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We consider the time-dependent two-level problem of quantum mechanics, where the lev-

els are coupled by a radio-frequency pulse with an arbitrary time-dependent envelope V(t).
We derive an approximate solution for the system s transition amplitude P(00) which is

correct to the third order of perturbation theory, and which applies to all pulses V(t) with

finite first and second moments which obey the following: limt'V(t)=0, as t~~. Our

form of solution for P( ao ) provides a criterion for judging the validity of a solution previ-

ously conjectured by Rosen and Zener, and it is generally useful for providing line-shape de-

tails in many cases of practical interest.

I. INTRODUCTION

A problem of continuing interest in quantum
mechanics is to calculate the transition amplitude
for a two-level system whose levels are coupled by a
time-dependent interaction. With level amplitudes
S(t) and P (t) interacting via a coupling pulse
U(t) exp(ivt },which contains a rotating wave factor
at frequency v and an envelope function U(t), the
system is governed by the rate equations

iS= V*(t)P exp(iQt),
(1)

iP= V(t)Sexp( —iOt} .

Here V(t} is the matrix element of the envelope
function connecting the levels, and A=a,

&
—v is the

frequency off-resonance. For physical couplings,
V(t) vanishes as t~+ ao, and one wishes to calcu-
late the transition amplitude P( ~ ) for initial condi-
tions: S( —ec)=1, P( —ac )=0. So far as we know,
this can be done exactly for Q&0 in only a few non-
trivial cases: (1) V(t) = const over some time inter-
val and zero otherwise, (2) V(t) ~ sech(t/T), a case
first solved by Rosen and Zener, ' (3) a class of
pulses asymmetric in time recently treated by Bam-
bini and Herman. ' Solutions for P(oo) for such
physically interesting cases as Gaussian or Lorentzi-
an pulse shapes apparently do not exist, at least not
in terms of elementary functions.

In connection with estimating P(ac ) for general
pulses V(t), Rosen and Zener' suggested the follow-
ing solution (to within an arbitrary phase);

I'(oo ) =[F(T,Q)iA] sinA .

Here,

and is the pulse Fourier transform at frequency 0,
which depends also on the pulse width T, and
A=F(T, O) is the pulse area. Rosen and Zener
showed that P(oo ) of Eq. (2) is exact for the hyper-
bolic secant pulse, and they conjectured that this re-
sult held for "all nonsingular (coupling pulses), i.e.,
all functions which are continuous and whose first
derivatives are continuous. " The Rosen-Zener con-
jecture is also exact for all pulses on resonance,
0=0 [see Eq. (5) below], for all sufficiently narrow
pulses [in the 5-function limit, see Eq. (35) below],
and it holds approximately in the weak-coupling
limit, A~O. On the other hand, numerical solu-
tions to Eqs. (1) show that the Rosen-Zener conjec-
ture does not hold in general, although some expect-
ed features of P(ap) for Gaussian and Lorentzian
pulses are divulged by use of Eq. (2). What is lack-
ing is an analytic criterion for deciding how good an
approximation the Rosen-Zener conjecture is for a
given pulse. More generally, one would like to solve
Eqs. (1), at least approximately, for arbitrary cou-
pling pulses V(t) so as to determine how the actual
transition amplitude P( oo ) deviates from the
Rosen-Zener conjecture. Such a solution should be
of general utility in many spectroscopic applications.

In this paper we derive an approximate form for
P( ~) which is valid for all pulses obeying the cri-
terion t V(t)~0, as t~+ao. This limit excludes
Lorentzian pulse shapes, but includes Gaussians, ex-
ponentials, etc. Our result for P( oo ) is correct to the
third order of perturbation theory, i.e., order A, and
it reproduces several well-known results to this or-
der. Our form for P(~) is given as a correction
factor f(oo) times the solution of Eq. (2), so that
the applicability of the Rosen-Zener conjecture may
be judged by how closely f( oo ) approaches unity. In
Sec. II we discuss the nature of solutions for the
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transition amplitude P(t) which resemble the
Rosen-Zener conjecture. %'e show that there are no
nontrivial pulses for mhich the conjecture holds at
finite times, and we derive the differential equation
for the correction factor f(t). In Sec. III we derive a
solution for f(t) which is correct to terms of order
A and 0 . Our solution is given in terms of in-

tegrals over the first and second moments of the
pulse distribution. In Sec. IV we check our result
for P(00) against various known solutions, apply it
to several cases of physical interest, and show that
certain couplings exist for which the Rosen-Zener
conjecture is an excellent approximation. Section V
is a brief summary of our results.

