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Fractal nature of turbulence as manifested in turbulent diffusion
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Scaling concepts and fractal statistics are used to assess the effects of intermittency on the im-

portant process of diffusion in fully developed turbulence. Sizable corrections to Richardson's

"3 law" and related laws are found. Reexamination of existent data shows agreement with

theory,

The Kolmogorov theory' of fully developed tur-
bulence from 1941, which enjoys ingenious simplici-

ty, could have been a precise description of tur-
bulence in the inertial range if not for the intermit-
tent nature of turbulence at smaller scales. 2~ As en-

ergy is cascaded from large to small scales the tur-
bulent activity gets concentrated in smaller and small-
er fractions of space: the active region becomes a
fractal. "

The most commonly quoted manifestation of the
intermittent nature of turbulence is the long tail in

the correlation function of the viscous dissipation,
e( r ).s Experimentally one finds'9

{e(r )e(r + l)) =e (Ic/I)&, (l)

where I ls ln the inertial range, lg « 1 « lo, and $0,

)q are the stirring and dissipation length scales,
respectively. ~ is the mean energy input per unit
mass per unit time. Experimentally one finds~ 9

0.25 & p, & 0.50 and theoretically one argues3' that
p, = d —D, ~here d is the spatial dimension, and D
the fractal dimension of the active region. In the
case of fractally homogeneous turbulence we have re-
cently estimated theoretically 2.50 & D & 2.75 in

agreement with experiment. '

Clearly, intermittency will also give rise to observ-
able properties of turbulent transport processes. In
this Communication we discuss the effects of inter-
mittency on the important process of turbulent dif-
fusion. " Concentrating on. the relative diffusion of
test particles, we find the intermittency corrections to
Richardson's "3 law"'2 and to other laws which

stem from Kolmogorov's similarity theory. ' A
reexamination of the available experimental data
sho~s agreement with our analysis. It is thus possi-
ble to suggest turbulent diffusion as an interesting
probe of the fractal nature of turbulence.

Consider then the relative motion of two particles
immersed in a turbulent medium without affecting its
properties. Denoting the separation between the par-
ticles by R = r

&

—r 2, the three quantities of major
interest would be d (R')/dt, ((dR/dt) ), and

{R ( t) ), wllcrc RIlglc llfRckcts dcllotc RvcfRglllg ovcf

many realizations of the experiment. All theories
based on dimensional analysis in the inertial range
would predict ' '

2d8 —&/3~ 4/3 . dR -2/3~ 2/3

dt
'

dt

R'(t) -et',
where here and below R =—{R') It'. The corrections
due to intermittency are dimensionless. %C shall
write

2
2 I ' p

dR -~/3&4/3 A . dR
lo

I

R'(t) et' ——
io

where ta = (1st /e) It'. —
The sign of n, p, and y can be determined by

physical considerations alone. If turbulence were
space filling, the laws [Etl. (2)] wouid hold. Clearly
if deviation from this behavior exists, it would be-
come more pronounced at smaller length scales,
where turbulence becomes very spotty. If the test
particles are caught in an inactive region, their rela-
tive diffusion would become molecular and thus
negligible. ""Therefore, the smaller the separation
between particles, the more susceptible they are to
intermittency and the reduction in their relative dif-
fusloll Is tllus gfcatcf. SIIlcc R (( Ic, u Slid p Inust
then be positive. The exponent y is completely
determined by Is, and by integrating dRI/dt we find

y =9cI/(2 —3e). Evidently a must be smaller than

3'
Theoretical estimates for the numerical value of

the exponents are obtained by rewriting the above
quantities in terms of velocity correlations functions.
In the main body of the discussion we shall assume
that the turbulence is homogeneous over the frac-
tal 7'0 ("fractally homogeneous turbulence" or "ab-
solute curdling" ). We shall present, however, the
results pertaining to lognormal statistics' as well. Us-
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ing R(t) =K(0) +f V(r) dr, where V is the relative

velocity, we find

dR2

dt
=2 j (V(t) &(r))dr .

