S, P, and D states of two-electron ions via Z-dependent perturbation theory

Frank C. Sanders

Department of Physics and Astronomy, Southern Illinois University-Carbondale, Carbondale, Illinois 62901

Robert E. Knight

Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (Received 26 July 1982)

A perturbation study of singly excited S, P, and D states of two-electron atoms has been made. Perturbation expansion coefficients for the nonrelativistic energies are computed and estimates of the relativistic corrections to low orders in Z are also obtained. A simple one-electron Lamb-shift correction is then combined with these results to yield theoretical transition energies in excellent agreement with experimental data for HeI through Fexxv.

I. INTRODUCTION

In a recent application of Z-dependent perturbation theory,¹ the authors made use of two-electron, first-order wave functions to obtain accurate transition energies for several S, P, and D states of threeelectron ions. One aspect of the work was a simplified procedure for obtaining relativistic corrections to the energy.² The accuracy of these transition energies indicated that this approach to the relativistic corrections might be usefully applied to the corresponding two-electron states. In the latter case, third and higher-order nonrelativistic energy coefficients could be more easily computed, rather than extracted from the experimental data for the first few members of an isoelectronic sequence, as was done in Refs. 1 and 2. Further, very accurate variational calculations for some of these two-electron states are available $^{3-6}$; in particular, relativistic corrections from these calculations^{3,4} permit an evaluation of the accuracy to be expected from the simple approach used here.

For the present paper, the accuracy of the twoelectron, first-order wave functions has been improved and the computations extended to higher order. In addition to the relativistic corrections, estimates of the Lamb shift are included. These results are then combined to yield theoretical estimates of transition energies for singlet and triplet NS, NP, and ND states through N=9. Finally, these theoretical values are compared with the available experimental data for HeI through FeXXV. The theoretical transition energies obtained form a consistent set of data for all states of the He isoelectronic sequence considered here.

II. METHOD

A. The nonrelativistic energy

The Hamiltonian for a nonrelativistic twoelectron atom in charge-scaled atomic units is

$$H = H_0 + \frac{1}{Z} H_1 , \qquad (1)$$

where

$$H_0 = -\frac{1}{2} (\nabla_1^2 + \nabla_2^2) - \frac{1}{r_1} - \frac{1}{r_2} , \qquad (2)$$

$$H_1 = \frac{1}{r_{12}}$$
(3)

are the unperturbed Hamiltonian and perturbation, respectively. The wave function and energy are then written as

$$\Psi = \sum_{n=0}^{\infty} Z^{-n} \psi_n , \qquad (4)$$

$$E = \sum_{n=0}^{\infty} Z^{2-n} \epsilon_n .$$
 (5)

The ψ_n are obtained by a variational-perturbation procedure⁷ using trial functions of the form

$$\psi_n^{NL} = (1 \pm P_{12})(A + r_{12}B) \\ \times e^{-k_n(r_1 + r_2/N)} P_L(\cos\theta_2) , \qquad (6)$$

with A and B both of the form

$$\sum_{abl} C_{abl}^{(n)} r_1^{a+l} r_2^{b+l+L} P_l(\cos\theta_{12}) .$$
⁽⁷⁾

For the calculations reported here the expansions for A usually contain about 200 terms, while those

27 1279 © 1983 The American Physical Society

for *B* contain 50 or fewer terms; the expansion for *B* contains all terms such that $a + b + 2l \le 6$ or 4 while *A* contains terms with $a + b + 2l \le 12$, but emphasizing those terms with higher powers of r_2 (i.e., b > a). Note that for *D* states this form of the trial function includes only (s - d)-type terms—no (p - p) terms. Also included in the trial functions for these excited states are the zero-order functions for less excited states of the same symmetry. With the inclusion of these terms the optimized ψ_n yield a rigorous upper bound⁸ for ϵ_{2n} and an estimate of ϵ_{2n+1} .

The nonlinear parameter k_n was optimized for ψ_1 only, and then the same basis was used for all the higher-order wave functions. Although less accurate than individually optimizing the k_n ,⁹ this procedure yields higher-order results with very little additional computational effort. Thus the order to which each state was calculated was limited only by the increasing numerical inaccuracy introduced by this simpler approach. It should be noted that this can be a severe limitation, and more accurate results obtained without such restrictions were used where available.^{8(c)}

Since the final results are presented in terms of transition energies to the $1^{1}S$ ground state of the ion, the nonrelativistic contribution to the transition energy is written as

$$T_{\rm nr} = \sum_{n=0}^{n_f} e_n Z^{2-n} , \qquad (8)$$

where $e_n = \epsilon_n^{NL} - \epsilon_n^{11S}$, and the ground-state expansion coefficients are taken from the work of Aashamar.¹⁰ The truncation point n_f , was determined by the accuracy of the excited-state expansion coefficients.

B. Relativistic corrections

The approach followed here was identical to that of Ref. 1. The relativistic correction is given by the Breit formula¹¹

$$E_{\rm rel} = \alpha^2 \left[-\frac{1}{4} \langle p_1^4 \rangle + \pi Z \langle \delta(\vec{r}_1) \rangle + \pi \langle \delta(\vec{r}_{12}) \rangle \right],$$
(9)

with α the fine-structure constant. Note that no spin-orbit or spin-spin operators are included. The triplet states are thus to be compared to a multiplet average of the experimental fine-structure levels, whenever those are available. The first two terms of Eq. (9) are evaluated to first order in Z, the third

term to zero order in Z, giving the first two terms of the Z expansion of E_{rel} ,

$$E_{\rm rel} = \alpha^2 (Z^4 b_0 + Z^3 b_1) . \tag{10}$$

However the actual expression used is¹²

$$E_{\rm rel} = \alpha^2 (Z - \sigma)^4 b_0 , \qquad (11)$$

which, with $\sigma = -b_1/(4b_0)$, reproduces Eq. (10) through Z^3 while providing some contributions of order Z^2 and beyond. In the above,

$$b_0 = -\frac{1}{8} - \frac{(8N - 6L - 3)}{8N^4(2L + 1)} + \frac{\delta_{L,0}}{2N^3}$$
(12)

and the b_1 are listed in Table V of Ref. 1. However, since the final results are expressed as transition energies, the contribution of the Breit formula was given by

$$T_{\rm rel} = \alpha^2 (Z - \sigma)^4 b_0^{NL} - \alpha^2 \sum_{n=0} b_n^{1/S} Z^{4-n} , \qquad (13)$$

where the b_0^{NL} in Eq. (13) and in the expression for σ differs from that of Eq. (12) by the elimination of the term $-\frac{1}{8}$. Similarly, the b_0^{1lS} used in Eq. (13) was $-\frac{1}{8}$ rather than the correct value of $-\frac{1}{4}$. This procedure gave a slight improvement in $T_{\rm rel}$. The higher-order b_n^{1lS} are also taken from the work of Aashamar.¹⁰

C. Lamb shift

The Lamb-shift correction is of order Z^4 and was neglected in Ref. 1 where the nonrelativistic energy was sufficiently inaccurate to make its inclusion unnecessary. For the present two-electron study, however, inclusion of the Lamb shift is essential, since for many of the excited states the nonrelativistic energies are well converged. In obtaining estimates of the Lamb shift a simple one-electron approximation was used,

$$E_L = E_L(1S, Z) + E_L(NL, Z^*)$$
(14)

with

$$E_L(NS,Z) = \frac{Z^4}{N^3} \left[-2\ln(\alpha Z) - \ln(K_{N,0}) + \frac{19}{30} \right]$$
(15)

for S states and

$$E_L(NL,Z) = -\frac{Z^4}{N^3} \ln(K_{N,L})$$
(16)

for P and D states. $K_{N,L}$ is the average excitation potential¹³ of the one-electron ion and $Z^* = Z - 1 + (3-L)/N^2$ represents an *ad hoc* screening for the excited electron. No screening was used for the 1S electron so that the contribution of E_L to the transition energy would go to the right limit for large N. The ground-state Lamb shift necessary for the transition energy was taken from Aashamar.¹⁰

D. Mass polarization

In the present calculations, the mass-polarization correction for the excited state is ignored, and only the contribution of the ground state to the transition energy is included. The latter is almost constant with increasing Z with a value of $\sim 7 \text{ cm}^{-1}$ for Z=6 through 10 (Ref. 10). In contrast, the mass-polarization correction for S (Ref. 3) and D (Ref. 14) states is quite small and decreases rapidly as N increases. For these states, then, the groundstate correction is sufficient and, indeed, only makes a noticeable contribution for low-Z ions. This is not the case for the P states, however, where the absolute value of the polarization correction for the excited states is increasing with Z although still decreasing rapidly with N (Ref. 3).

III. RESULTS

The nonrelativistic energy expansion coefficients for the states considered here are listed in Tables I-VI. The higher-order coefficients listed are based on 100-term expansions for the perturbation wave functions using high-precision (28-decimal digit) arithmetic since, given the number of states considered here, calculations with the 200 + terms used for the first-order wave functions would have been prohibitive in terms of computer time. For the $2^{3}S$ and $2^{1,3}P$ states, the higher-order coefficients listed are taken from the earlier work of Sanders and Scherr,^{8(c)} where the k_n for the higher-order wave functions are individually optimized. Values of these coefficients from other theoretical studies of these states are listed for comparison where these are available.

Tables VII and VIII list values of $\alpha^{-2}T_{rel}$ given by Eq. (13) for those S and P states studied by Accad, et al.⁴ Comparison with the latter authors' accurate calculations permits an evaluation of the accuracy obtained with the approximation used here for the relativistic correction.