II. ROSEN-ZENER-LIKE SOLUTIONS

In Eqs. (1) we consider S and P to be the initial
and final levels, respectively, and we shall impose
the following initial conditions: S( —tx) ) = 1,
P( —(x) )=O. Then the desired transition amplitude
P( ao ) can be found from the solution to the decou-
pled differential equation

P+[iQ (V/V—)]P+V2P=0, (3)

where we assume the pulse V(t) is a real function.
%e implicitly assume that for any physical pulse
V(t) vanishes as t~+ao, and that it has a finite
area and Fourier transform.

The components of the Rosen-Zener solutions of
Eq. (2) originate, in a sense, from two quite different
approximate solutions to Eq. (3). First, in the
weak-coupling limit, where

~

V
~

&&
~

Q
~

and the
last term in Eq. (3) can be neglected, we have

P(t)=P(tp) iS(tp) f—V(r) exp( iQr)dr . —
t0

(4)

This is the result of standard first-order perturbation
theory, and the appearance of a Fourier integral here
indicates that such a factor is relevant in the asymp-
totic form for P( Op ). The second factor in Eq. (2) is
connected with the strong-coupling or on-resonance
li~it, i.e., I

V
I

&& I
Q

I
~0, ~here we have
t

P(t) P(tp} cos f V(7 )dr
'0

iS(tp) si—n f V(r)dr (5)
0

This solution is exact for all pulses V(t) at reso-
nance, Q=O; in this case, P(00)= sinA, which is just
the result of the Rosen-Zener solution of Eq. (2).
Thus the sinA factor must also be important in the
asymptotic form of P( ce ).

These remarks suggest that a solution to Eq. (3)
might profitably be sought in a Rosen-Zener-like

form

P(t) =f(t}[g(t)/P(t)] sing(t),

where

g(t) = f V(r) exp( i Q—r)dr,

{((t)=f V(r)dr .

As t-+ ap, g(t) and P(t) become the Fourier
transform F and pulse area A, respectively, which
occur in Eq. (2), and P(t) approaches the Rosen-
Zener solution to the extent that f(t)~1. We shall
devise a solution for the correction factor f(t),
which measures deviations from the Rosen-Zener
conjecture, keeping in mind that we must have the
following: (1) f(ap)=1 at resonance, Q=0, when

g=P, and (2) f(ap)=1 for the Rosen-Zener pulse
V(t) ~ sech(t/T), when Eq. (2) is known to be an
exact solution.

If we assume the correction factor f{t)=const
over its entire range, and substitute P(t) of Eq. (6)
into Eq. (3), then we get the residual equation

2(V/P)[V exp( i Qt) g—V/P+—
2 iQ(]

X(cosg —P 'sing)=0. (7)

Any pulse V which satisfies this equation mill have
P =(g/P) sing as a solution for the transition ampli-
tude. In fact, Eq. (7) is satisfied for aII pulses V
when either $~0 {order P negligible), V~O (order
V negligible), or Q=O (at resonance); this just re-

peats the content of Eqs. (4) and (5). The only pulse
satisfying Eq. (7) identically is

V(t) = V(tp) exp[ —,i Q(t —tp)] .

This shows that there are no nontrivial pulses which
have a Rosen-Zener-like solution at finite times, not
even the hyperbolic secant. Or, to say this different-

ly, for all "interesting" pulses, the correction factor
f(t) in Eq. (6) must have a nontrivial time depen-

dence.
In generating the differential equation for f(t) we

shall adopt a dimensionless notation by defining a
new independent variable x = t/T, where T is a scale
time related to the pulse width. %e also define

a =QT, IV(x) =TV(t =xT) .

