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The Dirac equation for the hydrogen atom is solved exactly in momentum space chosen

to bc pfopclly con)ugate to thc sphcfic81 polar variables of position space. Thc coupled

first-order dlffcfcnt181 cquat1ons 8fc fcad11y so1vcd to glvc functions %'hlch 1nvolvc 8 sum

ovcf poles along thc 1m8ginary RX1s Rt lZpo/N, %herc N 1s the apparent principal quantuID

number.

INTRODUCTION

In recent work we have shown that the wave
functions for the hydrogen atom originaHy obtained

by Podolsky Rnd PRUllng werc Qot IQ fact truly cx-
prcssed ln momentum space. Thclf functions %cfc
obt81ned by dlfcct Foufic1 tfansformation ffoIQ po-
sition space to a space in which the variables are
P,e,C, representing the total momentum Rnd its
polaf-angulaf coordinates Rs Incasuf ed from thc
same axes as r, e,p, the position-space electronic
coordinates. Ho%ever, these momenta are not con-
jugate to Rny of tlM fclcvaQt spatial vaflablcs. This
difficulty %8S only fcccntly pointed out so that ln
tlM meantime 8 consldcfablc body of calculations ln

many systems including both atoms and molecules
was carried out in this improper representation.
Rubinowitz utilized thc same transformation as Po-
dolsky Rnd Pauling to obtMQ wave functions fclatcd
to the solutions of the Dirac equations. Levy ob-
tained the same results by solving directly the Dirac
equation expressed in the above representation. Van
Hove usd this saIQc 1cplcscntatlon in solvlgg fof
relativistic corrections for nucleon interactions util-

izing the momentum analog of the meson potential,
In this work we shaH obtain the Dirac equations

in the momentum representation using variables

P~PgsPy WhlCh haVC bCCQ ChosCQ Pl'OPCfly ConjugatC
to the appropriate position-space variables. %'c shall
show that RIl exact solution may bc obtained %1th
surprisingly little effort, analogous to the nonrela-
tivlstlc momentum-space equations. Not only that,
but the eigcnfunctions of thc radial momentum p are
shown to bc rather simple finite suIQs ovcf poles of
vanous ofdcI's in thc coIQplcx p18nc. This pfopcfty

has bccn found to bc of considcI'Rb1c value ln nonfc-
latlvlstic calculations ln 1Mlium ' since lntcgf8tloIj
over wave functions is made quite simple by using

thc theory of fcslducs. It ls cxpcctcd that slImlaf
simplifications will result from calculations with the
relativistic functions derived hcfc.

It ls gcncfally assumed that wave functions ln po-

sltlon space may bc tfansfofmcd into IQ0IQcntUIQ

space using a simple Fourier transform. However,

this is generally true only for Cartesian cooI'dinates.

It can be shown that for spherical polar coordinates,
thc transform which pfcscfvcs tlM con]ugatc charac-
tcf of tlM varlablcs is not 8 Fouflcf tfansform.
Furthermore, in order to maintain consistent
quantum-mechanical unccftMnty lclatlons lt ls Use-

ful to utilize the variables r, c,t which are related to
r, g, p by the relations

~lp t ~l&COS8

%'c tlMQ have thc commutation and Uncertainty fcla-
tlons

[p,r]=i, hpbr )—, ;
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0(p pe py)

=(2u} 3' f f f S(p, q)p(r, t, u}dr,

d~=e-'f2df d ln~d lnv

and
' 1/2

S(p, q) = — exp(—irp+m palnt+pt(lnv) .2 1

Note the most important difference between this
and a Fourier transform is the factor of f . This
has the advantage of preserving the reciprocal rela-
tionship between the operator f and f in momen-
tum space:

r =i, f = —i de=I,d
dp'

where the lower limit of integration is chosen so that
integration constants vanish. This latter choice is
necessary to ensure that f and r ' commute.

DIRAC EQUATION
FOR THE HYDROGEN ATOM

It is easy to show that the four components of
the Dirac wave function for hydrogen may be writ-
ten

" 1/2
1+m + —,

=/( ) +
I'

t, m (n(e.0»-
1/2

I —m+ —,

u2 ———g(f) 2l+1
I"

t, m+(y2(e, g),
' 1/2

I —m +3/2
u3 ——if(r)—

2l+3 I't+ (,m (n(e 4)—

. 1/2
.j~( )

i+771 +3/2
2I +3 I't+(, m+(n(e 4) .