Finally, Tables IX-XIV present the transition energies for all S, P, and D states considered here for all ions from HeI through Fe XXV inclusive, together with accurate experimental values for these transition energies. In many cases these experimental values are taken from recent critical compilations of the available data by the National Bureau of Standards Atomic Energy Levels Data Center, and thus include some theoretical values. In the tables, such theoretical values are indicated by parenthesis. For the most highly ionized S and P states, the listed values are almost exclusively theoretical values taken from the work of Ermolaev and Jones.¹⁵

IV. DISCUSSION

A. The nonrelativistic energy

For Z-dependent perturbation theory to yield accurate nonrelativistic energies, the ϵ_n must be known with sufficient accuracy and through a sufficiently high order. In particular, ϵ_2 must be known to high accuracy-indeed, for large Z, accurate values of ϵ_2 and ϵ_3 are enough to yield acceptable values of the nonrelativistic energy. Generally, the ϵ_n computed here and presented in Tables I-VI fulfill these requirements. Note particularly the agreement with the results of Blanchard,¹⁶ where the ϵ_n for the S and P states are extracted from the accurate variational calculations of Accad et al.⁴ The agreement is particularly striking for the ϵ_2 , but is also remarkably good for the higher-order coefficients, which have been computed here with more limited expansion sets for the ψ_n . Also included in the tables are the results of Aashamar et al.^{17,18} for the N=2 and 3S and P states and the results of Blanchard and Drake⁶ for the N=3 for 4D states. These results are obtained via variational-perturbation wave functions of a complexity similar to that of the present ψ_n . Indeed the 2, $3^{3}S \epsilon_{n}$, $n \ge 4$ of Ref. 17 are somewhat superior and the 3D ϵ_n of Ref. 6 clearly superior to those of the present study. The 4D results of Ref. 6 appear to be of similar accuracy to those of the present paper. Note that, generally, for the present results the D-state calculations are not of as high a quality as the S- and P-state calculations. Finally, the tables also include some ϵ_2 computed nonvariationally by Ivanova et al.¹⁹

				n				
u	2 ¹ S	31S	4 ¹ S	51S	6 ¹ S	71S	8 ¹ S	9 ¹ S
7	-0.114 510 11 -0.114 510 15 ^b -0.114 487 03 ^c -0.114 50 ^d	0.049 107 87 0.049 061 36° 0.049 16 ^d	0.028 163 33 0.028 156 ^b 0.028 27 ^d	0.018 338 00 0.018 334 ^b 0.018 50 ^d	-0.012 900 44	-0.009 569 86	-0.007 379 95	- 0.005 863 40
ŝ	0.009 327 78 0.009 328 0 ^b 0.009 224 00 ^c	0.001 268 78 0.000 944 33°	0.00075020 0.00084 ^b	0.000 394 61 0.000 47 ^b	-0.000 177 94	-0.000 250 93		-0.000 121 82
4	0.001 283 61 0.001 286 ^b 0.001 084 86 ^c	−0.001 448 29 −0.001 5 ^b 0.000 249 81 ^c	0.000 845 18 0.000 8 ^b	0.000 229 50 0.000 5 ^b	-0.000 227 54	-0.000 136 09		0.001 941 98
S	0.006 202 11 0.006 2 ^b 0.005 978 67 ^c	0.005 433 45 0.005 ^b 0.010 601 90 ^c	0.004 443 93 0.002 ^b	0.007 925 95 0.001 ^b	0.001 452 99	0.000 368 93	0.000 686 80	
9	0.001 454 88 0.001 5 ^b 0.001 327 80 ^c	0.003 330 65 0.013 939 79°				-0.000 095 19		
~	0.003 485 32 0.005 ^b 0.003 742 10 ^c	0.005 985 52 0.018 265 91°						
%	0.000 911 64 0.001 999 19°							
The	first line in each ent	try of the table is from	m the present study.	Additional lines are	e from earlier theore	etical studies.		

TABLE I. The ϵ_{μ} in a.u. for the $N^{1}S$ states.^a

^bP. Blanchard, Ref. 16. ^cK. Aashamar, G. Lyslo, and J. Midtdal, Ref. 18. ^dA. N. Ivanova, U. I. Safronova, and V. N. Kharitonova, Ref. 19.

FRANK C. SANDERS AND ROBERT E. KNIGHT

				····· ··· ··· ··· ···				
u	2 ³ S	3³S	4 ³ S	S ³ S	6³S	2 ₈ 2	8³S	9³S
5	-0.047 409 30 -0.047 409 30 ^b -0.047 41 [€]	-0.032 317 54 -0.032 317 54° -0.032 34°	-0.021 301 58 -0.021 301 54 ^d -0.021 37 ^e	0.014 846 95 0.014 846 86 ^d 0.014 94 ^e	-0.010 880 05	-0.008 296 04	-0.006 527 12	-0.005 265 95
÷	0.004 872 28 0.004 872 28 ^b	0.002 136 84 0.002 136 86°	-0.001 107 11	0.000 639 17	-0.00040021	-0.000 265 02	0.000 191 80	-0.000 058 12
4	0.003 457 57 0.003 457 80 ^b	0.001 517 98 0.001 518 85°	0.000 720 11 0.000 721 ^d	-0.00039195 -0.000394^{d}	-0.000 233 51	0.000 145 90	-0.000 077 12	0.001 718 77
S	0.002 030 06 0.002 029 85 ^b	-0.000 781 81 -0.000 786 72°	0.000 368 34 0.000 37 ^d	0.000 200 55 0.000 20 ^d	-0.000 123 89	-0.000 084 62	0.000 387 06	
6	0.001 287 09 0.001 287 13 ^b	0.000 436 20 0.000 465 63°	0.000 235 56 0.000 2 ^d	0.000 105 30 0.000 1 ^d	-0.000 052 67	0.000 043 98		
٢	0.000 871 45 0.000 871 42 ^b	-0.00012939 -0.00027207°		0.00005512	0.000 021 39			
×	0.000 617 90 0.000 618 23 ^b	0.000 468 22 0.000 175 08°		0.000 005 18	0.000 186 22			
6	-0.00045412 -0.00045443^{b}			-0.000 335 66				
Å. Å. Å	first line in each em Aashamar, J. Midtda Aashamar, J. Midtda Blanchard, Ref. 16. V. Ivanova, U. I. Saf	try of the table is frc al, and G. Lyslo, Ref al, and G. Lyslo, Ref ronova, and V. N. K	m the present study. f. 17(a). f. 17(b). t. 17(b).	Additional lines are	from earlier theore	tical studies.		

TABLE II. The ϵ_n in a.u. for the N^3S states.^a

S, P, AND D STATES OF TWO-ELECTRON IONS VIA Z-...

			TABLE	III. The ϵ_n in a.u.	. for the N^1P states. ^a	-		
u	2 ¹ P	3 ¹ P	4 ¹ P	5 ¹ P	6 ¹ P	$7^{1}P$	8 ¹ P	9 ¹ P
10	-0.15702866 -0.15702859 ^b -0.15702150 ^c -0.15703 ^d	-0.060 752 36 -0.060 752 9 ^b -0.060 725 67 ^c -0.063 91 ^d	0.032 981 98 0.032 977 ^b	0.020 788 93 0.020 787 ^b	-0.014 315 01	-0.010 457 05	-0.007 970 10	-0.006 268 64
ε	0.026 106 28 0.026 059 59°	0.000 275 21 0.000 257 ^b 0.000 094 28 ^c	0.000 654 10 0.000 73 ^b	0.000 425 04 0.000 48 ^b			0.00041751	-0.000 371 65
4	0.005 788 76 0.005 914 90°	0.004 219 06 0.003 77 ⁶ 0.005 003 55 ^c	0.001 549 06 0.001 5 ^b	0.004 503 35 0.000 7 ^b	0.002 887 10	0.002 070 01	0.000 402 37	0.000 142 70
Ś	0.005 041 31 0.005 242 15°	0.005 096 54 0.006 9 ^b 0.008 791 65 ^c	0.005 644 46 0.003 ^b	0.000 382 40 0.002 ^b	0.019 114 53	0.014 991 66	0.000 857 40	0.000 809 83
9	0.007 066 59 0.006 889 44°	-0.00501294 -0.010^{b} 0.00436384^{c}		0.003 698 86			0.000 742 17	0.006 559 50
2	-0.001 259 46 $-0.001 333 82^{\circ}$	-0.00468079 0.002^{b} 0.01643351^{c}		-0.001 162 50			0.000 483 35	
×	0.003 405 12 0.003 424 61°							
6	0.001 920 93 0.001 953 97°							

^aThe first line in each entry of the table is from the present study. Additional lines are from earlier theoretical studies. ^bP. Blanchard, Ref. 16.

^cK. Aashamar, G. Lyslo, and J. Midtdal, Ref. 18. ^dA. N. Ivanova, U. I. Safronova, and V. N. Kharitonova, Ref. 19.

1284

FRANK C. SANDERS AND ROBERT E. KNIGHT

u	2°P	3°P	4°P	5°P	<i>d</i> _c 9	d.L	<i>d</i> c8	<i>d</i> .6
7	0.072 998 98 0.072 998 97 ^b 0.072 996 75 ^c 0.072 99 ^d	-0.041 856 34 -0.041 856 3 ^b -0.041 836 63 ^c -0.044 87 ^d	-0.025 644 55 -0.025 644 4 ^b	-0.017 163 25 -0.017 163 1 ^b	-0.012 255 72	-0.009 177 52	-0.007 123 63	-0.005 686 23
<i>.</i>	—0.016 585 30 —0.016 594 32°	-0.003 351 17 $-0.003 352^{b}$ $-0.003 217 65^{c}$	-0.00132102 -0.001323^{b}	0.000 667 06 0.000 670 ^b	0.000 424 41	0.000 302 36	-0.000 239 89	0.000 209 86
4	0.010 353 09 0.010 339 61°	-0.002 710 13 -0.002 72 ^b -0.002 110 62 ^c	0.001 010 74 0.001 05 ^b	0.000 233 99 0.000 51 ^b	0.000 168 45	0.000 806 99	0.000 533 94	0.000 074 08
Ś	0.005 424 84 0.005 436 13°	-0.001 497 37 -0.001 5 ^b 0.000 550 89 ^c	0.000 261 71 0.000 6 ^b	0.001 839 29 	0.003 090 77	0.009 681 05	0.005 434 81	0.002 882 99
6	0.002 020 80 0.002 017 02°	0.000 738 41 0.000 8 ^b 0.004 736 45 ^c	0.001 999 45 0.000 4 ^b					
٢	0.000 238 27 0.000 236 49°	-0.00028675 0.01185275°						
×	0.001 610 32 0.001 612 29°	0.004 847 30 0.021 822 11°						
6	0.002 269 62 0.002 278 54°	0.00294620 0.03026480°						
^a The	first line in each ent	ry of the table is fror	m the present study.	Additional lines are	e from earlier theore	ctical studies.		

