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Duality maps for a lattice model of the smectic-A —nematic transition
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Exact duality transformations are used to study a three-dimensional lattice version of the de
Gennes model of the smectic-A —nematic transition. It is shown that the partition function of
this lattice model maps exactly onto that of a system of interacting dislocation loops. Analogies
with other models are used to predict the behavior of this lattice model at several special points
in the parameter space.

The smectic-A —to—nematic (SmA-N) transition in

liquid crystals is one of the most intriguing problems
in critical phenomena. Most of the theoretical stud-
ies of this transition have been based on the de
Gennes phenomenological model. ' The free energy
of this model is very similar to the Ginzburg-Landau
free energy for superconductors, although certain im-
portant differences remain. These differences in-
clude the absence of true long-range smectic order in
three dimensions, the lack of gauge invariance of the
de Gennes free energy and the inherently anisotropic
nature of the smectic phase. Several years ago,
Halperin, Lubensky, and Ma' used a fluctuation-
corrected mean-field theory and a renormalization-
group analysis near four dimensions to argue that
both the superconducting transition and the SmA-N
transition should be weakly first order in character.
A recent study, ' ho~ever, has presented strong evi-
dence that the phase transition in type-II supercon-
ductors in three dimensions is a continuous one with

LF exponents, but with the temperature axis re-
versed. Experimentally the SmA-N transition often
appears to be continuous. However, the observed
critical behavior4 differs considerably from what is
expected for an inverted X-F transition.

In a parallel line of development, it has been sug-
gested5 that the SmA-N transition in three dimen-
sions is driven by an unbinding of dislocation loops. 9

Nelson and Toner have argued that this mechanism
leads to anisotropic scaling with the correlation length
exponents p[[ and v& for fluctuations parallel and per-
pendicular to the direction of smectic order having
the ratio 2:1. Ho~ever, this conclusion has recently
been questioned by Toner who has presented strong
evidence that the dislocation loop model also exhibits
an inverted X-F transition in three dimensions.

Kith a view towards shedding some light on this
confused situation, I have constructed a lattice ver-
sion of the de Gennes model in three dimensions,
and used exact duality transformation to study its
properties. I find that the partition function of the
lattice de Gennes model (LDM) maps exactiy onto
that of a dislocation loop model which is very similar
to the model studied in Refs. 6—8. I also find that
the LDM is dual to a second loop model which is
somewhat simpler in form than the dislocation loop
model. For certain special values of the parameters
involved, these loop models map onto other lattice
models which have been studied previously. Using
known results about the properties of these lattice
models, I am then able to make definite predictions
about the behavior of the LDM at these special
points in the parameter space.

The lattice model studied in this paper is a straight-
forward generalization of the de Gennes model. It is
defined by the partition function
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Here 8; is an angular (phase) variable at site I' of a three-dimensional simple cubic lattice with lattice constant equal
to unity. The integer-valued variables [n;„,g =xy,z] and the real variables [A;„,p =x,y] are defined on the
directed links between adjacent sites. A„and 6,„' represent lattice derivatives:
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where p, is a unit vector in the p, th direction. This
model is of the Villain type where the exponential of
a cosine has been replaced by a periodic Gaussian
function. The integer-valued variables [n»] are the
usual ones appearing in the Villain form. The phase
variable 8 describes the smectic order. In the contin-
uum de Gennes model, the smectic order parameter
has both an amplitude and a phase. The justification
for considering only the phase in the lattice version
comes from the well-known equivalence of fixed-
length spin models defined on a lattice to continuum
Landau-Ginzburg —type models which allow magni-
tude fluctuations. The real variables A Ay represent
fluctuations in the director field, with A, =0. Ci and

C2 are the "bare" stiffness constants for fluctuations
parallel and perpendicular to the direction of smectic
order, and Ki, K2, K3 are the bare Frank constants.
The temperature has been adsorbed in the definition
of the coupling constants, and I have chosen the
scale of length such that the wave number associated
with the smectic order is equal to unity.