Then, by substituting Eq. (6) into Eq. (3), we find

f" b(x)f'=c(x)f, —

where

b(x)= ln[IVexp( iax)lg ]-d ~ 2

dx

+2WP ' —cot/)



PERTURBATIVE SOLUTION TO THE TIME-DEPENDENT T%0-. . .

c(x)= ia4- ln(g /P ) W(((} ' —cot((})
dx

with

g(x) = f W(g) exp( i a(—)dg,

P(x)= f W(g)d(.

Here, primes mean differentiation with respect to x.
This equation is exact. In the next section we shall
solve it to terms second order in the pulse area
A =P( ao ). Since P(t) of Eq. (6) is already first order
in A, this solution will provide a transition ampli-
tude correct to order A, i.e., to the third order of
perturbation theory.

III. SOLUTION FOR THE CORRECTION
FACTOR

To solve Eq. (9) to requisite order, we first note
that c(x) is of order A overall, since
W[(P) ' —cot/]=WQ/3 ~A as $~0. Similarly,
the second term of b(x) is of order A, while the
first term is of order unity. Then, if we look for a
solution for f in terms of a power series in A up to
order A, we can approximate Eq. (9) as

f" b(x)f—'=c(x),
where

b(x)= in[ W exp( ia—x )/g ]
~ 2

dx
and

c(x)=—, W(b ia+ ln(g /P )

The first integral of this equation is

X X

f'(x) exp f b(g)dg f'( ox)+ f exp —f b(g}dg c(x')dx'

where xo is an arbitrary reference time. %e set
f'(xo) =0 to avoid solutions f(x)&1 when the reso-
nance parameter a=O. Then, choosing f(xo)=1,
xo~ —~, and partial-integrating Eq. (11) against

[ W exp( i a/)/(—2]dg = —d( 1/g), we find

f(x)=1+—, f ia+ In(g /P2)

&& ll -(PC. ) N((

X exp(iag)d g, (12)

where g„=g(x). This is the desired solution for the
correction factor f in Eq. (6), correct to order A~.

We note that at resonance, a=O and g=P, f(x)=1,
as need be. In the rest of this section, we shall sim-

plify this rather complicated expression for f(x) to a
form more suited for calculation. The principal
simplification comes about by expanding the in-

tegral to terms of order a .
%e first partial-integrate Eq. (12) against the

d ln(g /P ) term. In the resulting integrals we ex-

pand the Fourier transform function g(x} as

W(x) =Ap(x),

where A equals pulse area and f p(x)dx =1;so

g(x)=A f p(g)exp( iag)d(-

[&(x)—tap&(x) ——,a'p2(x)], (1

where

A(x)= f p(g)dg,

Vk(x)= f 0"S(P4.
This is possible only for pulses p(x) whose first and
second moments pk exist. For such pulses we then
find —after some algebra —that as x~ ce, the
correction factor of Eq. (12) becomes

f(oo)=1+ 3 nA (iXt+aK2),

where

K, = f }(,2(1 —}(,)dx+2 f (2—3l}pp~dx

Eq ———f (A, +2@pi)(1—A)x dx+ f (2—3X)pp2dx —f pi}(,dx —5 f ppidx

+p)~ f (A, +6pp))A dx

where p~„——p](00 ). The correction coefficients E&
and E2, both real, determine the phase and magni-
tude of f(oo), respectively. They can be simplified
considerably by further partial integrations. In any

I

case, f(ao ) is now correct up to terms of order a2

andA .
For the first integral in Ei we write
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f A,~(1 —A, )dx

=A, '(1—A, )x i"„=+"„—f x d[A, '(1 —A, )] .

(15)

As x~+00, A,~1 or 0, and the integrated term
vanishes if x p(x) vanishes as X~00. This is al-

ready necessary for the existence of the second mo-

ment in Eq. (13). For the new integral in Eq. (15)
we note that dk. =pdx, and dp&

——x dA, . A further
partial integration then yields

f k'(1 A. )dx—=p, „+2f (1—3A. )pp, dx .

(16)

This result allows us to write the first correction
coefficient of Eq. (14) as

K, =p, „+6f (1—2A, )ppidx, (17)

which is reasonably compact. For the case of sym-

metric pulses, p( —x)=p(x), the overall first mo-

ment vanishes, i.e., pi„——0, and in the integrand
both p and pi are even functions of x while (1—2A, )

is odd, so that K& vanishes identically. Thus for
symmetric pulses there are no lowest-order phase
corrections to the Rosen-Zener transition amplitude.