TABLE IV. The ϵ_n in a.u. for the N^3P states.^a

^bP. Blanchard, Ref. 16. ^cK. Aashamar, G. Lyslo, and J. Midtdal, Ref. 18. ^dA. N. Ivanova, U. I. Safronova, and V. N. Kharitonova, Ref. 19.

<u>27</u>

S, P, AND D STATES OF TWO-ELECTRON IONS VIA Z-...

n	$3^{1}D$	$4^{1}D$	$5^{1}D$	6 ¹ D	7^1D	$8^{1}D$	$9^1 D$
2	-0.057 387 77 -0.057 482 2 ^b -0.057 31 ^c	-0.032 110 73 -0.032 121 6 ^b	-0.020 455 82	-0.014 155 71	-0.010 371 24	-0.007 921 53	-0.006 244 52
3	0.005 538 59 0.005 974 4 ^b	0.002 486 95 0.002 444 71 ^b	0.001 308 43	0.000 852 70	0.000 674 28	0.000 083 74	0.000 032 03
4	-0.008 121 58 ^b	-0.002 882 32 -0.002 636 34 ^b	-0.001 224 59	0.000 190 03	0.001 559 31	0.000 145 14	0.000 057 84
5	0.005 564 48 ^b	0.002 445 71 0.000 644 30 ^b	0.002 327 04	0.006 076 91		-0.000 234 54	-0.000 037 85
6	-0.002 318 28 ^b	0.002 134 41					
7	0.000 816 29 ^b	0.001 025 81°					
8	0.000 145 93 ^b						
9	-0.000 664 68 ^b						

TABLE V. The ϵ_n in a.u. for the N^1D states.^a

^aThe first line in each entry of the table is from the present study. Additional lines are from earlier theoretical studies. ^bP. Blanchard and G. W. F. Drake, Ref. 6.

^cA. N. Ivanova, U. I. Safronova, and V. N. Kharitonova, Ref. 19.

n	3 ³ D	4 ³ D	$5^{3}D$	6 ³ D	7^3D	8 ³ D	9 ³ D
2	-0.054 615 28 -0.054 619 3 ^b -0.054 59 ^c	-0.030 684 33 -0.030 671 37 ^b	-0.01967545	-0.013 691 03	-0.01007530	-0.007 723 88	0.006 108 03
3	-0.000 724 88 -0.000 731 80 ^b	-0.000 567 16 -0.000 666 06 ^b	-0.000 337 24	0.000 199 89	-0.000 105 24	-0.000 173 68	-0.000 138 33
4	0.000 073 74 ^b	0.000 141 74 0.000 439 07 ^b	0.000 087 83	0.000 090 04	0.000 401 74	0.000 169 72	0.000 155 23
5	-0.000 087 86 ^b	0.000 088 86 -0.000 343 91 ^b	0.000 085 30	0.000 340 35		0.000 001 30	0.000 178 41
6	0.000 177 09 ^b	-0.00004303 -0.00039242^{b}	0.000 102 26				
7	0.000 069 71 ^b	0.000 095 09 0.001 828 46 ^b					
8	-0.000 294 96 ^b	0.001 828 40					
9	0.000 098 88 ^b						

TABLE VI. The ϵ_n in a.u. for the N^3D states.^a

^aThe first line in each entry of the table is from the present study. Additional lines are from earlier theoretical studies. ^bP. Blanchard and G. W. F. Drake, Ref. 6.

^cA. N. Ivanova, U. I. Safronova, and V. N. Kharitonova, Ref. 19.

Z	2 ¹ S	3 ¹ S	4 ¹ S	5 ¹ S	$2^{3}S$	3 ³ S	4 ³ S	5^3S
2	1.448 69	1.464 65	1.47073	1.473 21	1.274 31	1.422 36	1.454 68	1.465 52
	1.441 82	1.464 11	1.470 68	1.473 20	1.311 64	1.431 02	1.457 82	1.466 97
3	3.609 75	3.933 37	4.041 86	4.085 20	2.590 90	3.672 68	3.940 04	4.035 51
	3.578 02	3.935 58	4.044 40	4.086 83	2.690 42	3.697 34	3.949 26	4.039 83
4	10.364 61	12.130 09	12.699 34	12.92506	7.273 35	11.32471	12.381 60	12.76904
	10.294 30	12.142 04	12.708 51	12.93045	7.463 1	11.373 01	12.399 88	12.777 65
5	27.066 77	32.85503	34.686 35	35.409 90	20.11991	31.028 81	33.962 23	35.053 18
	26.9454	32.884 23	34.706 30	35.42101	20.4280	31.108 39	33.992 55	35.067 53
6	61.133 09	75.575 88	80.094 59	81.87603	47.992 17	72.102 87	78.713 31	81.194 29
	60.9484	75.629 92	80.129 39	81.8947	48.4466	72.221 40	78.758 65	81.215 81
7	122.043 18	152.427 27	161.863 65	165.578 46	99.81448	146.531 69	159.51411	164.417 33
	121.7829	152.513 67	161.917 28	165.6063	100.443 4	146.696 82	159.577 46	164.447 48
8	221.339 22	278.210 59	295.78088	302.690 65	186.573 78	268.966 80	292.091 64	300.865 77
	220.9914	278.3369	295.857 3	302.729 3	187.405 3	269.18623	292.17601	300.90601
9	372.625 95	470.393 92	500.481 30	512.304 51	321.319 54	456.72648	495.02063	509.601 53
	372.1784	470.567 5	500.5843	512.3553	322.3817	457.007 89	495.1290	509.653 32
10	591.57063	749.112.03	797.447 62	816.43037	519.16375	729.795 65	789.72346	812.604 94
	591.0112	749.3403	797.581 1	816.4946	520.4847	730.14675	789.8589	812.66975

TABLE VII. $T_{\rm rel}/\alpha^2$ in a.u. for some S states.^a

For each entry, the first line is the result obtained in the present paper. The second line is from Accad et al., Ref. 4.

B. The relativistic correction

The relativistic correction as applied here via Eq. (11) is in error by terms of order Z^2 . Thus, the relative error should decrease as Z^{-2} . For low Z, the total relativistic correction itself is rather small, ~100 cm⁻¹ for Z=4, the error being a few cm⁻¹, at most. In contrast, the nonrelativistic transition energy for Z=4 is $\sim 10^6$ cm⁻¹ with an error of at most a few cm^{-1} . For larger values of Z, then, the accuracy of the nonrelativistic transition energy will increase and the error in the relativistic correction will determine the overall accuracy of the calculation. The present relativistic correction is compared with the earlier calculations of Accad $et al.^4$ in Tables VII and VIII. Unfortunately, the tables indicate that the relative difference between the present results and those of Ref. 4 decreases roughly as Z^{-1} for the ³S states, or remains roughly constant for the ¹S and ^{1,3}P states. This holds true for all states (N=2 to 5) of a particular symmetry, although the relative difference drops by about a factor of 10 from N=2 to N=5. It appears that the variational data of Ref. 4 have an error which is growing more rapidly than that of the Z-dependent data, i.e., more rapidly than Z^2 . Thus, the accuracy of the present method is indicated only by a comparison of the Z=2 data, for example, where the variational calculations are surely of high accuracy. From that point the relative error must necessarily be decreasing as Z^{-2} . It is also not possible to make useful comparisons with the high-Z extrapolations of Ermolaev and Jones,¹⁵ since these are extrapolations based on the calculations of Accad *et al.*,³ and display similar behavior.

C. Lamb shift

The Lamb-shift contribution to the transition energies must be included in the present calculations since, even for low values of Z, this contribution is of greater magnitude than the error introduced by the approximations leading to Eq. (11) for the rela-

Z	$2^{1}P$	3 ¹ P	4 ¹ P	5 ¹ P	2 ³ P	3 ³ P	4 ³ P	5 ³ P
2	1.463 84	1.470 48	1.473 26	1.474 49	1.450 03	1.464 50	1.470 62	1.473 17
	1.436 09	1.461 27	1.469 16	1.472 2	1.503 04	1.480 96	1.477 62	1.47679
3	3.895 01	4.029 64	4.083 10	4.106 09	3.785 18	3.983 25	4.062 58	4.095 89
	3.653 19	3.95501	4.051 35	4.090 33	4.005 68	4.045 33	4.08807	4.108 29
4	11.88679	12.622 01	12.909 00	13.031 61	11.516 52	12.466 88	12.840 39	12.997 51
	11.079 58	12.382 42	12.808 98	12.983 1	11.775 20	12.526 64	12.863 1	13.007 1
5	32.004 56	34.416 53	35.350 17	35.747 84	31.127 20	34.05041	35.188 29	35.667 36
	30.129 96	33.874 20	35.1259	35.6396	30.803 71	33.91096	35.1238	35.6301
6	73.377 05	79.397 78	81.71686	82.702 81	71.66373	78.684 54	81.401 53	82.54604
	69.785 34	78.377 18	81.2970	82.500	69.398 27	77.926 40	81.0712	82.369
7	147.695 73	160.365 42	165.229 69	167.295 20	144.735 34	159.13501	164.685 78	167.024 78
	141.590 25	158.6533	164.528	166.957	138.178 99	157.042 1	163.785 5	166.552
8	269.214 65	292.93400	302.019 53	305.874 18	264.513 88	290.982 49	301.15693	305.445 29
	258.652 14	290.279 5	300.934	305.351	250.078 70	286.4680	299.226	304.439
9	454.75043	495.532 94	511.12746	517.739 38	447.73372	492.622 49	509.841 07	517.09975
	440.6411	491.6473	509.542	516.975	420.342 78	484.1550	506.681	515.227
10	723.682 17	789.40648	814.50473	825.140 80	713.69176	785.265 35	812.67448	824.230 74
	703.7899	783.963 5	812.287	824.071	666.52915	770.794 5	806.517	821.045

TABLE VIII. $T_{\rm rel}/\alpha^2$ in a.u. for some *P* states.^a

^aFor each entry, the first line is the result obtained in the present paper. The second line is from Accad et al., Ref. 4.

