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The Dirac equation for the hydrogen atom is solved exactly in momentum space chosen
to be properly conjugate to the spherical polar variables of position space. The coupled
first-order differential equations are readily solved to give functions which involve a sum
over poles along the imaginary axis at iZp,/N, where N is the apparent principal quantum

number.

INTRODUCTION

In recent work we have shown! that the wave
functions for the hydrogen atom originally obtained
by Podolsky and Pauling? were not in fact truly ex-
pressed in momentum space. Their functions were
obtained by direct Fourier transformation from po-
sition space to a space in which the variables are
P,©,d, representing the total momentum and its
polar-angular coordinates as measured from the
same axes as r,0,4, the position-space electronic
coordinates. However, these momenta are not con-
jugate to any of the relevant spatial variables. This
difficulty was only recently pointed out' so that in
the meantime a considerable body of calculations in
many systems including both atoms and molecules
was carried out in this improper representation.’
Rubinowitz* utilized the same transformation as Po-
dolsky and Pauling to obtain wave functions related
to the solutions of the Dirac equations. Levy’ ob-
tained the same results by solving directly the Dirac
equation expressed in the above representation. Van
Hove® used this same representation in solving for
relativistic corrections for nucleon interactions util-
izing the momentum analog of the meson potential.

In this work we shall obtain the Dirac equations
in the momentum representation using variables
P:PePg Which have been chosen properly conjugate
to the appropriate position-space variables. We shall
show that an exact solution may be obtained with
surprisingly little effort, analogous to the nonrela-
tivistic momentum-space equations. Not only that,
but the eigenfunctions of the radial momentum p are
shown to be rather simple finite sums over poles of
various orders in the complex plane. This property
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has been found to be of considerable value in nonre-
lativistic calculations in helium’® since integration
over wave functions is made quite simple by using
the theory of residues. It is expected that similar
simplifications will result from calculations with the
relativistic functions derived here.

MOMENTUM SPACE
IN SPHERICAL SYMMETRY

It is generally assumed that wave functions in po-
sition space may be transformed into momentum
space using a simple Fourier transform. However,
this is generally true only for Cartesian coordinates.
It can be shown that for spherical polar coordinates,
the transform which preserves the conjugate charac-
ter of the variables is not a Fourier transform.'
Furthermore, in order to maintain consistent
quantum-mechanical uncertainty relations it is use-
ful to utilize the variables r,v,t which are related to
r,0,¢ by the relations

v =€'¢, t___emcose .

If we then choose our momentum operators
p,Pe-P¢ such that

=—I 3 +—1‘ -—1rt———a
pP= ar T P P
Ps=v%, >

we then have the commutation and uncertainty rela-
tions

[p’r]=i: APA"Z‘;‘ 5

1275 ©1983 The American Physical Society



1276 JOHN R. LOMBARDI 27

[po.t1=mt, Apght> a[1—(A1)?]V/?;
[pg:v]=v, ApglAv> %[1—(Av)2]‘/2 )

With this choice we may then relate momentum-
space functions to position-space functions by the
transformation

¢(P,P9yp¢)
© 1 i -
=@m=2 [7 [ [T S@Erndr,
where
dr=m"'r%drdIntd lnv

and
172 1
-r—exp(irp+1r"pglnt+p¢lnv) .

Sa- |2
S(p,q)= [v

Note the most important difference between this
and a Fourier transform is the factor of »~!. This
has the advantage of preserving the reciprocal rela-
tionship between the operator r and r ~! in momen-
tum space:

. d —1 . _
r=1£, r =—tfdp=1,

where the lower limit of integration is chosen so that
integration constants vanish. This latter choice is
necessary to ensure that r and r ~! commute.

DIRAC EQUATION
FOR THE HYDROGEN ATOM

It is easy to show’ that the four components of
the Dirac wave function for hydrogen may be writ-
ten
172

Yim—1,206,8),
12

Yim+1,206,8) ,
172

Yiiim—-11206,0),

172
Yiii,m+1206,8) .

I+m+%
2l +1
I—m+%
21 +1

l—m+3/2
2143

u;=g(r)

2

u2=—g(r)

u3=—if(r) [

l+m+3/2

ug=—Iif(r) 23

Since the angular factors are identical to the non-
|

[p —iEo(1—e)V* X1+ |ly—1+

a-en7 |

Zae }
1

=x+

relativistic results, we may readily show that in
momentum space the solutions are the same as pre-
viously derived,' namely,

Pm(pg)=8(pg+m) ,

E(1/2)
Brpe)= 3 aipsg ™V I_im_1nlpe)
Jj=E(m/2)

where J,(pg) are Bessel functions. The only remain-
ing functions to be determined are f(r) and g(r) for
which the Dirac equations may be written®

a@% £_ Za |2
o 0 E= E+E+ =2 |7,
/A Za |,
o tA=x12=E—E—=% g,

where x =—(/+1) for j=l+% and x =4/ for
j=I—7. We have used a=e’/fic as the fine-
structure constant, and a factor of (#ic)~! has been
absorbed in E and E, for convenience. Transform-
ing to momentum space,

A

fin—£f(p),
g(r)—g(p),

d 1
ldr+r

—»p,

1 , _
. — —] f dp=I,
we obtain
pg +ixlg =[i(Eo+E)+Zail ]f
pf —ixIf =[i(Ey—E)—Zaillg .

