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For nonlinear short-pulse propagation in long optical fibers, the conventional static ap-

proximation of the nonlinear terms in the wave equation must be extended to include the

derivative of the pulse envelope. As a result, an initially symmetric pulse will develop an

asymmetric self-phase modulation and a self-steepening, which ultimately lead to shock for-

mation unless balanced by dispersion. This effect may be responsible for the pulse asym-

metries observed in recent experiments.

I. INTRODUCTION

In several recent experiments' on nonlinear
pulse propagation in optical fibers, the output pulse
spectrum has been found to be asymmetric. This
asymmetry seems to be an inherent property of
propagation rather than due to asymmetric input
spectra.

In an effort to explain the observed asymmetry,
the conventional theory of nonlinear self-phase
modulation has been extended to include a nonlinear
correction term involving the time derivative of the
pulse envelope. This correction term becomes im-

portant for long propagation paths and could play a
significant role for short-pulse propagation in long
optical fibers or waveguides. Using a perturbative
procedure it was shown in Ref. 4 that indeed the ef-
fect of the new nonlinear term was to make the out-

put spectrum of an initially symmetric pulse asym-
metric. However, the perturbative approach re-
stricts the applicability of the results to small
changes of the initial pulse form.

In the present paper we consider in some more de-

tail the nonlinear Schrodinger equation for the wave
envelope including the correction term. In particu-
lar, we derive in Sec. III the exact general solution
for the case when linear dispersion can be neglected.
The obtained solution clearly conveys the asym-
metry and the self-phase modulation caused by the
nonlinear correction term. The results obtained in
Ref. 4 are recovered in the limit of small deviations
from the original pulse form. However, the exact
solution also demonstrates that the asymmetric de-
formations of the envelope as found in Ref. 4 only
are the first steps towards self-steepening and ulti-
mate shock creation.

In Sec. IV we analyze the effects of wave damping
on the self-steepening process. It is found that

damping tends to suppress the creation of a shock.
The effects of dispersion in balancing the self-

steepening is discussed qualitatively in Sec. V, and
exact soliton solutions are presented for the full gen-
eralized nonlinear Schrodinger equation.

Finally, in Sec. VI we compare the predictions
from the self-steepening equation with several recent
experimental results involving asymmetric pulse dis-
tortion. At least in one of these experiments, the ob-
served pulse asymmetry has the characteristic
features of the nonlinearly induced pulse distortion
studied in the present work.

II. THE GENERALIZED NONLINEAR
SCHRODINGER EQUATION

The one-dimensional wave equation for a linearly
polarized optical wave pulse is
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where E and D are the electric field and the dis-
placement field, respectively. n2 characterizes the
intensity-dependent part of the refractive index n,
which is written as
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The electric field is assumed in the form

E (x,t) =A (x, t)exp[i (k&&x toot) j, —

~here 3 (x,t) is a slowly varying amplitude,
ko ——mono/e is the wave number, uo is the frequen-

cy, and no
—=n(~0). Transforming to a coordinate

system moving with the pulse group velocity and
making use of the fact that the envelope A(x, t) is
slowly varying, one obtains
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where g=x, r =t —x le, Uz is the group velocity at
to =coo, and the coef'ficients a, P, y are defined by —4g+yk. =P1

(10)

that a similar solution for p has been obtained previ-
ously in Ref. 6 for propagation of pulses with
intensity-dependent phase velocity.

The phase equation is more intricate. %e intro-
duce y =pi and rewrite Eq. (7a) as

III. EXACT SOLUTION
FOR THE DISPERSIONLESS CASE

For the case when group velocity dispersion is
negligible (a=o), the general nonlinear solution of
Eq. (4) can be obtained (see also Refs. 5 and 6).
When a=0 Eq. (4) reduces to the first-order partial
differential equations

4q+ rp'N. =Pp'

pg+3'N P~=O .

(7a)

The amplitude equation (7b) is decoupled from the
phase equation (7a), and we obtain directly the gen-
eral solution for p as

p'=f (r 3ykp'»— (8)

where f is an arbitrary function determined by the
initial form of the pulse envelope. The solution (8)
can be rewritten to yield w as an explicit function of
p and g, viz. ,

where g is arbitrary but the inverse of f. We note

Equation (4) differs from the conventional form of
the nonlinear Schrodinger equation by the presence
of the last term proportional to y, which turns out
to be important for short-pulse propagation over
long distances.

%e proceed the analysis of Eq. (4) by separating
A (g, r) into real amplitude p(g, r) and phase P(g, r)
according to A (g, r) =pexp(iP) The .corresponding
real and imaginary parts of Eq. (4) yield

p4q=ap ap0. +—Pp —yp 0.2 3 3

pq= 2ap-d, apt-3rV-'p.
Equation (6) was solved perturbatively in Ref. 4

as a power series in the parameters a and y. Since
the asymmetry was found to be caused by the term
proportional to y, a more detailed analysis was made
for the case of vanishing group velocity dispersion,
i.e., o,'=0.

