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It was shown by Martin and Yalcin that the mean-square fluctuation (Q'„) in the net

electric charge QA contained in a subregion A of an infinitely extended equilibrium

Coulomb system (plasma, electrolytes, etc )gro.ws only as the surface area SA (not the

uolume) of A and that Qx/V Sx has a Gaussian distribution as A~ ao. We extend these

results to joint charge fluctuations in different spatial regions: Let space be divided into dis-

joint regions A;, i =1,2, . . . , say, cubes of length L. We show that as L ~ Oo, the covari-

ance in Q„ /L behaves as L (Q„Q„) = — L(Q—„' ) = ——K if A; and A, are adja-

cent, and is zero if they do not have a common face. Furthermore, the variables QA/L ap-

proach, as L~(N, a jointly Gaussian distribution. These results can be proven rigorously

whenever the correlations in the system decay faster than the fourth power of the distance,

which is known to happen in many cases. This behavior of charge fluctuations is shown to
be required for the consistency of the usual statistical-mechanical treatment of neutral-

molecular systems.

I. INTRODUCTION

The properties of macroscopic matter are almost
entirely determined by the Coulomb interactions be-
tween electrons and nuclei, satisfying appropriate
quantum statistics. In many investigations of mac-
roscopic systems, however, one starts instead with
an "effective" short-range microscopic Hamiltonian,
e.g., we describe inert fluids as a collection of neu-
tral atoms represented by point masses interacting
via Lennard-Jones pair potentials. This description
completely ignores charge fluctuations and its valid-
ity must therefore require (at the minimum) that
these be small. In fact, if all the charges are bound
into neutral atoms or molecules then the fluctua-
tions in the net charge Q„ in a region A will be due
entirely to the surface of A cutting these entities in a
"random" way. (QA) may then be expected to be
proportional to the surface area of A and this is
indeed small compared to typical variances, which
are proportional to the volume of A.

The question naturally arises as to whether this
implicit assumption is indeed a consequence, in
some or all situations, of the true Coulomb interac-
tions. In particular, is it true for charge fluctuations
in plasmas, molten salts, metals, etc. , where bare
Coulomb interactions are part of the effective Harn-
iltonian? Fluctuations in these systems play an im-
portant role in determining shifts and broadenings
of spectral lines' and are therefore of practical in-
terest. We shall show here that this is, in fact, the
case; charge fluctuations in systems containing free

charges are qualitatively similar to those implicitly
assumed for systems composed of neutral atoms or
molecules. This (at first sight) somewhat surprising
fact is brought about by the very long range of the
Coulomb force which produces effective strong cou-

pling among charges no matter how high the tem-

perature (or weak the bare coupling) is. Indeed, the
reduced growth of charge fluctuations is a direct
consequence of screening —the fundamental fact of
life in Coulomb systems. Screening makes free
charges behave, on a macroscopic scale, as if they
were effectively grouped into neutral entities. For
this reason, also, fluctuations in adjacent (and only
in adjacent) regions will have a strong (negative)
correlation.

Our results extend those of Martin and Yalcin
for fluctuations in a single region and the proof, like
theirs, is based on the existence of a generalized
charge screening in Coulomb systems. This can be
proven rigorously for systems whose spatial corre-
lation functions satisfy the usual equilibrium classi-
cal Born-Green-Yvon hierarchy and decay faster
than r . While the restriction to classical systems
is almost certainly not essential, the integrable decay
of charge correlations is necessary for our proof.
The result is presumably valid, however, also in
crystals where such a decay is not expected. Wheth-
er it also remains valid at "critical points" of
charged systems is an open question. It presumably
holds in the Kosterlitz-Thouless transition region in
two dimensions where the charges are tightly bound
into neutral entities.
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II. RESULTS

%C COQS1dCf Rn Blflnltes Cqulllbrlum, C18SS1Cal Pl-

component system of particles with charges e~,
a=1, . . . , m. We denote by q;=(a;, r;) the species
and position of the ith particle i =1, . . . . The par-
ticles interact via pair potentials v(q, , q2) which are
Coulombic for distances beyond some fixed R. In v
diIYlensions,

