcnslonal clUstcls
grown Undc1 dlffUslon-11IIlltcd condltlons, thc clus-
ter density decreases monotonically with increasing
distance from the origin (if fluctuations are ignored).
This figure also illustrates that particles are not ad-

1 1

10 20 30 40
DISTANCE FRONI CENTER

FIG. 16, Density profiles during the growth of a
three-dimensional cluster. Density profiles are shown at
stages where the cluster has grown to a size of
500' 1000,."18000Part1ClCS.

Avg. 12 300 0.405+0.025 0.401+0.019 0.394+0.014

ded to thc ccntlal portions of thc clUstcI' during thc
later stages of growth. In Fig. 17 the number of
particles at 8 distance of P" +0.5 (lattice Units) 81c
shown as a function of r during the growth of a
thl cc-dimensional cluster.

Simulations have bccn carried Qut to lnvcstlgatc
the effects of sticking probabilities less than 1.0 on
'thc radius-of-gyration cxpollc11t (p). Ollf results are
shown in Table VII for 8 sticking probability of
0.25. A comparison of Tables VI and VII indicates
that sticking coefficients of 1.0 and 0.25 give essen-
tially thc same values for the radlUs-of-gyration ex-
ponent (P). Consequently, we may conclude that
thc Hausdorff dimensionality for dlffuslon-
controlled clusters grown in three-dimensional space
is insensitive to the sticking probability. However,
reducing the sticking probability from 1.0 to 0.25
does change the projected area exponent y. For the
five clusters shown in Table VII we find
@=0.831+0.018, 0.829+0.016, 0.830+0.014, and
0.830+0.014 from analysis of the last 50%, 75%,
90%, and 95'% Of the ClustCfS formed dunng the
simulations, rcspcctlvcly. Thc Rvcragc coordination

TABLE VIII. Radius-of-gyration exponents obtained
in nonlattice simulations of diffusion-Hmited cluster for-
IIlatlon 1n three-dimensional space.

Number of
particles

Radius-of-gyration exponent (P)
50% 75% 90%

50

0I
0 40

PIG. 17. Number of particles in a spherical shell be-

tween r —0.5 and r+0.5 during the growth of a cluster in

three"d1mcnslonal space. Cluster slzcs used 1n this fligurc

are 500,1, ...,8 particles.

0.375
0.418
0.436
0.390
0.382
0.392
0.389

0.394
0.412
0.424
0.402
0.384
0.394
0.390

0.408
0.406
0.420
0.398
0.388
0.402
0.393

Avg. 6 571 0.397+0.020 0.400+0.013 0.402J0.010
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TABLE IX. Radius-of-gyration exponents obtained in
four-dimensional simulations of diffusion-controlled clus-

ter formation on a simple hypercubic lattice. The
nearest-neighbor sticking coefficient is 1.0.

TABLE X. Radius-of-gyration exponent obtained
from simulation of diffusion-controlled cluster formation

using a five-dimensional hypercubic lattice and a nearest-

neighbor sticking coefficient of 1.0.

Number of
particles

Radius-of-gyration exponent (P)
50% 75% 90%

Number of
particles

Radius-of-gyration exponent (P)
50% 75%

2209
1841
682

1021
1617
1717
901

1256
1717
1303
2616
1857
1534
1589
2500
5000
5000
5000
5000

0.303
0.288
0.274
0.325
0.289
0.303
0.287
0.296
0.334
0.281
0.323
0.286
0.324
0.299
0.304
0.304
0.283
0.280
0.304

0.297
0.293
0.279
0.286
0.289
0.331
0.306
0.289
0.339
0.309
0.324
0.282
0.330
0.307
0.301
0.310
0.288
0.279
0.301

0.324
0.279
0.315
0.311
0.310
0.303
0.297
0.283
0.308

2000

1000

2500

1460

2500

2500

2500
4000'

5000'

4000'

5000'

2500'

0.240

0.238

0.231

0.251

0.225

0.228

0.253

0.233

0.240

0.246

0.242

0.224

0.228

0.262

0.232

0.246

0.226

0.233

0.248

0.246

0.254

0.231

0.240

0.213

Avg. 2914 0.238+0.006 0.238+0.009

"'Kill radius" equals 1.5r; "doubling radii" equals
r +5, r,„+10, and r,„+20.