In the following sections we will consider Eqs. (4)
and (6) in some detail and give exact solutions for
several different situations.

From the characteristic system

dr dP

r P
a first constant of integration is obtained directly as

c

and for the characteristic r=r(g) we have the equa-
tion

where y (r,g) is determined by Eqs. (8) or (9).
%e eliminate ~ in favor of y by means of Eq. (9)

and consider y as the dependent variable. Equation
(13) then becomes

dg 3 g'(y)

dy 2y

which is easily integrated to yield the second con-
stant of integration

03 '"+ I y'"g'(y)dy =c' in
2y

(15)

The general solution of Eq. (10) can now be written
as F(ci,c2)=0, where F is arbitrary. This implies
the following solution for P:

P =—r+h(3ygp+pg'(p2)),
y

(16)

we identify from Eq. (8)

f(t) =A exp( t /T2)—

where h is an arbitrary function determined by' the
initial phase variation.

Equations (8) and (16) constitute the general solu-
tion of Eq. (7). The nonlinearly induced asymmetry
in amplitude and frequency is manifested by the
terms proportional to g. We consider the evolution
of the asymmetry in some detail for two cases of ini-
tial wave form: a Gaussian pulse and a sech-shaped
pulse.

GQQssLQpl pQlse. Assuming that
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g(p2)=+T[ln(A /p )]'~

which implies that the amplitude is given by

p (g,r)=A exp[ (r—3y—gp') T ]

or

(18)

when

2pP[ln(1/p)]'~ —1=0 .

Define F(x)=x [in(1/x)]'~ . We find that

maxF(x) =(2e)

(22)

2
- 1/2

3ygAi pi A

I

(19)

for xe(0, 1), which implies that the shock develops
when

p =p„=(e/2)'
where plus and minus refer to the trailing and lead-

ing edges of the pulse, respectively. Equation (18)
can be expanded to first order in g to yield

The corresponding critical distance of propagation,

g„ is given by

p(~ )~i pgzi
1

6grA'
T2

'
Pcr T

yA
(23)

(20)

which is the expression obtained in Ref. 4 using the
perturbative approach.

From the solution given by Eq. (18) [and Eq. (8)]
we infer that the low-intensity part of the pulse is
essentially unaffected (and still Gaussian), but the
high-intensity part of the pulse is tilted towards
larger w, i.e., the peak of the pulse is propagating at
a velocity U~k, which is less than U~

[v~k ——vs/(1+ 3yusA )].
This causes a self-steepening of the trailing part

of the pulse which ultimately leads to shock creation
when p, becomes infinite. From Eq. (19) we obtain

p2(0 t) =A 2$ech~( f /T)

The general solution for g&0 is then

p ( g, r ) =A sech [(7—3ygp ) /T]

(24)

(25)

This approximately corresponds to the distance of
propagation at which the peak of the pulse has been

displaced a distance of the order of the pulse width

from the center of the pulse. In Fig. 1 we picture
the successive evolution of an initially Gaussian
pulse as expressed by Eq. (18).

Sech-shaped pulse. For later comparison we also
give the corresponding exact solution for an initially
sech-shaped pulse, i.e.,

Bp

a(~lT)
=2p[ln(1/p)] '~

X [2pP[ln(1/p)]'~ + 1 j (21)

or

+ln3ygA p
1

A A'

T T A2
+-'

P P2
(26)

where p=p2/A2 and @=3''A /T. A shock is
formed on the trailing edge of the pulse (upper sign)

The critical distance of propagation g„at which the
shock develops is again given by Eq. (23) but with

g„=3~3/4.

p'//A'

-3
I

-2

FIG. 1. Self-steepening of a Gaussian pulse.
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IV. EXACT SOLUTION INCLUDING DAMPING

Pg+3% P.+vP=O (27)

Although damping of wave pulses in optical
fibers is weak, it will play a role for long-path prop-
agation. If we still neglect dispersion but introduce
a linear damping v into Eq. (4), the amplitude equa-
tion (7b) changes to

for which the general solution can be found as

p —e +f r p e "~(1—e "&) (28)
2v

where again f is arbitrary and determined by the ini-
tial pulse form.

For an initially Gaussian pulse me obtain the solu-
tion

from which we infer that the shock mill develop at a
distance of propagation g„given by

shock as folloms (cf. Ref. 6):

1 Pcr~
2v 3' 2

(31)

and the physical interpretation is clear: The damp-

ing length is shorter than the nonlinear shock dis-
tance.