(4)

d (R')
dh

/6
«/3R4/3 R

lo
' 2p,/3—«/3R4/3 R

10

t « tg

t &&Eg

Using Eqs. (4), (7), and (9) we then find

(10)

The second of these quantities is simpler to esti-
mate, being a one-time correlation function. In fact,
this correlation function is precisely the square of the
velocity difference across a distance R at time t. For
fractally homogeneous turbulence it is simply

([v( r) —v(r +K(t))]') —V,'( R/i, )», (5)

R'(t) —'

' 3y,/(4 —p, )

fo
' 3p,/(«-p, )

et

E« tg

E&&tg

These results can be integrated in a straightforward
fashion to yield

where Vq is the velocity difference across distance R
in an active region The re.ason for Eq. (5) is the
v( r ) and v( r +R) are correlated only if they be-
long to the same active region. The weight of such
an occurrence on a fractal whose dimension is D is3

(R/io)~ =(R/io)". The velocity difference across
a length R can be found by equating e to the rate of
transfer on length scales R, which in an active region
is' Vtt3/R. Thus e —(R/lo)»Vp/R and Vtt —e
x R 'i'(R/lo)»t . Consequently

'2 ' p/3
dR —2/3R2/3 R
dt 10

= (V(t) 7(t) ) drg
t

where t~ is the correlation time between velocity
differences across a scale R in an active region,

ttt
—R/ Vtt —e R ' '(R/io)" ' (8)

and t =0 is the time origin for the inertial subrange-
dominated phase of relative diffusion. In writing Eq.
(7) we have assumed that the dominant contribution
to the integral comes from r —t, and thus R (r)—R (t). A change of variables leads to

f/fg

(V(t) V(t))tn) dsg(s)

(v(t) v(t))ttt, t)) tR

(V(t) V(t))t, t ((ttt . (9)

We comment that since 0.25 & p, & 0.5 the correction
to dimensional analysis is quite sizable here.

The quantity dR'/dt is slightly more difficult to ob-
tain. We rewrite the integral of the time correlation
function as

J) dr (V'(t) 1(r) ) dr

One should stress that the two regimes of t compared
to t~ are not short- and long-time regimes. In fact
when intermittency does not exist t scales like tg.
With intermittency included, ttt = Ct( t/to) s where 8
is shown to be positive by using Eq. (g), and C is a
dimensionless constant. As will be shown below,
there are experiments in which C can be estimated.
When we have no such possibility we shall assume
C —0(1) and thus for t (& to, 8 )0 leads to
t && tg.

It is interesting to compare these results to experi-
ments. A set of reasonably accurate data for tur-
bulent diffusion is complied in Ref. 14. Here puffs
of smoke resulting from explosions were folio~ed,
and R' has been measured as a function of time.
Gifford showed' a t3 law was consistent with the
data at intermediate time (10 & t & 20 sec). We
have reanalyzed the data and found that a least-
squares fit resulted in a t3~ law, where 0.45 & y)0.15. (The lower estimate obtains if all 35 data
points for t & 10 sec are taken, ~hereas the higher is
found if the 14 data points with t & 14 sec are tak-
en. ) One can easily see that in these experiments
t & t~. In fact, leaving out intermittency for this esti-
mate,

tn-e R''-e R ''[R'(t)/R'(0)]''

where R (0) is the average size of the puff at t =D.
Gifford estimates" e Ro' ' —10 sec. Here typical-13 —«/ 2 3

ly [R'( t)/R'(0) ]'t3 —5. Since 10 & t & 20 the first
regime in Eq. (12) is realized and therefore our
theory would predict y =3tt/(4 —tt, ). Accordingly tt,

is found to be 0.2 & p, & 0.5, which is in the right vi-
e«n1ty.

It is difficult to resist the temptation of reexamin-
ing the classical figure of Richardson from Ref. 12.
Richardson has plotted the diffusivity dR'/dt over
five orders of magnitude of R. In Fig. 1 we replot
the data, excluding the lowest point which pertains to
molecular diffusivity. The line with a slope of —,, in

addition to a line of least-squares fit, is shown. The
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TABLE I. Intermittency corrections. The exponents a,
P, y are defined in Eq. (3).