Simplification of K2 of Eq. (14) requires more
work. By methods similar to those of Eqs. (15) and
(16) we find for the first term in K2

f A, '(1 —A, )x dx

,p, „+f —(1—3A, )pp2dx, ( 1 g)

where p2„——p2( oo ) is the overall second moment of
the pulse distribution, and this result holds, provided
that x p(x)~0 as x~op. For the second term in

K2, we note dp&
——xp dx, so that

Z=+00
2 f ppi(1 —A, )x dx

(1—A)dpi = f ppidx, (19)

where the integrated term vanishes without restric-
tion. This term will combine with the fourth in-

tegral in K2 of Eq. (14). We next combine the third
integral in K2 with the first term of the last integral
to get

f( oo )= 1+—,K2a'A', (25)

to lowest order. It is in this form that we shall
check f( oo ) against known results. Note that
Ki K2 ——0, i.e., f——(a&) =1, is a necessary (but not
sufficient) condition for the Rosen-Zener form of
Eq. (2) to exactly solve the problem at hand.

In this section we have solved Eq. (9) for the
correction factor f(t) up to terms of order A~ and
a . The principal result is f(oo) of Eq. (14), with
the coefficients K& and K2 given by Eqs. (17) and
(23). For symmetric pulses K& ——0 and K2 is given
by Eq. (24). We shall now apply these results.

existence of the second moment. For the new in-

tegral we need

f A,'pxdx=p, „—2 f pp, A. dx,
00

2
ppix dx =

2 pi (21)
Z=+ 00 00f ~dp, =p,„f— ppidx,

all of which hold without restriction. The integral
on the left-hand side of Eq. (20) can then be written
as

00
2

00

p2~ — pp2dx —
2 pi +6pi ppik, dx

(22)

Finally, by combining the results of Eqs. (18)—(22),
we can write the second correction coefficient of Eq.
(14) in the simpler form

1 2
K2 2 (p200+p100)

00
2—6 (pi —2Api „)ppidx —3p]„. (23)

This holds for all pulses p(x) whose first and second
moments exist, and which satisfy the criterion
x p(x) —+0 as x~ 00.

For symmetric pulses, p( —x)=p(x), p~„——0, and
K2 becomes

K2= &p2~ —12 f pipdx . (24)

In this case, the phase correction coefficient K~ ——0,
as we have remarked above, and the correction fac-
tor for the Rosen-Zener transition amplitude is sim-

ply

Z=+00f (pi~)j, —pi)A, dx

=(p, „i, —pi)Ax ~"„=+"„
Z=+ co—f x d[(p, „A, —p, )A, ] . (20)

IV. COMPARISON WITH KNOWN RESULTS

At this point our solution for the transition arn-

plitude for the general two-level problem of Eqs. (1)
can be written as

The integrated term vanishes at the upper limit if
x p(x)~0 as x~ 00, it vanishes at the lower limit if
x p(x)~0 as x~( —) 00, which is necessary for the

P( oo ) =f( oo )[F(T,Q) /A ] sinA . (26)

A is the area under the coupling pulse V(t), F is the
pulse Fourier transform, and f( oo) is the correction
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factor calculated above. The last two factors in

P(oo } comprise the Rosen-Zener conjecture of Eq.
(2), while f(00) determines deviations from that
form. Since our result for f(00) holds to terms of
order A and 0 for all pulses with first and second
moments obeying the condition lim, „t V(t)=0,
then our solution for P(cc } applies to such pulses
under the same conditions, and is valid to third or-
der in A. Consequently, the factor sinA in Eq. (26)
is reliable only to order A, i.e., sinA~(1 ——,A ),
valid to 5% up to 3=1.4. %'ith this proviso we
shall retain sinA as a factor. Comparison with
standard theory is not readily possible, but we can
compare our solution with cases where P(co) is
known. %e find agreement between our result and
known results in all cases.