TABLE IX	Transition	energies in	cm^{-1}	for the	N ¹ S states ^a
	I rangition	energies in	cm -	tor the	w 's states.

			TADLE IA. II	ansition energies	in eni 161 the	17 S states.		
Z	2 ¹ S	3 ¹ S	4 ¹ S	5 ¹ S	6 ¹ S	7 ¹ S	8 ¹ S	9 ¹ S
2	166 281.0	184 882.4	191 002.5	193 642.1	195 142.2	195 970.3	196 471.8	196 822.0
	166 277.6 ^b	184 864.9 ^b	190 940.3 ^b	193 663.6 ^b	195 115.0 ^b	195 979.0 ^b	196 534.9 ^b	196 913.0 ^b
3	491 376	558 783	581 619	591 993	597 595	600 926	603 070	604 538
	(490 079) ^c	558 779°	581 590°	591 984°	597 574°	600 925°		
4	981 198	1 127 721	1 177 952	1 200 950	1 213 367	1 220 808	1 225 618	1 228 912
	981 177 ^d	1 127 705 ^d	1 177 945 ^e					
5	1 635 745	1 891 817	1 980 125	2 020 679	2 042 603	2 055 769	2 064 290	2 070 127
	$1635714^{ m f}$	1 891 784 ^f						
6	2455078	2 851 192	2 988 265	3 0 5 1 3 1 8	3 085 436	3 105 946	3 1 1 9 2 2 5	3 128 324
	2 455 024 ^g	(2 851 180) ^g						
7	3 439 311	4 006 010	4 202 542	4 293 043	4 342 043	4 371 516	4 390 602	4 403 685
8	4 588 562	5 3 5 6 4 3 2	5 623 131	5 746 032	5 812 603	5 852 660	5 878 604	5 896 391
	4 587 340 ^h	5356420^{h}						
9	5 902 992	6 902 671	7 250 256	7410516	7 497 351	7 549 614	7 583 466	7 606 679
		6 903 580 ⁱ						
10	7 382 751	8 644 927	9 084 132	9 286 713	9 396 507	9 462 600	9 505 410	9 534 772

Z	2 ¹ S	3 ¹ S	4 ¹ S	5 ¹ S	6 ¹ S	7 ¹ S	8 ¹ S	9 ¹ S
11	9 028 074 (9 027 981) ^j	10 583 499 (10 583 431) ^j	11 125 077 (11 124 986) ^j	11 374 953 (11 374 868) ^j	11 510 402 (11 510 320) ^j	11 591 951 (11 591 874) ^j	11 644 772 (11 644 747) ^j	11 681 006 (11 680 966) ^j
12	10 839 156 (10 839 030) ^k	12 718 647 (12 718 550) ^k	13 373 369 (13 373 240) ^k	13 675 516 (13 675 400) ^k	13 839 323	13 937 954	14 001 839	14 045 668
13	12 816 278 (12 816 130) ¹	15 050 727 (15 050 610) ¹	15 829 389 (15 829 230) ¹	16 188 796 (16 188 660) ¹	16 383 666	16 501 008	16 577 01 1	16 629 161
14	14 959 688	17 580 065	18 493 483	18915145	19 143 788	19 281 474	19 370 649	19 431 846
15	17 269 724	20 307 090	21 366 110	21 855 035	22 120 165	22 279 830	22 383 233	22 454 203
16	19 746 675	23 232 183	24 447 676	25 008 882	25 313 218	25 496 498	25 615 186	25 696 658
17	22 390 939	26 355 848	27 738 719	28 377 236	28 723 505	28 932 041	29 067 073	29 159 775
18	25 202 881	29 678 559	31 239 743	31 960 615	32 351 548	32 586 982	32 739 419	32 844 081
19	28 182 847	33 200 766	34 951 232	35 759 513	36 197 846	36 461 825	36 632 728	36750081
20	31 331 335 (31 330 780) ^m	36 923 102 (36 922 600) ^m	38 873 859 (38 873 200) ^m	39 774 620	40 263 099	40 557 272	40 747 706	40 878 483
21	34 648 828	40 846 186	43 008 282	44 006 611	44 547 987	44 874 009	45 085 039	45 229 974
22	38 135 748 (38 135 000) ⁿ	44 970 567 (44 969 900) ⁿ	47 355 089 (47 354 200) ⁿ	48 456 087	49 053 1 19	49 412 647	49 645 341	49 805 169
23	41 792 626 (41 791 780)°	49 296 925 (49 296 140)°	51 915 005 (51 913 970)°	53 123 791	53 779 246	54 173 943	54 429 370	54 604 829
24	45 619 980	53 825 926	56 688 740	58 010 451	58 727 104	59 158 635	59 437 868	59 629 696
25	49 618 409 (49 617 300) ^p	58 558 336 (58 557 300) ^p	61 677 109 (61 675 800) ^p	63 116 902	63 897 536	64 367 573	64 671 686	64 880 624
26	53 788 464	63 494 866	66 880 873	68 443 921	69 291 331	69 801 549	70 131 618	70 358 409

TABLE IX. (Continued.)

^aFor each entry, the first line is the result obtained in the present paper, the second line (if present) is from experiment, except where parentheses indicate a theoretical value.

^bW. C. Martin, J. Phys. Chem. Ref. Data <u>2</u>, 257 (1973).

^cC. E. Moore, Atomic Energy Levels, Natl. Bur. Stds. (U.S.) Circ. No. 467 (U.S. GPO, Washington D.C., 1949).

^dB. Löfstrand, Ref. 20.

^eM. Eidelsberg, J. Phys. B 5, 1031 (1972).

^fM. Eidelsberg, J. Phys. B 7, 1476 (1974).

⁸C. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1970), Vol. 3, Sec. 3.

^hC. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1979), Vol. 3, Sec. 8.

ⁱA. M. Cantu, E. Jannitti, and G. Tondello, J. Opt. Soc. Am. <u>64</u>, 699 (1974).

^jW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 10, 153 (1981).

^kW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 9, 1 (1980).

¹W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 8, 817 (1979).

^mJ. Sugar and C. Corliss, J. Phys. Chem. Ref. Data <u>8</u>, 865 (1979).

ⁿC. Corliss and J. Sugar, J. Phys. Chem. Ref. Data 8, 1 (1979).

^oJ. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 7, 1191 (1978).

^pC. Corliss and J. Sugar, J. Phys. Chem. Ref. Data <u>6</u>, 1253 (1977).

FRANK C. SANDERS AND ROBERT E. KNIGHT

Z	2 ³ S	3 ³ S	4 ³ S	5 ³ S	6 ³ S	7 ³ S	8 ³ S	9 ³ S
2	159 855.8 159 856.1 ^b	183 236.5 183 236.9 ^b	190 295.3 190 298.2 ^b	193 347.0 193 347.1 ^b	194 935.5 194 936.2 ^b	195 866.4 195 868.4 ^b	196 379.2 196.461.4 ^b	196 786.7 196 862.0 ^t
3	476 034 476 046 ^c	554 754 554 761°	579 981 579 982°	591 185 591 184°	597 122 597 122°	600 644 600 641°	602 873	604 4 1 4
4	956 518 956 502 ^d	1 121 200 1 121 184 ^d	1 175 313 1 175 295 ^d	1 199 629 1 199 659 ^e	1 212 608	1 220 343	1 225 304	1 228 700
5	1 601 566 1 601 540 ^f	1 882 772 1 882 746 ^f	1 976 465 1 976 436 ^f	2018844	2 041 552	2 055 119	2 063 855	2 069 827
6	2 411 309 2 411 262 ^g	2 839 608 2 839 562 ^g	2 983 576 (2 983 541) ^g	3 048 965 (3 048 927) ^g	3 084 089 (3 084 048) ^g	3 105 109 (3 105 066) ^g	3 118 668 (3 118 635) ^g	3 127 938
7	3 385 882 3 385 890 ^h	3 991 872	4 196 818	4 290 170	4 340 398	4 370 492	4 389 922	4 403 211
8	4 525 412 4 524 640 ⁱ	5 339 729 5 338 820 ⁱ	5 616 366 5 616 100 ⁱ	5 742 636	5810660	5 851 449	5 877 800	5 895 830
9	5 830 061 5 830 600 ^j	6 883 388 6 883 220 ^k	7 242 446 7 242 400 ^k	7 406 594	7 495 107	7 548 214	7 582 539	7 606 031
10	7 299 976 7 300 900 ¹	8 623 048	9 075 269	9 282 263	9 393 959	9 461 009	9 504 360	9 534 037
11	8 935 388 (8 935 337) ^m	10 559 009 (10 558 946) ^m	11 115 156 (11 115 065) ^m	11 369 970 (11 369 887) ^m	11 507 550 (11 507 469) ^m	11 590 169 (11 590 091) ^m	11 643 598 (11 643 558) ^m	11 680 184 (11 680 134) ^m
12	10 736 488 10 730 000 ¹	12 691 526 (12 691 440) ⁿ	13 362 381 (13 362 260) ⁿ	13 669 997 (13 669 880) ⁿ	13 836 164	13 935 980	14 000 541	14 044 760
13	12 703 551 (12 703 460)°	15 020 957 (15 020 850)°	15 817 327 (15 817 170)°	16 182 737 (16 182 600)°	16 380 198	16 498 841	16 575 589	16 628 167
14	14 836 821 14 840 000 ^p	17 547 624	18 480 338	18 908 542	19 140 009	19279111	19 369 104	19 430 764
15	17 136 627	20 271 954	21 351 873	21 847 884	22 116 072	22 277 270	22 381 564	22 453 035
16	19 603 255 19 210 000 ^p	23 194 327	24 432 336	25 001 176	25 308 808	25 493 740	25 613 394	25 695 403
17	22 237 095	26 315 246	27 722 266	28 368 971	28 718 776	28 929 082	29 065 157	29 158 433
18	25 038 507 25 030 000 ^p	29 635 182	31 222 166	31 951 785	32 346 495	32 583 820	32 737 379	32 842 652
19	28 007 830	33 154 584	34 932 518	35 750 112	36 192 467	36 458 459	36 630 564	36 748 566
20	31 145 557 31 180 000 ^p	36 874 084 (36 873 600) ^q	38 853 995 (38 853 340) ^q	39 764 642	40 257 390	40 553 699	40 745 418	40 876 880
21	34 452 161	40 794 297	42 987 255	43 996 048	44 541 944	44 870 227	45 082 627	45 228 285

