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Periodic perturbation on a period-doubling system
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The effect of a periodic perturbation on a nonlinear dynamic system undergoing a sequence of
period doublings is investigated. The results obtained from linear response theory and from nu-

merical calculations resemble the observations made by Giglio et aI. on Rayleigh-Benard convection.

In a recent Letter, Giglio, Musazzi, and Perini
have reported experiments on a period-doubling se-
quence of transitions in a Rayleigh-Benard cell with
low aspect ratio. Their data are presented in the
form of po~er spectra taken at various values of the
Rayleigh number R As R is increased the spectra
show first the fundamental frequency f«and then in

addition fi = fc/2 and f2 = fp/4 as lines as sharp as
expected. Increasing R further near the expected
f3 f«/8 a doublet appears with a separation Sf'
=f«/38. At still higher values of 8 they observed
other doublets around the expected but not present
signals due to fq= fc/16 with a spacing gf4= f«/19.
At this value of 1iI the signals due to fq are found as
singlets. The frequency f4 or odd multiples could
never be detected as sharp lines and signals due to
further period-doubling bifurcations were also absent.

A possible partial explanation for this unexpected
feature might be found in the following. Assume the
degrees of freedom responsible for the period dou-
bling are coupled to a weak external periodic pertur-
bation of unknown origin or to other oscillating inter-
nal degrees of freedom which are unobserved other-
wise. This may give rise to the phenomena observed.

In order to demonstrate this I have studied the
one-dimensional mapping

x(t+r) =f,(x(r))+Ah(Qt),

with f,(x) =4ax(1 —x). This models a discrete non-
linear dynamical system and for 5 =0 exhibits a
period-doubling sequence of bifurcations2 with

Feigenbaum scaling. h ( Q t) is a periodic function,

h(Qt+2~) =h(Qt) =- Xh„exp(i.Qt), (2)

where v is integer. The frequency 0 is supposed to
be unrelated to the fundamental frequency «ic =2m f«
= 2rr/r

The power spectrum is

2

g(«i) = lim N ' gx(lr) exp( ii«ir)—
jV ~oo

Assume the control parameter a is chosen such that

the unperturbed mapping has a stable solution with

period 2 v. Then for sufficiently small b, linear
response theory' yields sharp lines in the spectrum at
frequencies

«i =v Q+2nn/2 "r

with integer v and n. Within linear response theory it
is easily seen' that the spectrum behaves as

g(~) —(I —2xcos~„+x') '

with «i„-vQ +2mri/2 "r and n such that —m & cu„

& m and «i is given by (4). The quantity

2k

x= g f'(x(ir))
l 1

is the Lyapunov number and decreases monotonous-
ly from X=1 at a = ak where period 2", sets in in the
unperturbed system to X = —1 just below a = ak+J
where period 2k+' appears first. Obviously g (t«), Eq.
(5), has a resonance structure for values a = ak and
frequencies c« = 2rrn/2 "r. If the frequency of the
perturbation or one of its harmonics is near reso-
nance, the signals resulting from it are enhanced.

This picture is supported by numerical calculations.
I have chosen h( Qt) =1 for 0 & Q t & m and
h(Qt) = —I for m & Qt & 27r. This yields odd har-

monics only. The choice Qr/2n =—
sc produces

doublets with spacing 8«i/2m = I/20r near a = a4
[Fig. 1(d)] and the third harmonic doublets with

spacing 8«i/2e = I/40r near a = ai [Fig. 1(b)] repro-
ducing qualitatively the observations made in the ex-
periment. Other choices such as Qr/2ir = —, , —„,or

,0 give similar results. The computations shown in

Fig. 1 were done with 4 =0.001. This choice not
only matches the order of magnitude of the observed
signals but also destroys higher bifurcations. As an
example Fig. 1(e) is computed for a =0.892 for
which period 16 is stable for the unperturbed map.
The signal corresponding to period 16 is clearly ab-
sent and other values of a also never show this sig-
nal. Furthermore, this value yields already chaotic
behavior~ with sensitive dependence on initial condi-
tions contrary to the other values used in Figs.

1270 O19$2 The American Physical Society



27 PERIODIC PERTURBATION ON A PERIOD-DOUBLING SYSTEM 1271

.(a) (b) (c) (d) (e)

0

10 1o ~T12x « 10
FIG. 1. Power spectrum log&og (ca) computed from Eq. (1) for a = 0.8625 (a), a = 0.885 (b), a =0.887 (c), a =0.889 (d),

and a -0.892 (e).

1(a)—1(d). The remaining Figs. 1(a) and 1(c) show
the spectra just above the onset of periods 4 and 8,
respectively.

The above-mentioned shift in the onset of chaotic
behavior as well as the fact that the doublets appear
already prior to the bifurcations may explain the devi-
ations of 8 from Feigenbaum's value found in the
experiment.

The above results suggest performing experiments
on period-doubling systems with controlled periodic
perturbations applied. Such a study has actually
been performed by Gollub and Benson, ' again on

Rayleigh-Benard convection. Their system shows

only one period doubling, even without external per-
turbation, and then the appearance of a second in-

commensurate frequency as the Rayleigh number is
increased. Because of this more complicated be-
ha; ior of the unperturbed system no analysis using
the above model has been undertaken.

I am indebted to M, Giglio for stimulating discus-
sions. Correspondence and discussions with T.
Geisel, H. Thomas, J. Heldstab, and M. Lucke are
also acknowledged.
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