A. Rectangular pulse

A physically unrealizable but often used mode1 of
coupling is provided by the so-called rectangular
pulse, i.e., in Ilormalized form

P, ——,P&x &+—,P

0 otherwise (27)

Here P is a parameter which can be varied to change
the pulse height and width. The exact transition
amplitude is known in this case, it is

Pg(oo)=(2'/a)[g 'sin(ga/2P)]

g =[1+(2P~/a)']'",
where A is the pulse area and a=AT is the reso-
nance parameter. If we expand the square bracket
to terms of order A and a we find

P ( a)«-c(2'�/ )[a1—,~ (aA/P) —«3 ]

X sin(a/2P) .

If ollr form foI' P( oo ) ill Eq. (26) 18 cori'ect, it IIlllst

reproduce this result.
This is a case where the Rosen-Zener conjecture is

expected not to work, because neither the pulse nor
its derivatives are continuous. Indeed, the correc-
tion factor f(ao ) differs from unity. Froin Eq. (24)
we calculate

iuI„——f x p(x)dx =1/12P,

f p ip dx = 1/240';
1('I = —,pI —12 f iuiP dx = —1/120pi, (30)

and f(ao) is given by Eq. (25). With the pulse

Fourier transform

F=A f p(x) exp( I'—ax)dx

=(2' /a) sin(a/2P),

we find that the solution of Eq. (26) is

P(00) (2'/a)[1 —,~(aA/p) )

XA '( sinA }sin(a/2P) .

To terms of order A, this is just the same as the ex-

act solution of Eq. (29), since A ' sinA =1——,A, to
lowest order in A. Thus, in the case of the rectangu-
lar pulse, our solution for P( «0) reproduces the ex-
act result, term by term, to the requisite order.

In passing, we note that in the 5-function limit
here, i.e., P~ ao, both the exact solution of Eq. (28)
and our I'( ao ) become I'( ao ) = sinA, which is the ex-

act form of the Rosen-Zener conjecture in this case.

B. Rosen-Zener pulse

The Rosen-Zener pulse, which suggested this for-
rnalism, is given by

(33)

in normalized form. For this pulse it is known that
Eq. (2) is an exact solution for the transition amph-
tude. This means that our correction factor f(a&)
can have no A dependence in this case,' we must have

Ei ——EI——0. EI does vanish by symmetry, and in

E2 we can easily calculate p2 ——4. But we must

also evaluate fpip dx, over the first moment func-

tion

Vi(x)= f Q(C)4

=(1/II ) f (y/coshy)dy . (34}

This integral cannot be expressed in terms of ele-

mentary functions, and so we must resort to numeri-

cal methods. By numerical integration we have
shown that for the Rosen-Zener pulse, E2 of Eq.
(24) is less than 5&10, and is consistent with
zero. Thus, our result for P(ec) agrees with the
Rosen-Zener conjecture in this case.

C. Narrow& pulses: The (5-function 1imit

For very narrow pulses, with widths T« 1/
~

0 ~,
we can pass to the 5-function limit P(x) =5(x), and
immediately ca1culate that E& ——K2 ——0, I'=A. In
this limit our formalism thus gives

P(00)= sinA .

This is the same as the result of the Rosen-Zener
conjecture in this case, and both results reproduce
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the known solution. In fact, in this limit, all solu-
tions to the two-level problem must become indistin-
guishable from one another. If we think of the limit
as being approached by a pulse of height V(0)~ ao

and width T—+0 in such a way that the pulse area
A —TV(0) = const, then the resonance parameter we
have used, namely, a=AT, must vanish and Eq.
(35) for P( oo ) also must reduce to the on-resonance
result. It does, and this provides another check on
the correctness of our results.

the pulse power level is increased, within the limits
of our approximation. Such a "power-sharpening"
effect has been noted before in connection with
line-shape theories which deal with fine details of
the coupling pulse.