Since the angular factors are identical to the non-

[p t]=et 4p ht & —~[1—(i}t)']'~'.

fp u]=u Ap ku & [1—(lkv) ]
%ith this choice we may then relate momentum-

space functions to position-space functions by the
transformation

relativistic results, we may readily show that in
momentum space the solutions are the same as pre-
viously derived, ' namely,

p (pt, )=5(pt, +rn),
K(l/2)

X ulpu Jj (m ——()I2(ps} ~j=E(m/2)

where J„(p~) are Bessel functions. The only remain-
ing functions to be determined are f(r) and g(r) for
which the Dirac equations may be written

+(1+x)+= E,+E+ f,df f f
I

df f Za+(1—x)—= Eo —E — g,dr f r

where x =—(i+1) for j=i+—and x =+i for
lj=l ——,. %'e have used o, =e2/Ac as the fine-

structure constant, and a factor of (Pic) ' has been
absorbed in E and Eo for convenience. Transform-
ing to momentum space,

f(r)~f (p),

g(r)~g (p},
r

d 1
l —+—-+P,

df f

1 ~—i f dp=l )f
we obtain

pg +t'x@ =[t'(Eu+E)+Za(I]f,

pf ixIQ = [t'(—Eo E) Zail—]g .—

At this point it is convenient to define the param-
eter y which we will later show to equal
[x —(Za) ]' . Note that y is not necessarily an in-

teger, but using the rules fog fractional derivatives'0
we may take the (y —1}th derivative, and defining
G =g(r ', F=f'" ' we obtain

pG'+(y —1+x)G =i (E&+E}F'+ZaF,

pF'+ (y 1 x}F=i (Eu ——E}G' ZaG, — —
using the substitution

F=(1—e)'~'(X +X ),
G =(1+a)'i (X(—X2),

where e=E/EO, and by taking first the sum then
the difference of the resultant equations, we obtain

[p —iEu(1 —e')' ']XI+ y —1+ X,= x+ X, ,
( 1 +2)1/2

( 1 +2)1/2
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[p —iEO(1 —e ) )X2+ y —1 — X2 ——x + X(,'2 1/2 ZQE ZQ

( 1 ~2)1/2 ( 1 E2)1/2
J.

letting K=Eo(1—e )'~ =EoZa/S, where X is to be determined, we write

(p —iK)X~ +(y—1+%&)X]——(x +X)X2,

(p +iK)X2+(y—1 —X&)X2——(x —X)XI .

These coupled first-order differential equations have the solution

C(P +i K)
n(p-.)

1 (P —iK)

C (p+is)
where C is a constant. Substituting, we obtain

r x+E:m —n +y—1+Xe-
C p+ —(m

[m —n +y—1 —Ns —(x —N)C]p+[ (m +—n +2)—(y—1 —Ne) —(x N)C]i—lr =0 .

These two algebraic equations have the solution

Substi. tuting these results into the equations, we obtain

(p in)XI—+(2y —1+m)X~ ——(x +N)X2,

(p +iK)X2 —(m + 1)g]——(x —X)g],
[(m —n)p (m +n)in—+ (2y I +m)(—p +ilr)]X~ ——(x +N)(p +i «)X2,

[(m —n)p (m +—n +2)i~—(m + 1)(p —&s)]X2——(x —N)(p —i')Xi .

Solving these equations with some simple algebra,
we obtain

m =n —2@+1,
N2 x2 = (n + 1 )—(n —2y+ 1 },

and, letting n'=n —2g+1,

At this point by using the relation between
(1—e )'~ and Za/X, it is easy to show

y =x —(Za } . The solutions now are

x +X (P +iK)"

(P —l K)

(P +lK)
(P —l K)

Rememhering the definition of f and g ahorse, we

must integrate these y —2 times, obtaining finally
r

( —1) "+ x+N n' —k+1
(jK)2&+2 k 0

n' n'+1

Qk(lK)
X

(P —lK)~+ +'
t

( —1) "y x +N n' —k+1
(lK)2~+2 n' n'+ 1

ak(iK)x
(P —l K)~

2 I (n'+2)I (y+k+1)
I (@+1)I (n' —k +2)I (2y+k +1)

and the quantum condition n'=an integer arises
from the requirement that f,g»0 as p» ~.
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DISCUSSION

The expression for e is, of course, the same as that
obtained in position space. The wave functions,
however, are considerably simpler than the sums of
hypergeometric functions or I.aguerre polynomials
obtained in other representations. '" The func-
tions derived above have poles at

ilc=iEo(l —e )
Ego

where po ——nte /trt . Note this is exactly the same as
for the nonrelativistic hydrogen atom' except n' is
replaced by the "apparent principal quantum num-
ber"

N =(n' +2n'y+x )'~ .

For unbound states where e&1 or e& —1, S is
pure imaginary, and the singularity lies along the
real axis, at a point corresponding to the excess
momentum above the rest momentum. For 0(e & 1

we have bound states with v real and singularity
along the imaginary axis. For states with eg0 we
enter the region where Za& ~x ~, and our solutions
break down mathematically since y becomes ima-
ginary. In position space this problem may be elim-
inated by corrections for the finite size of the nu-
cleus. ' ' In momentum space the analogous poten-
tial introduces the exponential integral function into
the equations for f(p),g(p), vastly complicating
their solution. Since states with a&0 have impor-
tant consequences for vacuum polarization and posi-
tron creation in quantum electrodynamics, it would
be of interest to pursue this further and will be the
basis for future investigation.
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