TABLE X. Transition energies in cm^{-1} for the N^3S states.^a

Z	2 ³ S	3 ³ S	4 ³ S	5 ³ S	6 ³ S	7 ³ S	8 ³ S	9 ³ S
22	37 928 062	44 915 772	47 332 885	48 444 933	49 046 739	49 408 654	49 642 806	49 803 394
	(37 927 500) ^r	(44 915 100) ^r	(47 332 000) ^r					
23	41 573 783	49 239 187	51 891 609	53 112 039	53 772 525	54 169 735	54 426 711	54 602 967
20	(41 573 150) ^s	(49 238 420) ^s	(51 890 590) ^s					
24	45 389 835	53 765 207	56 664 136	57 998 093	58 720 037	59 154 210	59 435 086	59 627 748
25	49 376 810	58 494 594	61 651 281	63 103 929	63 890 119	64 362 928	64 668 780	64 878 589
	(49 376 000) ^t	(58 493 600) ^t	(61 650 000) ^t					
26	53 535 254	63 428 060	66 853 804	68 430 325	69 283 558	69 796 681	70 128 588	70 356 286

TABLE X. (Continued.)

^aFor each entry, the first line is the result obtained in the present paper, the second line (if present) is from experiment, except where parentheses indicate a theoretical value.

^bW. C. Martin, J. Phys. Chem. Ref. Data <u>2</u>, 257 (1973).

^cC. E. Moore, Atomic Energy Levels, Natl. Bur. Stds. (U.S.) Circ. No. 467 (U.S. GPO, Washington, D.C., 1949).

^dB. Löfstrand, Ref. 20.

53 604 000^p

^eM. Eidelsberg, J. Phys. B 5, 1031 (1972).

^fM. Eidelsberg, J. Phys. B 7, 1476 (1974).

^gC. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1970), Vol. 3, Sec. 3. ^hC. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1971), Vol. 3, Sec. 4. ⁱC. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data. Ser. (National Bureau of Standards, Washington, D.C., 1979), Vol. 3, Sec. 8.

^jN. J. Peacock, M. G. Hobby, and M. Galanti, J. Phys. B <u>6</u>, L298 (1973).

^kA. M. Cantu, E. Jannitti, and G. Tondello, J. Opt. Soc. Am. <u>64</u>, 699 (1974).

¹J. H. Parkinson, Solar Phys. <u>42</u>, 183 (1975).

^mW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>10</u>, 153 (1981).

ⁿW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>9</u>, 1 (1980).

^oW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>8</u>, 817 (1979).

^pW. M. Neupert, Solar Phys. <u>18</u>, 474 (1971).

^qJ. Sugar and C. Corliss, J. Phys. Chem. Ref. Data <u>8</u>, 865 (1979).

^rC. Corliss and J. Sugar, J. Phys. Chem. Ref. Data <u>8</u>, 1 (1979).

^sJ. Sugar and C. Corliss, J. Phys. Chem. Ref. Data 7, 1191 (1978).

^tC. Corliss and J. Sugar, J. Phys. Chem. Ref. Data <u>6</u>, 1253 (1977).

Z	$2^{1}P$	3 ¹ P	4 ¹ <i>P</i>	5 ¹ P	6 ¹ P	7 ¹ P	8 ¹ P	9 ¹ P
2	171 134.4	186 233.5	191 423.4	194 093.4	195 344.8	196 099.9	196 469.5	196 835.0
	171 135.0 ^b	186 209.5 ^b	191 492.8 ^b	193 942.6 ^b	195 275.0 ^b	196 079.2 ^b	196 601.5 ^b	196 959.8 ^t
3	501 807	561 759	582 813	592 695	597 979	601 167	603 188	604 625
	501 810 ^c	561 730 ^c	582 820 ^c	592 660 ^c	597 940 ^c	601 180 ^c	603 281 ^c	604 704 ^c
4	997 474	1 132 411	1 179 890	1 201 986	1 2 1 3 9 5 4	1 221 176	1 225 840	1 229 069
	997 466 ^e	1 132 390 ^d	1 179 830 ^d	1 201 894 ^d	1 213 931 ^d	1 221 135 ^d		
5	1658012	1 898 259	1 982 807	2 022 076	2 043 401	2 056 270	2 064 610	2 070 352
	1 657 975 ^f	1 898 230 ^f	1 982 761 ^f	$2022044^{\rm f}$	$2043360^{\rm f}$			
6	2 483 443	2859416	2 991 698	3 0 5 3 0 8 8	3 086 452	3 106 584	3 1 1 9 6 4 3	3 128 618
	2 483 371 ^g	2 859 375 ^g	2 991 710 ^g	3 053 044 ^g	3 086 439 ^g	(3 106 541) ^g	(3 119 619) ^g	

TABLE XI. Transition energies in cm^{-1} for the $N^{1}P$ states.^a

Z	2 ¹ P	3 ¹ P	4 ¹ P	5 ¹ P	6 ¹ P	7^1P	8 ¹ P	9 ¹ P
7	3 473 877 3 473 790 ^h	4 016 042 4 016 390 ^h	4 206 735 4 206 810 ^h	4 295 195 4 296 100 ⁱ	4 343 280 4 343 300 ⁱ	4 372 293 4 372 500 ⁱ	4 391 118 4 392 700 ⁱ	4 404 047
8	4 629 450	5 368 306	5 628 097	5 748 574	5 814 067	5 853 580	5 879 220	5 896 823
	4 629 200	5 368 550	5 628 100	5 748 450	5 813 950	5 852 740		
9	5 950 352 5 950 900 ^k	6 916 431 6 915 600 ^k	7 256 013 7 255 800 ⁱ	7 413 459 7 411 800 ⁱ	7 499 047 7 498 500 ⁱ	7 550 680 7 546 000 ⁱ	7 584 184 7 587 200 ⁱ	7 607 183
10	7 436 768 7 437 700 ¹	8 660 626 8 660 300 ¹	9 090 701 9 071 900 ¹	9 290 070 9 313 600 ¹	9 398 441	9 463 815	9 506 233	9 535 350
11	9 088 979 9 087 600 ^m	10 601 207 10 610 000 ^m	11 132 489 (11 132 393) ⁿ	11 378 737 (11 378 646) ⁿ	11 512 584 (11 512 505) ⁿ	11 593 322 (11 593 248) ⁿ	11 645 705 (11 645 667) ⁿ	11 681 661 (11 681 612) ⁿ
12	10 907 233 10 907 000 ^m	12 738 446 12 738 000 ^m	13 381 658 13 381 000 ^m	13 679 748 13 681 000 ^m	13 841 763 13 840 000 ^m	13 939 488 (13 939 380)°	14 002 886 (14 003 830)°	14 046 404 (14 046 330)°
13	12 891 870 12 891 900 ^m	15 072 721 15 072 700 ^m	15 838 598 15 838 600 ^m	16 193 496 16 196 000 ^m	16 386 377 16 392 000 ^m	16 502 713 16 504 000 ^m	16 578 180 16 585 000 ^m	16 629 982 16 640 000 ^m
14	15 043 201 15 040 000 ^m	17 604 374 17 603 000 ^m	18 503 663 18 503 000 ^m	18 920 341 18 921 000 ^m	19 146 785	19 283 359	19 371 947	19 432 757
15	17 361 637 17 364 000 ^m	20 333 858 20 333 000 ^m	21 377 321 21 370 000 ^m	21 860 757 21 856 000 ^m	22 123 466 22 120 000 ^m	22 281 906 22 300 000 ^m	22 384 668	22 455 211
16	19 847 545 19 852 000 ^m	23 261 575 23 258 000 ^m	24 459 988 24 456 000 ^m	25 015 165 25 010 000 ^m	25 316 844 25 320 000 ^m	25 498 778	25 616 769	25 697 770
17	22 501 407 22 503 000 ^m	26 388 056 26 399 000 ^m	27 752 214	28 384 123	28 727 480	28 934 540	29 068 815	29 160 998
18	25 323 677 25 320 000 ^p	29 713 799 29 860 000 ^p	31 254 512	31 968 152	32 355 898	32 589 718	32 741 333	32 845 425
19	28 314 796 28 321 000 ^m	33 239 286	34 967 379	35 767 753	36 202 603	36 464 816	36 634 828	36 751 556
20	31 475 368 31 480 000 ^m	36 965 179 36 990 000 ^p	38 891 500 38 880 000 ^p	39 783 623	40 268 297	40 560 541	40 750 009	40 880 100
21	34 805 980 34 823 000 ^m	40 892 127	43 027 548	44 016 444	44 553 664	44 877 580	45 087 562	45 231 746
22	38 307 172 38 313 000 ^m	45 020 716 (45 021 900) ^q	47 376 125 (47 376 200) ^q	48 466 824	49 059 319	49 416 547	49 648 105	49 807 111
23	41 979 595 41 976 000 ^m	49 351 661 (49 353 420) ^r	51 937 971 (51 938 260) ^r	53 135 514	53 786 016	54 178 201	54 432 397	54 606 955
24	45 823 893 45 890 000 ^s	53 885 665	56713811	58 023 250	58 734 496	59 163 285	59 441 182	59 632 024

Z	$2^{1}P$	3 ¹ <i>P</i>	4 ¹ P	5 ¹ P	6 ¹ P	$7^1 P$	8 ¹ P	9 ¹ P
25	49 840 798 (49 853 100) ^t	58 623 534 (58 627 100) ^t	61 704 478 (61 705 400) ^t	63 130 875	63 905 607	64 372 651	64 675 313	64 883 171
26	54 031 001 54 039 000 ^p	63 566 021 63 810 000 ^p	66 910 750 66 260 000 ^p	68 459 176	69 300 142	69 807 092	70 135 587	70 361 195

TABLE XI. (Continued.)