E. Exponential pulse

To treat an example of a pulse which is asym-
metric in time we look at the exponential

D. Gaussian pulse 0, x(0
Pexp( —Px), x &0. (41)

A Gaussian pulse shape is often used to model the
output of a nearly monochromatic pulsed laser.
This provides the coupling

p(x)=(p/m)'~ exp( —px ), (36)

which is normalized, i.e., J p(x)dx = 1, and

which contains an adjustable height-width parame-
ter p. No solution is known for the transition am-

plitude P( oo ) induced by this pulse. Our formalism
provides an approximate form for P( ao ) by calcula-
tion of the quantities

pq„——f x 'p(x)dx = 1/2P,

J p fp dx = 1/8p~v 3;
Kp ———,pg„—12 J py dx =( —)k/P, (37)

where

k = —,[(6/n v 3)—1]=0.025 664 .

pt ——1/P, pp =2/P

A. = 1 —exp( —y ),
p| =P '[1—(1+y) exp( —3»]

(42)

for this pulse, with y =Px. The K integrals are easy,
and we find

Ki ——1/6P, Kp ——1/18P (43)

With these, the correction factor f(oo) is given by
Eq. (14). To get P( oo ) of Eq. (26) we also need the
Fourier transform

Such a pulse represents level coupling provided by a
quickly decaying transient. An exact solution for
P( oo ) is possible in this case. Our calculation gives
a simple but useful approximation to P(oo), which
now depends on the general forms for E& and Ez in
Eqs. (17) and (23). In turn, these depend on

This gives the correction factor f(oo) of Eq. (25),
and with the Fourier transform

F=A f p(x) exp( iax)dx—

=AP/(P+ia) . (44)
F=A f p(x) exp( —iax)dx

=A exp( —a'/4P) (38)

Then the desired approximation for the transition
amplitude is

the transition amplitude is

P( oo )=[1——,(k IP)a~A ~]

P(oo)=[1+ , iK, aA —+—,Kpa A ]

&& psinA /(p+ia), (45)

X exp( —a /4P) sinA . (39)

This approximation improves as the pulse narrows,
i.e., for increasing P.

~
P( oo ) ~, as a function of the frequency parame-

ter a =AT, gives the line shape for the induced tran-
sition. In the present case, the line half-width at
half maximum, for small values of pulse area A, is

ha=1. 177M P(1 ——,kA ) . (40)

The line is thus narrower than would be expected on
the basis of an estimate by the Rosen-Zener conjec-
ture alone (where we would have k =0). Interesting-
ly, the line narrowing becomes more pronounced as X(psinA)'/(a +p') . (47)

where Ei and ECq are given in Eqs. (43). The ap-
proximation again improves as the pulse narrows,
i.e., as P increases. In forming the line-shape func-
tion (P(oo)

~

for the present pulse we note that
while K~ controls the phase of f( oo ), it does not af-
fect its magnitude since, to order A,

~
f(oo)

~
=1+ ,Kza'A— (46)

This is true of all pulses in the present order of ap-
proximation. Then the line-shape function corre-
sponding to Eq. (45) is

~

P( oo )
~

'=[1+—„(aA IP)']
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This line is nearly I.orentzian, with half width
ha=P[l+(A /27)], and it is power broadened by
the correction term in A .

F. Composite pulses

As we noted after Eq. (25), a necessary (but not
sufficient) condition for the Rosen-Zener conjecture
of Eq. (2) to be an exact solution for the transition
amplitude is thai the correction coefficients obey
K& ——K2 ——0. This condition is satisfied identically,
as it must be, for the Rosen-Zener pulse of Eq. (33).
%e can ask whether this is unique: Is
p(x) = sech(~x) the only nontrivial pulse for which

K& ——Kz ——0~ The answer is no, as we now show by
constructing a composite pulse whose K coefficients
vanish. Although such pulses do not necessarily
have P(00) of Eq. (2) as an exact solution for the
transition amplitude, they will follow that form
quite closely, since the first correction term will be
of order A . More importantly, the existence of
such pulses indicates that there is a large class of
couplings for which the Rosen-Zener form of P( ao )

is an excellent approximation.
Let po(x) be a known, symmetric pulse with K

coefficients: K& ——0, K2 ——K20&0. Add a narrow
pulse at the origin to form the composite

where the parameter a is to be found, and p(x) is
normalized if po(x) is. Since p(x) is symmetric it
will have K~ ——0. Its K2 value can be calculated in
terms of Kqo, a, and the moments associated with

po(x). Using Eq. (24) we find

K2 ———,ap'2 ' (Aa —8a+ 1),
where

8 =24JMio(0)/p2 ', (49)