V. EXACT SOLITON SOLUTIONS
FOR THE GENERALIZED NONLINEAR

SCHRODINGER EQUATION

In neglecting group velocity dispersion, we have
treated a simplified situation which clarifies the ef-
fects of the nonlinear self-modulation terms. Al-
though dispersive effects are negligible at certain
operating frequencies as demonstrated in Ref. 7, in
most situations dispersion does play a non-negligible
role.

Qualitatively, we understand that dispersion will
tend to counteract the nonlinear self-steepening, and
a dynamical balance is established, which should re-
sult in a more or less asymmetric pulse with a
slightly decreased total pulse velocity. As the pulse
steepens, the increase spectral width of the pulse
makes dispersion more important and finally the
dispersive velocity spread EUd, which tends to dissi-
pate the shock, balances the nonlinear velocity
change, hu~I, which steepens the pulse. This pro-
vides a qualitative measure of thc width h~, of the

ln 1— (30)
2v p

where p=3yA (2vT) and per ——(el2)' as before.
In the limit v~0 we regain the shock distance given

by Eq. (23). Thus the effect of the damping is to de-

lay the creation of the shock, and if

vgv„=3' /(2p„T),

the shock will not develop at all. The condition
v & v„can be written as

implying that
I

Ug

3/A Ug

(33)

However, since the general solution of the full non-
linear pulse equation [Eq. (6)] does not seem possible
to find, a more quantitative analysis of the interplay
between dispersion and nonlinearity can only be
made analytically for certain special situations. In
particular, we mill demonstrate in the present sec-
tion that exact, but particular, solutions of the modi-
fied nonlinear Schrodinger equation, [Eq. (4)] can be
found in the form of solitary wave pulses, where the
dispersive spreading is exactly balanced by nonlinear

compressionsl effects. The solutions turn out to be
modifications of the well-known soliton solutions of
thc conventional nonlinear Schrodinger equation.

In order to obtain soliton solutions of Eq. (6) me

look for solutions in the form

p=p(z),

Pg =collst =k

P,
' is independent of g .

(35)

The constants M and k correspond to the inverse
soliton velocity shift and wave-number shift, respec-
tively.

Inserting the snsstz (34) and (35) into Eq. (6) me

obtain

p«™4')=ap" ap0.'+Pp' )p'N.-', -
Mp'=2ap'P, '+apP" +3yp p',

where prime denotes differentiation with respect to

where z =r Mg, and the g—dependence of (t is re-

stricted by the conditions



NONLINEAR ASYMMETRIC SELF-PHASE MODULATION AND. . .

z. After multiplication with p, Eq. (36) can be in-
tegrated once to yield

2 2, M—p —ap P, — p =const.

2
2 Po v —1

p = cosh (pz)+
2—v 2 —v

In the present work we consider only the case of a
single-humped "bright" soliton solution where p~o
as z~+00. This implies that the constant in Eq.
(37) is equal to zero and we obtain P,

'
as an exphcit

function of p, viz. ,

1M 3y
2 4a

We insert this into Eq. (36) and obtain a second-
or'dci equation fol P;

3y 5 P yM 3 k M'
P

16
2P+

2 2 P ~2 P—

Equation {39)can be integrated once and put into a
form analogous to the equation of motion of a parti-
cle in a one-dimensional potential field

—,(p') +m(p) =0, (40)

where the potential field m.(p) is given by

ir(p) = p'+ ——— p'1 P yM
32a2 4 a 2a~

1 k I
p +C.

2 a

The constant C is determined by the condition that p
and p' vanish as z~+ ac, i.e., C =0. Since without
loss of generality we can assume that the peak of the
pulse is located at z =0, i.e., p(0) =po and p'(0) =0,
we also have m(po)=0, which specifies the wave-
number shift k in terms of the soliton peak ampli-
tude as follows:

k M 1 P yM 2 yPo+ — Po+4a' 2 a 2a' 16a'

1 P yM 2 y PoI'=2 a
—

22 Po 162

V
1 P yM {45)

2p a 2a

In the limit when y~0, we obtain p'= —,(P/a)po,
v=1, and the soliton solution given by Eq. (44)
reduces to thc conventional sech solution.

Some features of the obtained soliton solution
should be emphasized. Prom Eq. (38) we conclude
that the frequency shift of the soliton P,

'
is non-

linearly modulated during the pulse, as opposed to
the ordinary soliton solution where it is constant.
For the conventional nonlinear Schrodinger equation
"bright" and "dark" solitons exist depending on
whether P/a&0 or Phr&0, respectively. In the
present case the condition for the existence of a
bright soliton becomes

P yM yPo
(46)

2a2 sa2

implying that media with P/a &0 may still support
bright solitons provided Eq. (46) is fulfilled. This is
reminiscent of the inAuence of finite fiber diameter
on solitons, where transverse waveguide effects have
been shown to modify the borderline dispersion be-
tween bright and dark soliton solutions.