^aFor each entry, the first line is the result obtained in the present paper, the second line (if present) is from experiment, except where parentheses indicate a theoretical value.

^bW. C. Martin, J. Phys. Chem. Ref. Data 2, 257 (1973).

^cA. M. Cantu, W. H. Parkinson, G. Tondello, and G. P. Tozzi, J. Opt. Soc. Am. <u>67</u>, 1030 (1977).

^dB. Löfstrand, Ref. 20.

^eM. Eidelsberg, J. Phys. B 5, 1031 (1972).

^fM. Eidelsberg, J. Phys. B 7, 1476 (1974).

⁸C. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1970), Vol. 3, Sec. 3.

^hC. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1971), Vol. 3, Sec. 4.

ⁱA. M. Cantu, E. Jannitti, and G. Tondello, J. Opt. Soc. Am. <u>64</u>, 699 (1974).

^j C. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1979), Vol. 3, Sec. 8.

^kN. J. Peacock, M. G. Hobby, and M. Galanti, J. Phys. B <u>6</u>, L298 (1973).

¹J. H. Parkinson, Solar Phys. <u>42</u>, 183 (1975).

^mV. A. Boiko, A. Ya. Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer <u>19</u>, 11 (1978).

ⁿW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>10</u>, 153 (1981).

^oW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>9</u>, 1 (1980).

^pW. M. Neupert, Solar Phys. <u>18</u>, 474 (1971).

^qC. Corliss and J. Sugar, J. Phys. Chem. Ref. Data <u>8</u>, 1 (1979).

^rJ. Sugar and C. Corliss, J. Phys. Chem. Ref. Data <u>7</u>, 1191 (1978).

^sJ. Sugar and C. Corliss, J. Phys. Chem. Ref. Data <u>6</u>, 317 (1977).

^tC. Corliss and J. Sugar, J. Phys. Chem. Ref. Data <u>6</u>, 1253 (1977).

TABLE XII.	Transition	energies in	cm^{-1}	for the	$N^{3}P$	states.a
------------	------------	-------------	-----------	---------	----------	----------

Z	2 ³ P	3 ³ P	4 ³ P	5 ³ P	6 ³ P	7 ³ P	8 ³ P	9 ³ P
2	169 088.6	185 564.0	191 222.4	193 787.2	195 180.0	196 039.1	196 557.2	196 843.5
	169 087.0 ^b	185 564.7 ^b	191 217.1 ^b	193 800.8 ^b	195 192.9 ^b	196 027.4 ^b	196 566.8 ^b	196 935.4 ^b
3	494 264	559 502	581 889	592 134	597 663	600 992	603 128	604 559
	494 273°	559 501°	581 897°	592 141°	597 666°			
4	983 380	1 128 316	1 178 193	1 201 072	1 213 433	1 220 864	1 225 663	1 228 931
	983 365 ^d	1 128 300 ^d	1 178 174 ^d	1 201 066 ^e				
5	1 636 965	1 892 250	1 980 318	2 020 780	2 042 659	2 0 5 5 8 1 5	2 064 327	2 070 144
	1 636 948 ^f	$1892230^{\rm f}$	1 980 295 ^f	$2020746^{\rm f}$				
6	2 455 248	2 851 459	2 988 408	3 051 398	3 085 482	3 105 984	3 1 1 9 2 5 7	3 128 340
	2 455 225 ^g	2 851 418 ^g	2 988 359 ^g	3 051 332 ^g	(3 085 435) ^g	(3 105 933) ^g	(3 119 212) ^g	
7	3 4 3 8 4 2 4	4 006 119	4 202 641	4 293 104	4 342 081	4 371 547	4 390 631	4 403 700
	3 437 960 ^h	4 006 160 ^h	4 202 620 ^h	4293080^h	4 342 360 ⁱ			
8	4 586 668	5 356 406	5 623 194	5 746 080	5 812 635	5 852 687	5 878 632	5 896 407
	4 585 980 ^j	5 355 670 ^j	5 622 600 ^j	5 745 440 ^j	5 811 730 ^j	5 851 890 ^j	(5 877 800) ^j	(5 894 500) ^j
9	5 900 191	6 902 545	7 250 300	7 410 559	7 497 382	7 549 640	7 583 497	7 606 698
	5 901 100 ⁱ	6 903 100 ⁱ	7 250 900 ⁱ	7 410 800 ⁱ	7 489 000 ^k			

FRANK C. SANDERS AND ROBERT E. KNIGHT

				TABLE XII.	(Continued.)			
Z	2 ³ P	3 ³ P	4 ³ P	5 ³ P	6 ³ P	7 ³ P	8 ³ P	9 ³ P
10	7 379 191 7 379 000 ¹	8 644 748	9 084 175	9 286 762	9 396 542	9 462 628	9 505 448	9 534 796
11	9 023 957 9 018 800 ^m	10 583 331 (10 583 324) ⁿ	11 125 148 (11 125 103) ⁿ	11 375 020 (11 374 960) ⁿ	11 510 450 (11 510 387) ⁿ	11 591 987 (11 591 920) ⁿ	11 644 820 (11 644 781) ⁿ	11 681 038 (11 680 991) ⁿ
12	10 834 741 10 836 000 ^m	12 718 567 (12 718 550)°	13 373 499 (13 373 430)°	13 675 619 (13 675 540)°	13 839 393	13 938 005	14 001 904	14 045 712
13	12 811 885 12 810 000 ^m	15 050 832 (15 050 810) ^p	15 829 620 (15 829 540) ^p	16 188 955 (16 188 850) ^p	16 383 770	16 501 081	16 577 099	16 629 222
14	14 955 703 14 954 000 ^m	17 580 470	18 493 863	18 915 387	19 143 941	19 281 578	19 370 767	19 431 928
15	17 266 605 17 265 000 ^m	20 307 933	21 366 697	21 855 388	22 120 384	22 279 976	22 383 390	22 454 313
16	19 744 960 19 744 000 ^m	23 233 623	24 448 537	25 009 380	25 313 523	25 496 699	25 615 393	25 696 803
17	22 391 248 22 387 000 ^m	26 358 070	27 739 933	28 377 920	28 723 919	28 932 310	29 067 341	29 159 963
18	25 205 926 25 195 000 ^q	29 681 773	31 241 398	31 961 530	32 352 097	32 587 337	32 739 761	32 844 321
19	28 189 434 28 182 000 ^m	33 205 211	34 953 429	35 760 711	36 198 560	36 462 284	36 633 158	36 750 383
20	31 342 374 31 322 000 ^m	36 929 049 (36 928 570) ^r	38 876 712 (38 876 210) ^r	39 776 159	40 264 012	40 557 857	40 748 240	40 878 859
21	34 665 334 34 664 000 ^m	40 853 935	43011917	44 008 556	44 549 136	44 874 743	45 085 696	45 230 436
22	38 158 851 38 126 000 ^m	44 980 453 (44 979 590) ^s	47 359 648 (47 358 890) ^s	48 458 510	49 054 547	49 413 558	49 646 141	49 805 732
23	41 823 578 41 773 000 ^m	49 309 318 (49 308 150) ^t	51 920 644 (51 919 670) ^t	53 126 772	53 780 998	54 175 058	54 430 335	54 605 508
24	45 660 157 45 540 000 ^u	53 841 235	56 695 631	58014079	58 729 232	59 159 988	59 439 022	59 630 508
25	49 669 320 (49 666 400) ^v	58 577 006 (58 575 000) ^v	61 685 440 (61 683 900) ^v	63 121 272	63 900 095	64 369 198	64 673 055	64 881 587
26	53 851 756 53 894 000 ^q	63 517 386	66 890 850	68 449 140	69 294 382	69 803 484	70 133 231	70 359 542

^aFor each entry, the first line is the result obtained in the present paper, the second line (if present) is from experiment, except where parentheses indicate a theoretical value. ^bW. C. Martin, J. Phys. Chem. Ref. Data <u>2</u>, 257 (1973).

°C. E. Moore, Atomic Energy Levels, Natl. Bur. Stds. (U.S.) Circ. No. 467 (U.S. GPO, Washington, D.C., 1949).

^dB. Löfstrand, Ref. 20.

TABLE XII. (Continued.)