O
LLJ
(A

10—

Absolute curdling

t ((tg p./6 p,/3
3p

4 —p,

t && t~ 2p, /3 p,/3
3p,

1 —p,

O

0
Lognormal

t )& tg p,/9 p,/9

t &( tR p, /18 p,/9
3p,

12 —p,

3p,

6 —p,

2 4 6
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FIG. 1. Turbulent diffusivity in the atmosphere as a func-
tion of the length scale. The dashed line is the original line

4
suggested by Richardson (Ref. 12) with a slope of 3. The

continuous line is a least-squares fit with a slope of 1.57.
The difference is attributed to an intermittency exponent
p, -0.36.

latter yields a slope of 1.57. If one excludes the
highest point one finds a slope of 1.48. Assuming C
in Eq. (13) to be O(1) we use the second of Eqs.
(11) to compare with these results (i.e. , the regime
t » tq) Thus 0.15 .& 2p/3 & 0.24, or 0.22 & tt,

& 0.36 which again falls in the correct range.
Additional support for the above approach can be

obtained from experiments on two-dimensional (2D)
turbulent diffusion. In 2D we expect p, =0. '
Indeed, a least-squares fit to the results on the 2D
turbulent diffusion of constant level balloons in the
stratosphere agrees very well with theoretical predic-
tions based on dimensional analysis alone. ' In addi-
tion we have convinced ourselves that also the curves
shown in Ref. 5 which pertain to two dimensions call
for no modification.

Although it seems that theories relying on absolute
curdling agree better with experiments then theories
of intermittency based on lognormal statistics, ' "we
have studied for completeness the effects on tur-
bulent diffusion within the lognormality assumption
as well. The corrections to dimensional analysis are
much smaller, and are summarized, together with the
absolute curdling results, in Table I.

We think that the most important conclusion of the
above analysis does not lie in the comparison of
theory to previously performed experiments. In fact
it seems that careful modern experiments should be
done to test the various predictions shown in Table I.
Currently most of the attempts at investigating the
intermittency exponent p, concentrate on measuring
higher-order moments of the velocity field. " This
approach is plagued by inaccuracies at the tails of the
distribution functions. In contrast, turbulent dif-
fusion and other transport processes seem to offer a
good method of investigation of the fractal nature of
fully developed turbulence.

ACKNOWLEDGMENTS

This work has been supported in part by the Israel
Commission for Basic Research. An encouraging dis-
cussion with Professor Shlomo Alexander is acknowl-
edged.

'A. N. Kolmogorov, C. R. (Dokl. ) Acad. Sci. USSR 30, 301,
538 (1941).

S. Corrsin, J. Aeronaut. Sci. 18, 417 (1951), AIChE J. 10,
870 (1964).

B. B. Mandelbrot, Fractals —Form Chance and Dimension

(Freeman, San Francisco, 1977).

4U. Frisch, P. L. Sulem, and M. Nelkin, J. Fluid. Mech. 87,
719 (1978)~

5A. S. Monin and A. M. Yaglom, Statistical Fluids Mechanics
(MIT Press, Cambridge, Massachusetts, 1975).

H. Mori, Prog. Theor. Phys. 63, 1044 (1980); H. Mori, and
H. Fujisaka, in Systems Far From Equilibrium, edited by L.



FRACTAL NATURE OF TURBULENCE AS MANIFESTED IN. . . 1269

Garrido (Springer, Berlin, 1980).
7B. B. Mandelbrot, in Turbulence and Navier-Stokes Equation,

edited by R. Temam (Springer, Berlin, 1976).
8M. Nelkin, Phys. Fluids. 24, 556 (1981).
9R. A. Antonia, N. Phan-Thien, and B. R. Satyaparakash,

Phys. Fluids 2¹,554 (1981).
' H. G. E. Hentschel and I. Procaccia, Phys. Rev. Lett. 49,

1158 (1982).
G. T. Csanady, Turbulent Dg5csion in the Environment

(Reidel, Dordrecht, Holland, 1973).

'2L. F. Richardson, Proc. R. Soc. London, Ser. A 110, 709
(1926).

~36. K. Batchelor, Proc. Cambridge Philos. Soc. 48, 345
(1952).

' F. Gifford, Jr., J. Meteor. 14, 410 (1957).
'5E. D. Siggia and H. Aref, Phys. Fluids 24, 171 (1981).
'6P. Morel and M. Larcheveque, J. At. Sci. 31, 2189 (1974),
'7%. H. Press, J. Fluid Mech. 107, 455 (1981).
SF. N. Frenkiel, P. S. Klebanoff, and T. T. Huang, Phys.

Fluids 22, 1606 (1979).