U(q;, qj)=e er,", r =
~
r; —rj ~

pR

( —lnr for v=2). The exact form of u for small r is

unimportant for our considerations. In particular, it

can, to insure stability, contain 8 hard core or a

quantum cutoff. %'e can also deal with smeared

charges and with Jellium, where there is a uniform

b8ckgfound chaf gc.
The equilibrium state of the system, taken (for

simplicity) to be uniforIn in space, will be described

by correlation functions, p(q) =p~,p(q~, q2)
=p (r~ —r2), etc. These are assumed to satisfy

cx )0!2

thc UsUR1 stRt1onary Bom-Gfccn- Yvon h1cfRfchy

cqUatlons. %c also 1ntfodUcc cxpllcltly thc sym-

metric n-point truncated total charge-density corre-
lation functions S„(f;,. . . , f„),

SI(rl)=&o(rl))=pe p =0,

SI( r I, rI) =S(r,—r2) = &o(r l)o(rz) ) —&o(rJ ) ) &o(rI) )

= ge, e, [p(q»qI)+iI(q )t), ,b(rl rl) —
S (ql)p(qz)l

(2.2)

(2.3)

is the microscopic charge density.
The S„are directly related to charge Auctuations:

Lct QA be thc llct Inlcl'oscoplc c11argc 111 AI. Tllcll

by definition the nth cumulant of the random vari-

ables (Qp ) ls glvcll by

&QA, , Q~, &'

= f ~ f S„(rl, . . . , r„)

X gX& (r;)dr;, (2.5)
l

wheIC I'~(r) is the characteristic function of the re-
gion A. In particular,

&Q~, Q~, &= f f SI(rl, r»&~, (rl)~~, (r»dr2dr2

= f drS(r)y~ A (r), (2.6)

Noting that Xp(r)=~ —Xg(r), where A is the com-
plcIIlcnt of A 1Q I, wc may rewrite (2 6) for
A) ——A2 ——A as

&QA)= i
A

i f S(r)dr —f drS(r)y+~(r) . (2 g)

Equation (2.10) is the square of the charge fluctua-
tion in a fixed region A contained in 8 translation
invariant infinite system where

~

A
~

is the volume
of A.

We now assume that the correlations in our sys-

f S„(r,, . . . , r„)dr„=0, n =2,3, . . . . (2.10)

Thc phys1cal 1ntcfpfctatlon of (2.10) 1s that If wc
fix particles at positions r1 to r„1 then there will

be a charge cloud surrounding them which will
completely balance the net charge of the fixed parti-
cles on a scale independent of the size of 8 macro-
scopic system.

It follows now immediately from (2.10) that the
first term on the right-hand side of (2.8), which is
proportional to the volume and can be sho~n to be
strictly positive for systems with short-range in-

teractions, becoming infinite at the critical point of
a demixing transition, vanishes for a system with
Coulomb interactions satisfying (2.9). The charge
fluctuations are therefore determined entirely by the
second term. This 1s easily shown to be proportion-
al to the surface area

~
S~

~

when A~ 00 in a self-
s1IIlllaf wRy, 1.c., 1f wc cxpRnd SOIIlc fcglon Ao UM-

formly to obtain A —+Do then

lim
~
SA ( Iy~A(r)

A~ ce

=y(r)= —, (Sz )

' f (
r dS) . (2.11)

Setting now q~ ——Qz/~S~
~

'~I the second term in

(2.8) gives, for 8 rotation invariant system in v=3, a

I

tern decay faster than the (v+1)th power of the dis-

tance, i.e., that for some e y 0,

~

r"+'+'p (q, , . . . , qk)
~

(const .

Here r =max{
~
r; —r ~;ij =1, . . . , kI,

, Rnd p (g1, . . . , gk) is the truncated k-particle
correlation function. It was shown in Refs. 2 and 3
that Eq. (2.9) implies the generalized charge neutral-

ity sum rule



1 I(
C I

——E 5. ( ——5J (+I —— ( —L)JI,
2'p 2v

(2.13}

where K is given by (2.12), 1 is the unit lattice vector
and 6 is the v-dimensional finite difference Lapla-
cian.

It is seen from (2.13) that gtC~ t =0 as it must

be, since otherwise taking "blocks" of cubes, I,
would lead to charge Auctuations which are "nor-
mal, " i.e., proportional to the volume. Looking
directly at pt. (g) we see that in the limit L ~ m it is
a Gaussian with a lattice Coulomb Hamiltonian

V~, =(»/&)( —&);J
' .

The proof of the theorem follows from the
evaluation of the covariance (2.6) and the observa-
tion that, as in the case considered by Martin and
Yalcin, (2.9) implies the vanishing of all higher-
order cumulants of qj L as I.~ m. The first part is
simple geometry while the second part makes use of
the fact that the nth cumulant has a denominator
which grows as L'" 'I"~; this is faster than the
numerator obtained from (2.5) for n g 2. It is here
that we require v&2. In one dimension the charge
density itself converges to a random variable which
takes on, for e~ =+1, integer values.