%'hen this work was completed it was brought to
our knowledge' that Eq. (4) can be transformed into
the so-called derivative nonlinear Schrodinger equa-
tion, which determines the evolution of finite ampli-
tude Alfvcn waves propagating parallel to a magnet-
ic field in a plasma. In particular, the soliton prop-
erties of the corresponding equation have been stud-
ied in several works. "' The application of these
results to short-pulse propagation in long optical
fibers should be an interesting task but must be de-
ferred to a later paper.

For a potential well to exist between p=0 and p =po,
the coefficient of p in m(p) must be negative, i.e.,

k/a —M /(4a2) &0.
The forrnal solution of Eq. (40) is obtained as

dp
i/2Po [ 2 ( )]i/2

which after some algebraic manipulations is found
to be expressable as

VI. COMPARISON VEITH EXPERIMENTS

The importance of the nonlinear self-steepening
effect in a given experiment can be qualitatively as-
sessed by comparing the characteristic shock dis-
tance g,„with the length of the fiber I.o. We will
discuss this in more detail foi each of thc experi-
ments of Refs. 1 —3.

Reference 1. For the parameters of Ref. 1 we find
that g„ is more than two orders of magnitude larger
than I.o, and consequently, the nonlinearly induced
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asymmetry should be too weak to be observable.
The observed asymmetries and deviations from
Gaussian behavior seem to be due rather to "the in-
herent properties of the mode-locked pulse itself. "

Reference 2. For the parameters of Ref. 2
(Lo-700 m, T-3.5 ps, A -500 S V/cm, and
n2 —10 ' esu) we obtain g„-8000 m. This is only
one order of magnitude larger than Lo, and a non-
linear asymmetric distortion should be observable,
although dispersion does play a non-negligible role
in this experiment aimed at studying soliton proper-
ties. A quantitative comparison is difficult to make,
but asymmetries, especially in the high power pulse
spectra of Fig. 2, are indeed observed and comment-
ed upon, but no conclusive answer is given. %e sug-
gest that the nonlinear effect discussed in the
present paper might have played a role in the
development of the asymmetries observed in Ref. 2.

Reference 3. For the parameters of Ref. 3
(Lo-70 m, T-2 ps, A -100 S V/cm, and
nz 10 '-esu) we obtain g«-1300 m. Thts 1s

again approximately one order of magnitude larger
than Lo and the nonlinear asymmetry should be ob-
servable in a carefully performed experiment as that
of Ref. 3. As a matter of fact, one of the points em-
phasized in Ref. 3 is a small but unexplained
discrepancy between the experimental results and
the numerical solutions of the conventional non-
linear Schrodinger equation. Experimentally, the
output pulses exhibit an asymmetry in the form of a
slower rising edge than the falling edge.

The possibility of an explanation in terms of
asymmetric input pulses seems to be ruled out.
("%e have tried many calculations with asymmetric
input pulses having different rise and fall times, and
with and without an initial frequency chirp, but we
cannot calculate this feature of our data. "}

A closer look at the experimental results of Ref. 3

(in particular Fig. 4) reveals that the observed asym-
metry exhibits the three distinct features characteris-
tic of the nonlinear asymmetric self-steepening, viz. ,
(i) a steepening of the trailing edge, (ii) a Aattening
of the leading edge, and (iii) a retardation of the
peak of the pulse.

Thus although again dispersion plays an impor-
tant role in the experiment, the qualitative agree-
ment between theoretical predictions and experimen-
tal results indicates that the observed pulse asym-
metry may be due to the additional nonlinear term
in the nonlinear Schrodinger equation arising when
the slowly varying envelope approximation has to be
amended to account for long-path picosecond-pulse
propagation.

Finally, we want to point out the possibility that
the presence of dispersion may also enhance the
asymmetry in the sense that, e.g., a dispersive
spreading of the pulse may tend to further decrease
the velocity of the peak. This should be analogous
to previous results concerning nonlinear self-
steepening processes where the presence of disper-
sion has been found to significantly shorten the
self-steepening distance, see, e.g., Ref. 13.

VII. CONCLUSION

%'e have demonstrated that nonlinear self-
modulation due to finite envelope time variation
should play an important role for short-pulse propa-
gation in long optical waveguides. Although the
complete solution of the general pulse equation has
only been found for the dispersionless case, exact
single soliton solutions have also been derived for
the general equation and together these results give
an indication of the properties of this new nonlinear
self-modulation effect.
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