Avg. 2335 0.299+0.009 0.302+0.009 0.303+0.011

number is, of course, sensitive to the sticking proba-
bility (S). For S=0.25, the value of 2.514+0.018 is
obtained.

Since three-dimensional clusters will be opaque in
the limit of large N (d D& 1) the—exponents P and

y should be related by y=2P. Consequently, the
projected area exponents y provide another estimate
of the Hausdorff dimensionality of the cluster. For
three-dimensional clusters grown with a sticking
probability of 1.0 our value for y (-0.865) implies
a Hausdorff dimensionality of -2.31. Similarly,
the value of the projected area exponent obtained
from clusters grown with a sticking probability of
0.25(y-0. 83) can be used to estimate a Hausdorff
dimensionality of -2.41. These results are about
8% and 4% smaller than the results obtained from
the radius-of-gyration exponent (P) for $=1.0 and
0.25, respectively. The difference between these esti-
mates is attributed to finite-size effects. Since even
clusters of 10000 particles are not large enough to
be fully opaque, the projected area exponent will be
larger than its N~ 00 limiting value. Consequently,
the apparent Hausdorff dimensionality should in-
crease with increasing N. While this would bring
the values for D obtained from the exponents P and

y into closer agreement, the possibility that y may

TABLE XI. Radius-of-gyration exponents (P) ob-
tained from simulations of diffusion-limited cluster for-
mation using a six-dimensional hypercubic lattice.

Number of
particles

Radius-of-gyration exponent (P j

50%%uo 75%

2000
2 000
5 000
8 000

10000

0.241
0.207
0.183
0.193
0.193

0.239
0.202
0.182
0.193
0.186

not have reached its limiting value at N=10000
may also be proposed for the radius-of-gyration ex-
ponent P. It should also be noted, however, that the
differences between the values obtained for the
Hausdorff dimensionality from the radius-of-
gyration and projected area exponents are not very
much larger than their statistical uncertainties.

To help establish the anticipated independence of
the radius-of-gyration exponent (P) on lattice de-
tails, a nonlattice model which simulates the dif-
fusion of spherical particles has been developed.
For the simulation of the larger clusters obtained us-
ing this method (8000 or 10000 particles), the max-
imum step size is doubled to 2 particle radii at
r )r,„+7 and doubled again at r )r,„+15 and



27 DIFFUSION-CONTROLLED CLUSTER FORMATION IN 2—6-. . . 1505

1.75

1.25
tsar

K

0.75

0.25

2.0 3.0 4.0 5.0 6.0 7.0 8.0
In (N)

FIG. 18. Dependence of ln(R~) on ln(N) during the

formation of a cluster of 2000 particles in a five-

dimensional hypercubic lattice.

1.70-

1.50-

1.40
6.0 6.4 6.8 7.2 7.6

In{NI

FIG. 19. This figure shows an expansion of that por-

tion of Fig. 18 which is used to obtain the radius-of-

gyration exponent (p).

at r &r,„+30. The results obtained in these simu-
lations are given in Table VIII. The sticking proba-
bility in these simulations is 1.0. A comparison of
Tables VI and VIII indicates that the radius-of-
gyration exponent is not sensitive to lattice details in
three-dimensional simulations.

FOUR-DIMENSIONAL CLUSTERS

Diffusion-controlled cluster formation in four-
dimensional space was simulated using a lattice
model very similar to those described above. In
these simulations the particle was started at a ran-
dom point on a hyperspherical surface of radiusr,„+4 lattice units and killed at a distance greater
than 2r,„units (except in the very early stages of
the simulation where the particle was killed if it
reached a position more than 12 lattice units from
the origin). As in calculations in spaces of lower
dimensionality, the step size was temporarily dou-
bled at positions greater than r,„+10from the ori-
gin and doubled again if r &r,„+20, etc. Fifteen

clusters with an average of 1600 particles per cluster
were simulated in this way (Table IX) leading to the
result P=0.304+0.011 (Dtt=3.29+0.12) using the
last 50% of the clusters formed in each simulation.

