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It is shown that viscosity and thermal conductivity leads to large-scale steady convection
in a cylindrical current-carrying plasma, under the influence of a magnetic field satisfying
(Bg/B,) >>1. This state is the analog in a plasma of stationary convection in ordinary hydro-

dynamics.

The stability of a current-carrying cylindrical plas-
ma limited by fixed conducting boundaries in the
presence of a longitudinal magnetic field has been ex-
tensively studied within the framework of ideal mag-
netohydrodynamics (MHD). For a shearless magnet-
ic field, it has been shown that the growth rate, as a
function of parallel wave number k), has, in the in-
compressible case, two maxima located symmetrically
around k, =0 and vanishes at k;,=0.12 It turns out,
however, that there is no linear solution of the MHD
equations if the plasma is incompressible.’

In the following, it will be shown that a new situa-
tion arises when nonideal effects such as viscosity
and thermal conductivity are taken into account.
Even when the corresponding coefficients are small,
the nonideal effects play an important role for pertur-
bations with k;=0. This is due to the fact that
viscosity has the effect of removing the singularity at
ky=0 occurring in the ideal case. In particular, there
is a mode with K;;=0 and a finite adiabaticity coeffi-
cient which, for a critical value of the pressure gra-
dient, characterizes the onset of large-scale steady
convection in the plasma.

The basic equations describing the system are
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In these equations only the prependicular part of
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the viscosity tensor has been considered. The other
terms will be shown to be unimportant.

The equilibrium is characterized by
2
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where B'” is the equilibrium magnetic field, p'® the
equilibrium pressure, a the radius of the cylinder,
and By, B, and p, constants.

In Eq. (1c) « is the heat conductivity and Sy is a
constant heat source which mantains the equilibrium
pressure profile, i.e.,
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The rotational transform is constant and, therefore,
the magnetic field is shearless:
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where L is the length of the cylinder.

Assuming a nearly constant density, p = po, and
linearizing Eqs. (1) for perturbations of the form
FO(r,0,2) = V(1) exp(im8 + ika + wt), the follow-
ing equation for the displacement vector E’ is ob-
tained:
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and the plasma has been assumed incompressible,
ie, V- v =0, which, in order to satisfy the whole
set of Egs. (1), implies y = oo in Eq. (1c).

Writing the components of Eq. (5) in terms of p("
only and using the incompressibility condition
¥ - £=10 yields the following equation for pV:

vz (1)+k2 2 1) - =0 , (7)
where
o= ——2im—ng) . ®)

o+ a,08%*(m —nq)?

In Eq. (8) B is a constant defined by

T x E=BE )
which, by taking the curl of Eq. (5), is found to be
B=kao . (10)
The solution of Eq. (7) regular at r =0 is
D=alulk(a?=1)"2r] | (11)
Defining

A=[&*+pok*a%ac? +(m—ng)*1(a?-1) , (12)

the components of E are given by

1)
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The assumption of perfectly conducting walls and
perpendicular viscosity implies the following boun-
dary conditions:

((r=a)=0, ¢(r=a)=0 . (14)

From the first two of Egs. (13) it follows that the
boundary conditions (14) can be satisfied only for
o=1. Therefore, assuming o =1, and using Eq.
(11) and the relation between the Bessel functions
and their first derivatives, it follows that the boun-
dary conditions are satisfied for o values fulfilling

Jpolk(a?=1)2q]1=0 . (15)

Thus, setting the argument of J,,—; equal to the value
where the function takes its first zero yields

k(o?=1)a’=Z}, , (16)

where Z,,; is the first zero of J,,—;.
From Eq. (16) it follows that

Zi
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which, for large k%a? values, i.e., k?a? >> Z,_,, gives
=],
Therefore, tﬁere i§. a solution to the problem which
satisfies V' x &= ¢ provided that |k|a >> Z,_;.
On the other hand, from Eq. (8) and the condition
o =1, it follows that

«I)=—%ﬁ4k2a2 +( %ﬁlkzaz +2(m—nq)
—(m—ng)?1'2 . (18)

In the dispersion relation (18) the sign of the square
root has been chosen in such a way that o be real
and positive. Otherwise, from Eq. (8) it follows that
o is complex and Eqs. (14) are not satisfied.

In contrast to the ideal chase,’ close to
ky=m —nq =0, @ and A behave like

a=ﬂm—q|

ﬁlklaZ

(19)
A=2|m ,
so that

@ 1
—=— (20)
A azi

is now finite at k,=0. In other words, since this ra-
tio is finite, it follows that a finite pressure per-
turbtaion leads to a finite velocity V") = w £.

In the case of a marginally stable state w =0, Eq.
(1e) implies ¥ xE =0, so that E=—¥ . There-
fore, the linearized equation (1d) takes the form

—'(I)XB(O) vd)(l) . 21

From the components of this equation it follows that
for marginal states occurring at m =ng, ¥ -V =0.
On the other hand, Eq. (18) shows that for m = ng
there is a marginal state with o =0. Therefore, ac-
cording to the aforementioned argument, such state
is incompressible. It will now be proved that this
mode satisfies the whole set of Eq. (1), including Eq.
(1d) with « %0 and arbitrary finite y.

To this end, assuming w=0 at m = nq, Eq. (1d)
reduces to (remember that ¥ - ¥ =0)

0)
v e = 2T (22)

Using Egs. (20) and (6), it follows that the last
equation is satisfied provided that

0)
P (23)

K=——
2 k4a dr

-q
Thus, when this relation between the pressure gra-
dient and the physical constant ) and « is attained, a
marginal solution of the entire problem exists for ar-
bitrary +y.
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This state is actually the analog in a plasma of the
well-known stationary convection in ordinary hydro-
dynamics.* In fact, it it possible to define the plasma
analog of the Rayleigh number and express Eq. (23)
in the form

Rerit= [L
T

4

a4
r—a/2

dg(O)
dr

k6 6
[+ O

In complete analogy with the demonstrations given
in Ref. 4 (Chap. II, 11 and Appendix I) and in Ref.
5, one shows that the condition ® =®& ;, character-
izes the onset of large-scale steady convection in the
plasma.’

From Eq. (18) it follows that for the unstable
modes ng = m, so that the condition |k|a >> Z,,_,
implies [see Egs. (4) and (6)] (By/B,) >> 1.

The flux pattern can be studied in the usual way.
The result for m =1 is illustrated in Fig. 1. The
center line of each tube conforming the flux surfaces

FIG. 1. Flux surfaces for convective m =1 modes.

can be shown to satisfy

v§1)=(3;0)/31(0))v,(1) , (25)

so that vy >> vV

parallel viscosity.
A detailed account of this paper, as well as of the
effect of resistivity, are planned to be given elsewhere.

, which justifies the neglect of
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