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We present dynamic equations for the slow macroscopic variables of the wavy vortex state.
The static solutions explain in a qualitative way recent experimental results of Ahlers et al on
the variation of the vortex diameter throughout the cell. In addition, we predict the existence
of a pair of propagating or overdamped normal modes (depending on the wave vector of the

disturbance) formed by the slow variables.

The Couette-Taylor system, consisting of a fluid
contained between two concentric cylinders with the
inner one rotating, is particularly convenient for the
experimental investigation of the sequence of hydro-
dynamic instabilities leading to turbulent behavior
(for a recent review see Ref. 1). Above a critical ro-
tation rate the uniform (Couette) flow is unstable to
the Taylor state of azimuthal vortices. The first
time-dependent state, in which periodic displacements
in the vortices propagate around the cylinders, tends
to occur for only slightly larger rotation rates. In this
paper we study the static and dynamic behavior of
slow perturbations of this ‘‘wavy vortex flow,”” with
the Taylor vortex flow a special case. This work was
motivated to a large degree by the recent observation
by Ahlers et al.? that the wavelength of the vortices
in the wavy state is not constant over the cell, but
varies over a rather long length scale (of order ten
rolls). This is in sharp contrast to the situation in
Rayleigh-Benard convection, where the roll wave-
length in similar configurations is essentially constant
over the bulk of the cell. In addition to accounting
for this observation, we predict a new mode for vari-
ations of the vortex diameter that is propagating at
long wavelengths, and becomes overdamped, and fi-
nally diffusive as the wavelength of the perturbation
is decreased. In the course of this work we explore
the analogies with the hydrodynamic description of
slow perturbations in equilibrium systems. We also
present for the first time the full two-dimensional
amplitude equation describing the behavior of the
Taylor vortex state near onset in the small gap limit.

Our method of approach is to construct using gen-
eral symmetry arguments coupled equations for the
slowly varying ‘‘phase’’ variables characterizing the
wavy state. Two phases are necessary: the first y
giving the position of the vortices along the axis; the
second @ giving the azimuthal position of the waves.
These phases would be identified as the variables
characterizing the spontaneously broken continuous
symmetries in an equilibrium system. This descrip-
tion of the wavy flow should be contrasted with the
‘“‘phase diffusion’’ equation for the single slow phase
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variable in Rayleigh-Benard convection.’™ The vari-
ous coefficients in the equations are estimated in the
limit of a small gap between the cylinders using the
proximity of the wavy state to the onset of the Taylor
vortex state. This generalizes the procedure of
Davey et al.® to a spatially nonuniform wavy flow
state.

The main result of the present Communication is
the set of dynamic equations for the two phases ®
and -

b=D" +Ci(g)®" , )

d=D,0"+Cy(g)0 , )

where the dot denotes a time derivative and the
prime a spatial derivative along the axis (x direction).
These equations are given by the restriction that they
reduce to a simple phase diffusion equation in the
Taylor vortex state, and invariance under the sym-
metry x ——x, y —— . In Egs. (1) and (2) we have
ignored azimuthal (y direction) inhomogeneities in
the phases. The parameter g, is the azimuthal wave
number of the wavy vortex state: Although all
parameters depend on g, in general, we have em-
phasized the g, dependence of the cross-coupling
coefficients C,, C,, since the symmetry y ——y,
a3y ——q, y—y¢, ®——9>, and the assumption of
analyticity imply C;,C; = g, for small g,. Note that
d_:' gives the change in the vortex wave number, and
® the change in the frequency of the wavy motion.
To study the static solutions of Egs. (1) and (2) it
is useful to add a phenomenological source term
(80Q)8(x) to Eq. (2) corresponding to a local ten-
dency to increase the wavy mode frequency by §Q at
x =0. The solutions are then

8k =k — ko=58koexp(—|x|/1) , 3)

=0-0,=(D,/C))8k , 4)

with k the local wave vector and k. the value at large
distances from the source, and 8kq proportional to
the source strength 8. The ‘‘penetration length” /
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is given by
1*=D,D,/C,C, (%)

and becomes long (justifying the use of the phase
equations) for Ci,C, small.

Equations (1) and (2) may now be applied to the
observations of Ahlers et al. Here a local tendency
towards a different wave propagation speed due to
end perturbations may be expected to drive a distor-
tion in ®(x) and hence, through Eq. (1), a local per-
turbation of the wave vector. Although the details of
the resulting source terms in Egs. (1) and (2) are not
clear, the value of the penetration length /, and the
relationship between §® and &k are independent of
them; and Eqgs. (3) and (4) should apply near each
end. The long penetration length for the wave num-
ber perturbation observed by Ahlers et al. may there-
fore be ascribed directly to the coupling to the azimu-
thal phase.

The time evolution of slow disturbances of the
wave number can also be studied from the phase
equations. Introducing a perturbation proportional to
expli (Kx —wt)] we find a propagating mode for
K —0 with frequency o = ++/C,C,K and 0(K?)
damping. For larger K we get

w=—7i(D,+Dy)K* + +K[4C,C,— K*(D, — D;)?]'”
(6)

for 4C,C, > K*(D,—D,)?, and

w=—i{3(D;+D;) £ +K[KD,—D;)?—4C,C,]'"?)