Somewhat larger clusters could be grown by star-
ing only the coordinates of occupied lattice sites in
the computer. Four clusters with 5000 particles
each were generated in this way. For these four
clusters we find P=0.293+0.021 from the last 50%
of the clusters formed in the simulations. Similarly,
P(75%)=0.295+0.022 and P(90%)=0.298+0.017.

SIMULATION OF DIFFUSION-CONTROLLED
CLUSTER FORMATION ON A

FIVE-DIMENSIONAL HYPERCUBIC
LATTICE

Cluster formation was simulated in five-
dimensional space using the same method which
was used to simulate the larger clusters on a four-
dimensional lattice (see above). Particles were start-
ed at a distance r +3 from the origin and killed if

TABLE XII. Hausdorff dimensionality (D) of clusters grown under diffusion-controlled
conditions. 2d through 6d stand for two- through six-dimensional, respectively; NN, nearest

neighbor; NNN, next nearest neighbor; NL, nonlattice; —=0.8333.

D/d
Model

2d, S(NN)=1. 0

2d, S(NNN)=1. 0

2d, S(NL)=1,0
2d, S(NN) =0.25

2d, S(NNN)=0. 1

3d, S(NN)=1. 0
3d, S(NN) =0.25

3d, S(NL)=1.0
4d, S(NN)=1 ~ 0
5d, S(NN) =1.0
6d, S(NN)=1. 0

(50%)

1.73+0.06

1.71 +0.08

1.70+0.09

1.70+0.06
1.70+0.10

2.51+0.06

2.47+0.15

2.52+0.13

3.34+0.10

4.20%0.11
—5.3

(75%)

1.70+0.06

1.72+0.05

1.71+0.07

1.72 +0.06

1.69+0.08

2.53+0.06
2.49+0.12

2.50+0.08

3.31+0.10

4.20+0.16

-5.35

(50%)

0.87+0.03

0.86+0.04

0.86+0.05

0.85 +0.03

0.85+0.05

0.84+0.02

0.82%0.05

0.84+0.04

0.84+0.03

0.84%0.02

-0.88

(75%)

0.85+0.03

0.86+0.03

0.86+0.03

0.86%0.03

0.85+0.04

0.84+0.02

0.83a0.04

0.83+0.03
0.83+0.03

0.84+0.03
-0.89
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they reached a position greater than 2r from the
origin. In this way seven clusters with an average of
2066 particles per cluster were grown. From these
seven clusters, the results P(50%)=0.238+0.010
were obtained using the last 50% of clusters formed.
Similarly, we found that P(75%)=0.239+0.012
from the last 75%. Since the formation of a cluster
of 2500 particles took more than ten hours of CPU
time, the distance at which particles were killed was
reduced to 1.5r,„, and the step size was temporari-
ly doubled at r &r,„+5 and at r &r,„+10and
r &r,„+20 to simulate larger clusters (Table X).
Apart from the desire to grow larger clusters on a
five-dimensional lattice, these calculations were also
motivated by the need to demonstrate that a "kill ra-
dius" of 1.5r and doubling radii of r +5,r,„+10,and r,„+20 would give accurate results
in our six-dimensional simulations. In six-
dimensional simulations the errors caused by these
approximations, used to reduce computer time,
should be significantly smaller than they are in five
dimensions.