- ^eM. Eidelsberg, J. Phys. B 5, 1031 (1972).
- ^fM. Eidelsberg, J. Phys. B <u>7</u>, 1476 (1974).
- ^gC. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1970), Vol. 3, Sec. 3.
- ^hC. E. Moore, *Atomic Energy Levels*, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1971), Vol. 3, Sec. 4. ⁱA. M. Cantu, E. Jannitti, and G. Tondello, J. Opt. Soc. Am. <u>64</u>, 699 (1974).
- ^jC. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1979), Vol. 3, Sec. 8.
- ^kN. J. Peacock, M. G. Hobby, and M. Galanti, J. Phys. B <u>6</u>, L298 (1973).
- ¹J. H. Parkinson, Solar Phys. <u>42</u>, 183 (1975).
- ^mV. A. Boiko, A. Ya Faenov, and S. A. Pikuz, J. Quant. Spectrosc. Radiat. Transfer <u>19</u>, 11 (1978).
- ⁿW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>10</u>, 153 (1981).
- ^oW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>9</u>, 1 (1980).
- ^pW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>8</u>, 817 (1979).
- ^qW. M. Neupert, Solar Phys. <u>18</u>, 474 (1971).
- ^rJ. Sugar and C. Corliss, J. Phys. Chem. Ref. Data <u>8</u>, 865 (1979).
- ^sC. Corliss and J. Sugar, J. Phys. Chem. Ref. Data <u>8</u>, 1 (1979).
- ^tJ. Sugar and C. Corliss, J. Phys. Chem. Ref. Data <u>7</u>, 1191 (1978).
- ^uJ. Sugar and C. Corliss, J. Phys. Chem. Ref. Data <u>6</u>, 317 (1977).
- ^vC. Corliss and J. Sugar, J. Phys. Chem. Ref. Data <u>6</u>, 1253 (1977).

TABLE XIII. Transition energies in cm^{-1} for the N^1D states.^a

Ζ	$3^{1}D$	4 ¹ D	5^1D	6 ¹ D	7^1D	8 ¹ D	9 ¹ D
2	186075.9	191 470.0	193 877.5	195 279.7	196027.2	196 497.5	196 858.3
	186 105.1 ^b	191 446.6 ^b	193 918.4 ^b	195 260.9 ^b	196 070.2 ^b	196 595.5 ^b	196 955.5 ^b
3	561 260	582 642	592 508	597 903	601 114	603 179	604 620
	561 276 ^c	582 631°	592 508°	597 877°	601 115°		
4	1 131 474	1 179 523	1 201 747	1 213 837	1 221 104	1 225 803	1 2 2 9 0 4 4
	1 131 462 ^d	1 179 495 ^e	1 201 743°				
5	1 896 869	1 982 255	2 021 765	2 043 239	2,056,173	2 064 550	2 070 311
	1 896 829 ^f	$1982223^{ m f}$			2000110	2004350	20/0511
6	2 857 577	2 990 969	3052702	3 086 244	3 106 458	3 1 1 9 5 6 7	3 129 562
	2 857 529 ^g	2 990 923 ^g	(3 052 656) ^g	(3 086 189) ^g	(3 106 407) ^g	(3 119 630) ^g	5 126 502
7	4013770	4 205 840	4 294 734	4 343 028	4 372 141	4 391 020	4 403 978
	4013770 ^h	4 205 830 ^h	4 294 670 ^h			1001020	4 405 7 78
8	5 365 626	5 627 048	5 748 043	5813774	5 853 402	5 879 105	5 896 743
	5 365 470 ⁱ	5 626 670 ⁱ	5 748 230 ⁱ	5 813 680 ⁱ			5 6 7 6 7 15
9	6913377	7 254 826	7412865	7 498 717	7 550 480	7 584 057	7 607 094
	6913510 ^h	7 254 600 ^h	7412600^{h}	7 498 700 ^h	7 548 400 ^h	7 584 900 ^h	,,
10	8 657 243	9 089 396	9 289 421	9 398 081	9 463 596	9 506 096	9 535 254
11	10 597 549	11 131 088	11 378 046	11 512 200	11 593 088	11 645 562	11 681 561
	(10 597 475) ^j	(11 131 017) ^j	(11 377 984) ^j	(11 512 137) ^j			
12	12 734 584	13 380 191	13 679 029	13 841 364	13 939 245	14 002 743	14 046 303
	(12 734 480) ^k	(13 380 090) ^k	(13 678 940) ^k				11010000
13	15 068 736	15 837 101	16 192 767	16 385 973	16 502 467	16 578 040	16 629 885
14	17 600 365	18 502 177	18919623	19 146 389	19 283 118	19 371 818	19 432 667

Z	3 ¹ D	4 ¹ D	5 ¹ D	6 ¹ D	7^1D	$8^1 D$	9 ¹ D
15	20 329 940	21 375 896	21 860 076	22 123 093	22 281 680	22 384 557	22 455 133
16	23 257 882	24 458 680	25 014 549	25 316 509	25 498 577	25 616 684	25 697 710
17	26 384 742	27 751 087	28 383 606	28 727 203	28 934 376	29 068 765	29 160 963
18	29 711 039	31 253 642	31 967 771	32 355 702	32 589 604	32 741 329	32 845 423
19	33 237 277	34 966 847	35 767 551	36 202 512	36 464 770	36 634 882	36 751 595
20	36 964 143	38 891 402	39 783 649	40 268 338	40 560 579	40 750 134	40 880 189
21	40 892 312	43 027 987	44 016 750	44 553 870	44 877 721	45 087 773	45 231 895
22	45 022 395	47 377 217	48 467 470	49 059 722	49 4 16 8 1 3	49 648 418	49 807 332
23	49 355 137	51 939 842	53 136 565	53 786 655	54 178 616	54 432 829	54 607 260
24	53 891 270	56 716 603	58 024 778	58 735 413	59 163 875	59 441 753	59 632 426
25	58 631 629	61 708 344	63 132 958	63 906 846	64 373 444	64 676 044	64 883 686
26	63 577 002	66 915 855	68 461 900	69 301 754	69 808 121	70 136 501	70 361 839

TABLE XIII. (Continued.)

^aFor each entry, the first line is the result obtained in the present paper, the second line (if present) is from experiment, except where parentheses indicate a theoretical value.

^bW. C. Martin, J. Phys. Chem. Ref. Data <u>2</u>, 257 (1973).

°C. E. Moore, Atomic Energy Levels, Natl. Bur. Stds. (U.S.) Circ. No. 467 (U.S. GPO, Washington, D.C., 1949).

^dB. Löfstrand, Ref. 20.

^eM. Eidelsberg, J. Phys. B <u>5</u>, 1031 (1972).

^fM. Eidelsberg, J. Phys. B 7, 1476 (1974).

⁸C. E. Moore, *Atomic Energy Levels*, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1970), Vol. 3, Sec. 3. ^hA. M. Cantu, E. Jannitti, and G. Tondello, J. Opt. Soc. Am. <u>64</u>, 699 (1974).

¹C. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data. Ser. (National Bureau of Standards, Washington, D.C., 1979), Vol. 3, Sec. 8. ¹W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>10</u>, 153 (1981).

^kW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>9</u>, 1 (1980).

Z	3 ³ D	4 ³ D	5 ³ D	6 ³ D	7^3D	8 ³ D	9 ³ D
2	186 099.4	191 433.5	193 906.5	195 259.6	196 052.3	196 495.6	196 857.5
	186 101.7 ^b	191 444.6 ^b	193 917.2 ^b	195 260.2 ^b	196 069.7 ⁶	196 595.2 ^b	196 955.3 ^t
3	561 244	582 612	592 503	597 878	601 116	603 178	604 620
	561 245°	582 612°	592 505°	597 876°	601 115 ^c		
4	1 131 400	1 179 471	1 201 721	1 213 807	1 221 094	1 225 798	1 229 041
	1 131 383 ^d	1 179 451 ^e	1 201 702 ^d	1 213 791 ^e			
5	1 896 723	1 982 167	2021717	2 043 199	2 056 152	2 064 540	2 070 303
	1 896 685 ^f	1 982 141 ^f	2 021 696 ^f				
6	2 857 350	2 990 839	3 052 629	3 086 191	3 106 427	3 1 1 9 5 4 5	3 128 549
	2 857 310 ^g	2 990 776 ^g	3 052 589 ^g	(3 086 138) ^g	(3 106 374) ^g	(3 119 507) ^g	
7	4 013 456	4 205 665	4 294 635	4 342 961	4 372 099	4 390 995	4 403 960
	4 013 460 ^h	4 205 820 ^h	4 294 570 ^h	4 343 120 ⁱ			

						And a second	
Z	3 ³ D	4 ³ D	5 ³ D	6 ³ D	7 ³ D	8 ³ D	9 ³ D
8	5 365 221	5 626 824	5 747 917	5 813 692	5 853 350	5 879 074	5 896 720
	5 364 420 ^j	5 626 280 ^j	5 747 420 ^j	5 813 070 ^j	5 853 660 ^j	5 878 400 ^j	5 892 950 ^j
9	6912878	7 254 551	7 412 710	7 498 619	7 550 416	7 584 017	7 607 065
	6 912 500 ⁱ	7 254 100 ⁱ	7 412 100 ⁱ	7 498 100 ⁱ	7 549 800 ⁱ	7 583 300 ⁱ	7 607 100 ⁱ
10	8 656 647	9 089 069	9 289 237	9 397 966	9 463 522	9 506 049	9 535 220
11	10 596 855	11 130 709	11 377 833	11 512 068	11 593 002	11 645 507	11 681 521
	(10 596 783) ^k	(11 130 639) ^k	(11 377 767) ^k	(11 512 003) ^k			
12	12 733 789	13 379 759	13 678 786	13 841 214	13 939 147	14 002 679	14 046 258
	(12 733 690) ¹	(13 379 660) ¹	(13 678 690) ¹				
13	15 067 841	15836614	16 192 494	16 385 805	16 502 358	16 577 969	16 629 833
14	17 599 368	18 501 636	18919320	19 146 2 03	19 282 997	19 371 738	19 432 610
15	20 328 841	21 375 300	21 859 741	22 122 888	22 281 547	22 384 469	22 455 070
16	23 256 680	24 458 029	25 014 184	25 316 286	25 498 432	25 616 588	25 697 641
17	26 383 437	27 750 381	28 383 210	28 726 962	28 934 219	29 068 660	29 160 889
18	29 709 631	31 252 879	31 967 344	32 355 442	32 589 436	32 741 216	32 845 342
19	33 235 765	34 966 029	35 767 093	36 202 233	36 464 589	36 634 769	36 751 514
20	36 962 527	38 890 528	39 783 159	40 268 04 1	40 560 385	40750012	40 880 102
21	40 890 592	43 027 057	44 016 229	44 553 553	44 877 515	45 087 643	45 231 802
22	45 020 571	47 376 231	48 466 918	49 059 387	49 416 596	49 648 280	49 807 233
23	49 353 209	51 938 800	53 135 982	53 786 301	54 178 387	54 432 682	54 607 155
24	53 889 237	56 715 505	58 024 163	58 735 039	59 163 634	59 441 598	59 632 316
25	58 629 493	61 707 190	63 132 311	63 906 454	64 373 190	64 675 880	64 883 570
26	63 574 761	66 914 645	68 461 222	69 301 343	69 807 855	70 136 328	70 361 716

TABLE XIV. (Continued.)