A =(2K„yq,"„')+S—1.
Here, p2 ——J x'po(x)dx and p „(0)
= f xylo(x)dx. This E2 value vanishes for real

values of a if the quadratic form in square brackets
has real roots. This requires 8 & 4A, or

I: »Vfo(o) V2".1'&—
2&~oi "~" (50)

which is possible for any pulse po(x) with K20&0,
such as the Gaussian of Eq. (37). For such pulses
the composite of Eq. (48) provides a class of cou-
plings for which K~ ——K2 ——0, and for which the
Rosen-Zener conjecture is exact up to order A .

In this section, we have compared our result for
the transition amplitude P( oo) with various known
results. The most detailed comparison is in the case
of a rectangular pulse, where the term by term
agreement between our P(00 ) and the exact solution
shows that the "arithmetic" of our calculation is
correct. Our P( oo ) also shows the expected behavior
for a hyperbolic secant pulse, and for very narrow
pulses. Next, we have calculated P( cc ) for the phys-
ically interesting cases of Gaussian and exponential
transient pulses. The Gaussian result is new, insofar
as a solution for P( 00 ) is not known in this case, and
both results provide quantitatively useful details of
the transition line-shape function

~

P( ao )
~

. Final-

ly, we have constructed examples of composite
pulses for which the Rosen-Zener conjecture for
P( Qo ) is an exact solution within the present approx-
imation. For such pulses, P(00) is given by Eq. (2)
and correct is up to terms fifth order in the pulse
area A. This suggests a large class of couplings for
which the Rosen-Zener P( (x) ) is an excellent approx-
imation.

V. SUMMARY

To summarize, we have calculated the approxi-
mate form of the transition amplitude P( Oo ) for the
time-dependent two-level problem, where the levels

are coupled by a quite general class of pulses V(t).
Our solution for P(oo ) is correct up to the third or-
der of perturbation theory, i.g., up to terms third or-
der in the pulse area A = f V(t)dr, and it applies

to all pulse distributions V(t) which have finite first
and second moments and which obey
lim, „t V(t)=0. Our result for P(oo} is given as
the product of two factors: {1) a form of solution
previously conjectured by Rosen and Zener and (2) a
correction factor f( ao ) which is calculable in terms
of integrals over the pulse distribution. The extent
to which f(co) differs from unity provides a cri-
terion for judging the validity of the Rosen-Zener
conjecture, and its general form provides a useful
approximation to P(00) in many cases of practical
interest.

ACKNO%LEDGMENTS

I wish to thank my colleague J. E. Drumheller for
useful discussions regarding this calculation, and

particularly for his help in doing the numerical in-

tegration mentioned in Sec. IVB. This work was

supported in part by National Science Foundation
MONTS Grant No. ISP-80-11449.



1372 R. T. ROBISCOE 27

'N. Rosen and C. Zener, Phys. Rev. 4a 502 (1932).
A. Bambini and P. R. Berman, Phys. Rev. A 23, 2496

(1981). The Bambini-Berman pulses include the
Rosen-Zener pulse as a special case.

3It has been pointed out to the author that an exact solu-
tion is also possible for an exponential pulse. See A. D.
Wilson and H. Friedmann, Chem. Phys. +, 105
(1977).

4B. G. Skinner, Proc. Phys. Soc. London 77, 551 (1961).
~The (symbolic) formulation of third-order time-

dependent perturbation theory appears in standard
references, such as Sec. 74 of A. S. Davydov, Quantum

Mechanics, edited by D. ter Haar (Pergamon, New

York, 1965). So far as we know, however, an explicit
calculation to third order for the general two-level

problem does not appear in the literature.
sFrom Eq. (26) of R. T. Robiscoe, Phys. Rev. A 17, 247

(1978).
7We are indebted to our colleague, J. E. Drumheller, for

devising and running the computer program.
D. J. Bradley and G. H. C. New, Proc. IEEE +2, 313

(1974); J. Wiedmann and A. Penzkofer, Opt. Commun.
30, 107 (1979).

See Appendix IV of W. E. Lamb, Jr., Phys. Rev. $5, 259
(1952).