Duality maps for Villain-type models have been
studied by several authors. ' Following the usual
procedure, I use the Poisson sum formula to replace
the integer-valued variables n;„by real variables q5&„

and new integer-valued variables m;„. After perform-
ing the 4t} and 8 integrations, the partition function of
Eq. (1) can be written as

Z Jd(A ) Jd(A„) x' exp —x m'+ ( '+,')+ (A +A, ;„)
[wi ]
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In the equation above, g denotes a restricted sum in

which the link variables [m,„,p =x,y, z] have zero
divergence at each lattice site,

way:

f(k) = Xe
W

5'„m(„-0 for all i (4) k = (xl t y+l +zl3z)
(6)

This restriction implies that the m;„'s form closed
loops. This constraint can be satisfied by writing

mi~= (b, ' x 1 i)~ (5)

where [I», p, -x,y, z] are new integer-valued variables
on the links. I then use the Poisson sum fromula
once again to replace the sum over [I»] by integra-
tion over real variables [4(;„],and perform the A and

P integrations. The integrations involve using
Fourier transforms which are defined in the usual

where N = L' is the total number of sites, R;
represents the radius vector of the ith site, and l &, l2,

13 are integers. Defining
ik

o.'„(k) =—1 —e ", p, =x,y, z

I can write Eq. (3) as

Z u X' exp{—H ([Ln])»}

where

[K(+K3lu I i(la I + layl )][la„ny(k) uy& (k)12]
HL([n;„])=2m'

I a, I'+ [K)( I a„l'+ lay') + K, I a, I'] ( la„ I'+ lay I') +

[K2 + K31u, I
'I(

I a.I'+ I ay
I') 11~,( k ) I'

I+ [K2(lu I
+ Iuyl2) +K3la

C2

(9)

(Io)

HL represents the Hamiltonian of an ensemble of interacting dislocation loops. The connection of this Hamil-
tonian with previously studied dislocation loop models' can be seen by taking the long wavelength limit of Eq.
(9). If we keep only the lowest relevant powers of u„(k), Eq. (9) becomes
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This Hamiltonian is identical [with a~(k) i—kJ to the dislocation loop Hamiltonian studied in Refs. 7 and 8.
I should mention here that Eq. (10) is not the correct long-wavelength limit of Eq. (9) if either Et or C~ is equal
to zero. However, for JCt, Ct & 0, the dislocation loop Hamiltonian of Eq. (9) should exhibit the same critical

behavior as that of Eq. (10) because they have the same form at long distances. This exact mapping between the
LDM and the dislocation loop model sho~s conclusively that a description of the SmA-N transition within the
framework of the de Gennes model is completely equivalent to a description based on the statistical mechanics of
interacting dislocation loops.

Before proceeding further, I show that the LDM is dual to a second loop model which I call the dual loop
model. This model is obtained by integrating out the A fields in Eq. (3). This gives
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This model is somewhat simpler in form and often
easier to handle than the dislocation loop model of
Eq. (9). For Et-0, this model reduces to an aniso-
tropic version of the generalized Villain model con-
sidered in Ref. 3, which should have an X-Y transi-
tion. Since the temperature is inverted in going from
the LDM to the dual loop model, the LDM should
exhibit an inverted X-Y transition for EI =0. This
is, of course, what one would expect, because for
K$ 0 E2 E3 and C~ = C2, the LDM is
equivalent, via a gauge transformation, to the lattice
superconductor model of Ref. 3.

The duality maps as such do not tell us very much
about the nature of the phase transition in the LDM
for EI W 0. However, for certain special values of
the coupling constants, the loop models of Eq. (9)
and Eq. (12) map onto other lattice models whose
properties are known. This then provides us with ex-
act information about the behavior of the LDM at
these special points in the parameter space. Several
such special cases will be discussed belo~. Before

Defining a new integer-valued variable II by

i;—= (Zx n, ), ,

I can write Eq. (8) as

(14)

I

proceeding further, ho~ever, I note that all the terms
involving I/C2 in Eq. (9) come with higher powers of
a~(k) than terms already present. Thus, the terms
involving 1/C2 are quite unimportant in determining
the long-distance form of the interactions, and ne-
glecting them should not affect the critical behavior.
This allows me to simplify matters by puttig I/C2-0.
In the following discussion, I also put E2- EC3 Jf:.
The conclusions are not affected if EC2 W If: 3. Let us
now consider the following special cases.