III. REMARKS

shape-independent variance

(q~) ——, f dr
~

r ~S(r)—:K, (2.12)
hecto

where —„~ r
~

is the average of y( r ) over rotations in

three dimensions; in v=2, 4 is replaced by 1/m, etc.
Martin and Yalcin further showed that (2.2) implies
the vanishing of all higher-order cumulants of qh
and hence the probability of qh lying between q and

g+dq converges to a Gaussian distribution.
%C can now state our main result.
TA80f8PFt: Lct thc space R, v) 2 be divided into

cubes I J of volume I."whose centers XJ are located
on a simple cubical lattice. Let

q =g /(2vL" ')'~

be the appropriately normalized charge in I J. Then,
under the assumption (2.9), the joint probability den-
sity pL (g) of the q& t, g=(gj ),j EZ", approaches,
as I.~ oo, a Gaussian measure with covariance

The physical significance of the theorem then is, as
already mentioned before, that it clearly shows the
origin of the charge Auctuations in an equilibrium
system. Even when the charges are free and the sys-
tem is classical, they behave as if the system were
made up of neutral molecules. This fact, embodied
in the existence and form of the correlations between
adjacent regions, cannot be deduced from Ref'. 2. It
is also clear from our analysis that while the
theorem refers to "infinite" regions, the results will
hold approximately whenever the diameters L, of ad-
joining regions are large compared to the charge-
charge correlation length A, (the Debye length) in the
system. The deviations from (2.13}can be expected
to vanish as some power of (k/1. ).

The existence of a nontrivial Gaussian limit for
the correlated joint distribution of properly normal-
ized macroscopic variables is the first rigorous result
of this kind which we are aware of. The fact that

VJ in (2.14) is a Coulomb potential shows that,
under a "block spin" renormalization-group-type
analysis, a suitably scaled Coulomb Hamiltonian
remains invariant. This may also have relevance for
other types of systems in that there may exist quan-
tities whose fluctuation behave like (2.14) when suit-

ably scaled.
An interesting question which suggests itself is

the nature of charge fluctuation in a heterogenous
system; e.g., take a metal block in the laboratory and
ask for its total charge Auctuations. %hile other
Auctuations, for example, energy, which are propor-
tional to the volume (the proportionality constant is
the specific heat) become independent (for macro-
scopic size systems) of the nature of the interactions
of the system with its surroundings, the charge fluc-
tuations, being themselves proportional to the sur-
face area, will never "decouple" entirely. The
analysis is complicated by the long-range nature of
charge correlations near a surface and requires fur-
ther study.

(2) Consider the "moments" of the charge correla-
tion

mj ——f dr
i
r

i
JG(r),

G(r)=S(r) — gp e 5(r) . (3.1)

By (2.10) and (2.12), ma= —ge p, m, = 4E, —
and by the Stillinger-Lovett relation m 2

= —6moka, where the Debye length
' —1/2

47Tp g e~p~

%C note the following.
(1) The use of cubes in the theorem is unimpor-

tant. The covariance between two scaled domains is
always proportional to their common surface area.

The negativity of these moments suggests that G(r)
is "mostly" negative. In fact, 6 (r) ~0 in the
Debye-Huckel approximation (valid at high tern-
peratures or low densities) and in the exactly soluble



JOEL L. LEBO%'ITZ

cases, i.e., symmetric charges in v= l, and the one-

component plasma at Pe =2 for v=2.5 (As pointed
out by Stillinger and Lovett, however, such nega-
tivity ca.~not hold when the charges have hard cores
atld tile density ts high. ) When 6 ( 1' ) (0, then,
clearly m i &6moA, D.

2 2 2

(3) As noted by Martin and Yalcin the charge in
a region A is equal to the integral of the electric
field over the surface of A

Af

Qa ——I E(r) dS=E g E„.
h @=1

(3.2)

The right-hand side of (3.2) corresponds to the
division of SA into M small elements of size 6 with

E„ the projection of the field into the nth element.

It is clear that good decay properties of the electric
field correlations {E( r, )E( r &+ r ) ) are sufficient for
(and in some sense implied by) the results m Ref. 2
and here. The fluctuations in the electric field„usu-
ally referred to as the microfield, are of considerable
interest in plasmas and we are currently investigat-
ing their distribution.
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