Figure 18 shows how the radius of gyration in-
creases with increasing cluster size during the for-
mation of a five-dimensional cluster of 2000 parti-
cles. It should be noted that we are interested main-

ly in the dependence of the radius of gyration on
cluster size in the limit of large cluster sizes. Figure
19 shows a plot of In(Rs) vs ln(N) during the addi-
tion of the last 1500 particles. It is this portion of
the curve shown in Fig. 18 which is used to obtain

SIX-DIMENSIONAL CLUSTERS

The parameters used to simulate diffusion-
controlled cluster formation on a six-dimensional
hypercubic lattice are discussed in the previous sec-
tion. The results of these calculations are shown in
Table XI. Unfortunately, we were not able to grow
a sufficiently large number of large clusters to ob-
tain a reliable result for the Hausdorff dimensionali-

ty (D). However, our results do indicate that D & d.

DISCUSSION

One of the most important results of these simu-
lations is the relationship between the Hausdorff
dimensionality (D) and the Euclidean dimensionali-
ty (d) shown in Table XII. In all cases (d =2—6)
our results are consistent with the relationship
D =Sd/6. In the absence of theoretical understand-
ing of the Hausdorff dimensionality of clusters ob-
tained by diffusion-controlled growth there is no
reason to expect that D and d will be related by a
simple constant such as —,. The results presented in

this paper are numerical estimates of the Hausdorff
dimensionality which become increasingly more un-
reliable as the dimensionality increases (despite the
small statistical uncertainties). We know that the
relationship D =5d /6 is not correct for d = 1

(D =d = 1). Similarly, for d & 12, D =Sd/6 implies
that d —D&2. Since a random walk has a Haus-
dorff dimensionality of 2 the cluster would become
transparent to a random walk if d —D&2. This
would allow particles to enter into the central re-
gions of the cluster thus increasing the Hausdorff
dimensionality of the cluster until d —D(2. The
relationship D=5d/6 is simply a convenient way of
summarizing our results.

Since relationships of the type Rz-N are ex-
pected to be valid only in the limit N~ oo, we have
generated the largest clusters which were practical in
our VAX-11/780 computer. Results obtained for
clusters of various sizes (or at various stages during
the formation of a large cluster) indicate that the
values we have obtained for the radius-of-gyration
exponents are close to their limiting values. Howev-
er, it is possible that similar simulations which gen-
erated much larger clusters would lead to different
results. Unfortunately, it is unlikely that such simu-
lations will be possible in the near future. The
4—8% difference between the values for the Haus-
dorff dimensionality obtained from the radius-of-
gyration exponent (P) and the projected area ex-
ponent (y) for large clusters grown on a three-
dimensional lattice indicates that the N~00 limit
may not have been reached in these simulations.
While we have reasons for believing that it is the
projected area exponent (y) which is still changing
with increasing N the possibility the radius-of-
gyration exponent P will also change as N~ co must
also be recognized. The average density in the outer
regions of the cluster falls more rapidly with in-
creasing distance from the center than in the inner
regions where the power law p(r)-r is obeyed.
At higher dimensionalities this outer region becomes
a larger and larger fraction of the total cluster (for a
fixed number of particles). Consequently, finite-size
effects may become more important for clusters
grown in higher-dimensional lattices. Despite these
uncertainties we have included our results for clus-
ters grown in four, five, and six dimensions in this
paper since our results for d =4—6 are the only ones
available at this time. The major objective of this
paper is to present results for simulations of
diffusion-controlled cluster formation in two- and
three-dimensional space for which these uncertain-
ties are relatively small.

In spite of the large cluster sizes used in this
work, the variability in the results obtained from
calculation to calculation was surprisingly large.
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This may be related to the fact that the calculations
described here can be regarded as a simulation of the
dendritic growth instability in the limit where fluc-
tuations are dominant. ' Regions of the cluster
near the perimeter "shield" the inner portions of the
cluster and grow preferentially. Fluctuations in the
cluster perimeter are enhanced by the diffusion-

controlled growth mechanism and tend to be ampli-
fied. For this reason, the shape of the cluster at late
stages is strongly dependent on the shape at much
earlier stages. This is illustrated in Fig. 2, which
shows a typical cluster formed by diffusion-
controlled aggregation.
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