(i) E -0, E&,C& finite. In this limit, Eq. (9)
reduces to

Ia,'nr(k) —ar'n„(k) I'
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This partition function describes an ensemble of
point charges interacting via an anisotropic logarith-
mic potential. In fact, for JC2-E3=0, 1/C2-0, the
LDM reduces to a model studied recently by Amit
et a1., "and they have also found this mapping to a
system of point charges. Grinstein" has shown that
this system of point charges is always in the disor-
dered (plasma) phase. Hence, the LDM is always
disordered for E2- E3= 0.

(ii) E~-E W 0, Ct ~. In this limit, Eq. (12)

~ Im„(k) I'+ Imp(k) I'

I a.I'+ I a, I'+
I a, I'

Since the Hamiltonian does not depend upon rn„ the
restricted sum over [m»] in Eq. (11) reduces to an
unrestricted sum over [m~l and [m„l. The partition
function in this limit is, thus, proportional to that of
two mutually independent sets of point charges with
Coulomb interaction at long distances. Since a
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Coulomb gas in three dimensions is always in the
plasma phase, the dual loop model is always disor-
dered in this limit. This, in turn, implies that the
LDM is always ordered if K&=Kz=K3 and I/Ct-0.

(iii) Ei,K finite, Ci ~. Using the result ob-
tained in (ii), it can be shown that LDM is always in

the ordered phase in this limit. The argument goes
as follows. If there is a phase boundary in the
(K~-K) plane separating ordered and disordered
phases, then it must have a negative slope every-
where, i.e., the critical value of E i must decrease as
E is increased, and vice versa. We already know that
for E i = 0, there is a phase transition at some value
E, of K. Any line with negative slope emerging from
this point must intersect the line E& =E somewhere.
But the result obtained in (ii) tells us that on the line
Ei =E, there is no phase transition. Thus, the only
conclusion consistent with all the facts is that, for any
nonzero value of K~, the LDM is in the ordered
phase if E AO and Ci ~. In other words, in the
Ci ~ limit, the inverted X- Y transition at K =K„
E ~

= 0 disappears as soon as E i is turned on.
Recently, Toners has used a renormalization-group

analysis of the dislocation loop model of Eq. (10) to
argue that the inverted X-Y transition at K& -0 is
stable with respect to turning on a finite Ei. This
conclusion appears to be in contradiction with the
result obtained above.

However, there are indications that this disagree-
ment is because of the rather special nature of the
Ci ~ limit. There is reason to believe that the
properties of the LDM for finite values of Ci are
quite different from those for Ci ~. For a qualita-
tive understanding of the situation, let us consider
the dual loop model. The last three terms in Eq.
(12) represent the interactions among loop segments.

It is easy to verify that, for any finite value of Ki,
the interaction energy goes to zero if m, (k) =—0,
m (k) =—0, m, (k, W 0) =0, and m, (k, =0) finite.
This implies that for Ci ~, it cost little energy to
have a large number of very long loops running
predominantly in the z direction. This is what makes
the dual loop model disordered (and consequently,
the LDM ordered) at any finite value of Ei in the
Ct ~ limit. A finite value of I/C~ acts as a core
energy per unit length for the z components of the
loops, and makes it energetically unfavorable to have
very long loops running along the z axis. Thus, for
I/Ct W 0, one would expect the presence of a phase
boundary in the Kt-K plane, emerging from the in-
verted X- Y transition point (O, K, ). The analysis
presented here cannot predict the nature of the phase
transition across this line.

It can be seen from Eq. (12) that the interaction
between z components of the loops in the dual loop
model changes sign as Ei is increased above E. One
may consider this to be an indication of a change in

the nature of the phase transition. However, there is
reason to believe that the phase transition is not
sensitive to the sign of the interaction between the z
components. For I/Ct A 0, it is easy to show that
due to cancellations between the last two terms of
Eq. (12), the energy associated with the z com-
ponents of large loops is dominated by the I/Ct
term, not by the interaction. Thus, it is unlikely that
any dramatic change in the critical behavior will take
place as Ki is increased beyond K.
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