At this point it is convenient to define the param-
eter y which we will later show to equal
[x2—(Za)*]'/%. Note that y is not necessarily an in-
teger, but using the rules for fractional derivatives'”
we may take the (y—1)th derivative, and defining
G =g'7=?, F =f7=? we obtain

pG'+(y—1+x)G =i(Ey+E)F' +ZaF ,

pF' +(y—1—x)F=i(Ey—E)G'—ZaG ,
using the substitution

F=(1-e'"2X,+X,) ,

G=(1+6"2x,-X,),

where €e=E /E,, and by taking first the sum then
the difference of the resultant equations, we obtain

Za

a—eyz [
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Zae

[p —iEo(1—e)'\ 2 X5+ )

y—1—

X,= |x +

Za

(1—e2)12 15

letting k=Eo(1—€?)'"*=EyZa /N, where N is to be determined, we write

(p—ik)X1+(y—1+NeX=(x+N)X,,
(p+ik)X5+(y—1—=Ne)X,=(x—N)X; .

These coupled first-order differential equations have the solution

X,=C(p- +ik)™
(p—ik) "’

_ 1 (p—ix)
T Cp+ik)

where C is a constant. Substituting, we obtain

2

x+N

{m—n +y—1+Ne— p+

—(m+n)+y—14+Ne+

d ZN ik=0,

[m—n+y—1—Ne—(x—-N)Clp +[—(m +n +2)—(y—1—Ne)—(x —N)Clik=0.

These two algebraic equations have the solution

x+N
m=-———

C and Ne=m +vy.

Substituting these results into the equations, we obtain

(p —ik)X1+Qy—1+m)X|=(x +N)X, ,
(P +ikXs—(m + DX =(x —N)X ,

[(m —n)p —(m +n)ik+Q2y—1+m)(p +ik)X1=(x +N)(p +ick)X,,

[(m —n)p —(m +n +2)ik—(m +1)(p —ik)]X,=(x —N)p —ik)X, .

Solving these equations with some simple algebra,
we obtain

m=n-2y+1,
Ni—x*=(n+1)(n—=2y+1),
and, letting n’'=n —2y+1,

_n+y
N
At this point by using the relation between
(1—e®))'/? and Za/N, it is easy to show
y*=x%*—(Za)?. The solutions now are

(p +ik)"

_X+N
- n'4+2y—1

X

: n' (p—ik)
Y (?+iK)n'+l

P p—iky

Remembering the definition of f and g above, we

r

must integrate these ¥ — 2 times, '® obtaining finall
g y

(=D *"& [ x +N n'—k +1
=(1—¢)?——
4 (iK)?r+? k§0 n' n'+1 +1
ak(ix)k
(p—ik)ytk+1”’
(=D "dl I x 4N n'—k+1
=(1+¢€)!? -1
g=ll+e (i) & | n' n'+1
ak(ix)k
(p—iK)rtk+1”’
where

_ 2m(n'+2)L(y+k +1)
[k +1)0(n'—k +2)T 2y +k +1)

and the quantum condition n’=an integer arises
from the requirement that f,g—0 as p— 0.

ag
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DISCUSSION

The expression for € is, of course, the same as that
obtained in position space. The wave functions,
however, are considerably simpler than the sums of
hypergeometric functions or Laguerre polynomials
obtained in other representations.*>*!! The func-
tions derived above have poles at

iZpg

N ’
where po=me?/#. Note this is exactly the same as
for the nonrelativistic hydrogen atom! except n’ is

replaced by the “apparent principal quantum num-
ber”

ik=iEy(1—€)?=

N=n"42n'y+x?!2 .

For unbound states where €>1 or e<—1, N is
pure imaginary, and the singularity lies along the
real axis, at a point corresponding to the excess
momentum above the rest momentum. For 0<e< 1

we have bound states with k real and singularity
along the imaginary axis. For states with € <0 we
enter the region where Za > | x |, and our solutions
break down mathematically since y becomes ima-
ginary. In position space this problem may be elim-
inated by corrections for the finite size of the nu-
cleus.!*'3 In momentum space the analogous poten-
tial introduces the exponential integral function into
the equations for f(p),g(p), vastly complicating
their solution. Since states with € <0 have impor-
tant consequences for vacuum polarization and posi-
tron creation in quantum electrodynamics, it would
be of interest to pursue this further and will be the
basis for future investigation.
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