^aFor each entry, the first line is the result obtained in the present paper, the second line (if present) is from experiment, except where parentheses indicate a theoretical value.

^bW. C. Martin, J. Phys. Chem. Ref. Data <u>2</u>, 257 (1973).

^cC. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. No. 467 (U.S. GPO, Washington, D.C., 1949).

^dB. Löfstrand, Ref. 20.

^eM. Eidelsberg, J. Phys. B <u>5</u>, 1031 (1972).

^fM. Eidelsberg, J. Phys. B 7, 1476 (1974).

^gC. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1970), Vol. 3, Sec. 3 ^hC. E. Moore, Atomic Energy Levels, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1971), Vol. 3, Sec. 4.

ⁱA. M. Cantu, E. Jannitti, and G. Tondello, J. Opt. Soc. Am. <u>64</u>, 699 (1974).

^jC. E. Moore, *Atomic Energy Levels*, Natl. Stds. Ref. Data Ser. (National Bureau of Standards, Washington, D.C., 1979), Vol. 3, Sec. 8. ^kW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>10</u>, 153 (1981).

¹W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>9</u>, 1 (1980).

Transition	$Z = 4^{b}$	$Z = 5^{c}$	$Z = 6^{d}$
$2^{1}S - 2^{1}P$	16275.9	22 267	28 365
	16276.8±0.1	22261 ± 1	28 347±4
$2^{3}S - 2^{3}P$		35 399	43 940
		35408 ± 0.5	43 963±1
4 ³ P—5 ³ D	23 527.9	41 399	
	23 527.6±0.6	41 408±2	
$4^{3}S$ — $5^{3}P$		44 315	
		44 307±2	
$3^{3}D-4^{3}P$		83 595	
		83 608±7	
$3^{3}P-4^{3}S$	46 996.4	84215	
	46 995.4±0.9	84 196±7	
$3^{1}P_{-4}^{1}D$	47 112.6	83 996	
	47 104.5±0.9	83 993 <u>+</u> 7	
$3^{3}P$ — $4^{3}D$	51 154.0	89917	
	51 151.7 <u>±</u> 0.8	89912±8	
$3^{3}S-4^{3}P$	56 992.2	97 546	
	56990.1±1.0	97 551±9	
$2^{1}P_{3^{1}S}$	130 247	233 805	
	130251±5	233808 ± 27	
$2^{1}P_{3^{1}D}$	134 000.5	238 857	374 134
	134007.3±1.4	238 857±1	374 158±7
$2^{3}P_{3}S$	137 820.5	245 807	
	137 819.6±2	245797 ± 30	
$2^{3}P_{3}D$	148 020.3	259 758	
	148018.1±2	259740±13	
$2^{1}S - 3^{1}P$	151 212.4	262 514	404 338
	151 212.3±2	262508 ± 42	404 351±33
2 ³ S—3 ³ P	171 798.5	290 684	440 150
	171 798.3±3	290 689 ± 17	440 156±10
$2^{1}P_{}4^{1}D$	182 049	324 243	507 526
	182 047±10	324 243±52	507 552 <u>+</u> 18
$2^{3}P-4^{3}D$	196 09 1	345 202	
	196082±8	345256±58	
2^3S-4^3P		378 752	577 100
		378759±70	577 097±17

TABLE XV. A comparison of some observed and calculated transitions (in $\mbox{cm}^{-1}\mbox{.}^a$

Transition	Z = 4 ^b	Z = 5 ^c	$Z = 6^{d}$
$2^{3}P_{5^{3}D}$			597 381
			597 364 <u>+</u> 35
$2^{3}S - 5^{3}P$			640 089
			640070±41

TABLE XV. (Continued.)

^aFor each entry, the upper line is the result obtained in the present paper. The lower line is the experimental result.

^bB. Löfstrand, Ref. 20.

^cM. Eidelsberg, J. Phys. B 7, 1476 (1974).

^dB. Edlen and B. Löfstrand, J. Phys. B <u>3</u>, 1380 (1970).

tivistic correction. The simple one-electron screening approximation presented in Eq. (14) appears to be sufficient to assure that the error in the overall transition energy is essentially of the order of the error in the relativistic correction, or less.

D. Transition energies

The transition energies relative to the ground $1^{1}S$ state are presented in Tables IX-XIV. For Z=2the accuracy of the present values is determined almost entirely by the convergence of the expansion for the nonrelativistic energy. This rapidly improves with increasing Z so that, as indicated above, for Z > 4 the accuracy of the tabulated values is determined by the accuracy of the relativistic correction. For increasing N (degree of excitation) the calculated nonrelativistic energies become less reliable because of the lack of accurate, higher-order ϵ_n , while the relativistic, Lamb shift, and masspolarization corrections increase in accuracy as the contribution of the "excited electron" becomes less reliable because of the lack of accurate, higher-order ϵ_n , while the relativistic, Lamb shift, and masspolarization corrections increase in accuracy as the contribution of the "excited electron" becomes less significant and these corrections become simply the corresponding corrections to the ground-state ionization energy. Therefore, for Z > 4, the least reliable results are the 2S, 2P, and 3D results. That this is not reflected in the comparisons presented in the tables, where any particular row displays a generally constant difference, suggests that the present results are more accurate than the experimental

data. In any case the agreement throughout the tables with both experimental and theoretical values is fairly uniform-five significant figures, occasionally four or six figures. However, since the energies in Tables IX through XIV are all relative to the $1^{1}S$ ground state, the error in the quoted experimental values is in large part due to the difficulty in establishing an accurate value for the energy of the ground state. Thus a more meaningful comparison would make use of the transitions actually observed. Such a comparison is presented in Table XV for Z=4, 5, and 6. Whereas differences for those ions in Tables IX through XIV are generally in the range of 20-40 cm⁻¹, differences in Table XV are generally less than 10 cm⁻¹ for Z=4, 5, less than 20 cm^{-1} for Z=6, and generally in reasonable agreement with the experimental error limits. Particularly striking is the agreement with the data of Löfstrand²⁰ for Z=4, where the observed wavelengths are given to greater accuracy.

V. CONCLUSIONS

The results of the present study are based on a uniform set of expansion coefficients for the nonrelativistic energy of two-electron ions. Many of these are presented here for the first time. Relativistic and Lamb-shift corrections for these twoelectron ions are computed in a particularly simple manner, and are found to yield reliable results. The accuracy to be expected for the transition energies tabulated here has a predictable behavior with respect to Z and N, and the entire set of S, P, and D state results form a consistent set of data.

- ¹R. E. Knight and F. C. Sanders, Phys. Rev. A <u>22</u>, 1361 (1980).
- ²R. E. Knight, Phys. Rev. A <u>25</u>, 55 (1982).
- ³Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A <u>4</u>, 516 (1971).
- ⁴Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A <u>11</u>, 1479 (1975).
- ⁵R. T. Brown and J-L. M. Cortez, J. Chem. Phys. <u>54</u>, 2657 (1971).
- ⁶P. Blanchard and G. W. F. Drake, J. Phys. B <u>6</u>, 2495 (1973).
- ⁷R. E. Knight and C. W. Scherr, Rev. Mod. Phys. <u>35</u>, 436 (1963).
- ⁸(a) O. Sinanoğlu, Phys. Rev. <u>122</u>, 49 (1961); (b) W. H. Miller, J. Chem. Phys. <u>45</u>, 2198 (1966); (c) F. C. Sanders and C. W. Scherr, Phys. Rev. <u>181</u>, 84 (1969).
- ⁹F. C. Sanders, Chem. Phys. Lett. <u>17</u>, 291 (1972).
- ¹⁰K. Aashamar, Nucl. Instrum. Methods <u>90</u>, 263 (1970).

- ¹¹H. A. Bethe and E. E. Salpeter, *Quantum Mechanics of One- and Two-electron Atoms* (Academic, New York, 1957).
- ¹²A. Dalgarno and A. L. Stewart, Proc. R. Soc. London, Ser. A <u>257</u>, 534 (1960).
- ¹³J. M. Harriman, Phys. Rev. <u>101</u>, 594 (1956).
- ¹⁴B. F. Davis and K. T. Chung, Phys. Rev. A <u>25</u>, 1328 (1982).
- ¹⁵A. M. Ermolaev and M. Jones, J. Phys. B 7, 199 (1974).
- ¹⁶P. Blanchard, Phys. Rev. A <u>13</u> 1698 (1976).
- ¹⁷(a) K. Aashamar, J. Midtdal, and G. Lyslo, J. Chem.
 Phys. <u>60</u>, 3403 (1974); (b) <u>61</u>, 1345 (1974).
- ¹⁸K. Aashamar, G. Lyslo, and J. Midtdal, J. Chem. Phys. <u>52</u>, 3324 (1970).
- ¹⁹A. N. Ivanova, U. I. Safronova, and V. N. Kharitonova, Opt. Spektrosk. <u>24</u>, 660 (1968) [Opt. Spectrosc. (USSR) <u>24</u>, 355 (1968)].
- ²⁰B. Löfstrand, Phys. Scr. <u>8</u>, 57 (1973).