@)

for 4C,C, < K*(Dy— D,)?. Thus we find by increas-
ing the wave vector, first, a propagating mode, then
an overdamped mode with a velocity dependent on
the damping coefficients, and, finally, a pure dif-
fusive mode.” Note that we assume C;C, to be posi-
tive: This result follows from the analysis presented
later in the small gap limit near the onset of the wavy
mode and is required for stability. C; or C, passing
through zero well above threshold would indicate the
onset of an additional instability. It is interesting to
point out that for a system near thermodynamic
equilibrium the structure of Egs. (1) and (2), includ-
ing relationships between the coefficients, would be
pinned down by the behavior of ¢, ® under spatial
inversion and time reversal.® For the present non-
equilibrium system the situation is slightly different.
To derive Egs. (1) and (2) we have only used the
symmetry x —~—xand ¢y —=—¢, ® —d. Itis a pos-
teriori that we can say, taking into account the time-
reversal symmetry of ¢ and ®, that C; and C, are re-
versible, whereas D; and D, are dissipative. This
transformation has not, however, entered our deriva-
tion of the basic equations in any way.

The coefficients in Eqs. (1) and (2) may be rough-

ly estimated by considering the small gap limit, using
the following two observations:

(i) Although the first instability of Couette flow is
to the stationary Taylor vortex state, at slightly higher
Taylor numbers Couette flow is also unstable to vor-
tices with azimuthally propagating waves. The wavy
vortex state may be understood by considering the
rather delicate competition between the g, =0 state
and a state with nonzero g,.°

(ii) Since the wavy vortex state first occurs close to
the first instability in the small gap limit, its onset
may be approximately treated using a lowest order
““amplitude equation’” found by expanding about the
critical Taylor number T, for the Taylor vortex state
(T.=3390).

The amplitude equation may be derived using the
general procedure of Newell.® This leads to the equa-
tion at lowest order in e=(T—T.)/T.:

9,4 =754 +(£20F +£30D) 4 —gl4[24]
+in/Tos19x0v4 ®

where A (X, Y, 7) is the complex amplitude function
in terms of which the deviations of the fluid veloci-
ties from Couette flow take the form (e.g., for the ra-
dial velocity w)

w=e‘/2[Ae'k°x+c.c.]wo(z) +0(e) , )

with wo(z) a known function. The variables X
=¢!2x, Y =€2(y —so/Tor) with y = (%8)"/20 and
7= et are slow length and time scales with x the axial
coordinate scaled by the gap d, 8 the azimuthal angle,
and 7 the time scaled with d@*/v, with v the viscous
diffusivity. The parameter & is the ratio of the gap to
the average radius of the cylinders. In the small gap
limit 8 —0 the azimuthal variation becomes ‘‘slow’’
in the y coordinate, even though periodic in 6. Yis
the (scaled) azimuthal coordinate moving with the
waves. The angular propagation speed of the waves
at onset, expressed as a fraction of the rotation rate
Q, is 5o, and the coefficient s; gives the change in
this speed when the axial wave number is changed.
In deriving Eq. (8) we have made use of the explicit
form of the linear operator in the small gap limit.®
The amplitude equation [Eq. (8)] takes the familiar
form except for the additional last term: It is this
term that leads to the phase coupling we seek.

The wavy vortex state is given® by the superposition

A=|Ble+i|Cle™(e!@*® tcc.) (10)

where |C| —0 at €, the value of € at the onset of
the wavy state, and we neglect harmonics in this lim-
it. This equation precisely defines the phases ¢, ®
introduced earlier. Equations (1) and (2) for the
slow dynamics about the wavy vortex state are found
after eliminating the fast variables | B|, | C|, with the
identities Dy =D, =r15'¢2, Cy(q) =+/T.s1¢, and
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Ci(q) =Cy(g)r?, with 2=|C|?/(ICI*+5|BI?).
From the calculations of Davey et al.® we find

[CI1¥|B|*=¢lg}(e—ey) €€y -

Note that C;(q) goes to zero at € =¢,, as would be
expected, but that the other parameters are inde-
pendent of e in the limit we consider (i.e., € — €,
small).

We estimate the values of the parameters in Eq.
(8) (75! ~13, £2=0.15, ¢2=0.14, and 50==0.53)
from Chandrasekhar,'® and the tabulated results of
Davey et al.® and Krueger et al.!' The important
coefficient s; is not given by these authors: Instead
we estimate s; =0.014 directly from measurements
by Ahlers et al.' at T/T.=1.44 for the m =3 state
with 8=0.1. These values lead to the prediction for
the healing length

=244, 08))

which diverges for small g, as well as for small
modulation ratio r =|C|/| B|.

Substituting the values appropriate to the experi-
ments of Ahlers et al. into these equations we esti-
mate the value / ~6. From the experimental data
we estimate / ~ 10 (although there is considerable
asymmetry between the top and bottom of the cell

that is not understood). This discrepancy may be due
to the approximations made in evaluating the param-
eters, namely, the small gap limit and the proximity
to onset of the wavy flow, which may well not apply
for these experiments. For a better test of the quan-
titative predictions of the amplitude equation experi-
ments nearer the onset of the wavy vortex state
would be highly desirable.

To summarize, we have discussed the phase
dynamics of the Taylor wavy mode and have found a
unique structure for its dynamics, which has not been
found for any hydrodynamic instability before. This
unique structure is mainly due to the fact that one
has two scalar quantities characterizing the long-
wavelength, low-frequency behavior of this system,
one even, one odd, under spatial inversion along the
cylinder axis. This situation is to be contrasted, for
example, with the onset of convection or with the
single model laser where one has only one phase
variable giving rise to a purely dissipative slow
dynamics. The predictions concerning the propagat-
ing and overdamped character of the normal modes
in the wavy mode are certainly a new challenge for
future experiments.
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