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Equilibrium polymerization as an ordering transition
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We introduce a thermodynamic model of equilibrium polymerization capable of treating all

physically important effects: monomer activation, growth of linear polymers, growth of ring

polymers, excluded volume, (bi)functionality, polymer rigidity, and the effects of solution. We

predict a possibility of both ordering and nonordering polymerization and a possibility of "reen-
trant" polymerization. The model may be used as a vehicle for studying liquid-crystal polymers.

A view of polymerization as a critical phenomenon
has only recently been completed. ' It was shown that
equilibrium polymerization can be considered as
nearly critical, criticality being pathological, associat-
ed with an infinite binding energy or, equivalently,
with the "ground state. " Early chemical equilibrium
theories of polymerization already achieved a quali-

tative agreement with experiments by assuming poly-
merization to occur due to the competition between
monomer activation (opening of Ss rings) and fusing
of two linear polymers into a larger one. The work
of Ref. 1 went, at the same time, beyond the mean-
field treatment of chemical equilibrium theories and

beyond the treatments of statistics of long polymers4

by considering in a full thermodynamic approach the
same chemical species as chemical equilibrium
theories and by accounting explicitly for the excluded
volume and bifunctionality. ' It emerged from such
a description that polymerization is not an order-
disorder —type transition and, thus, no experimentally
observable domains should occur during polymeriza-
tion.

Subsequent inclusion of ring polymers, 6 which did

not change the above conclusions, required a price:
Bifunctionality was replaced by a particular finite
repulsion. This price might be too high for a realistic
description of polymerization.

In order to unify previous treatments we will for-
mulate below for the first time a model capable of
considering all of the linear and ring polymers, bi-
functionality of monomers, and the excluded volume.
In addition, we will consider polymer rigidity on
which effects our attention will be concentrated.

If polymers (monomers) were infinitely rigid they
would tend to align, breaking the original rotational
symmetry. Associated transition would be in this
case of an order-disorder type, with the polymer
phase being an ordered one. Therefore, depending
on the rigidity, one expects to observe a crossover

from nonordering polymerization' to ordering po-
lymerization which we will discuss here.

In order to make the above ideas more quantita-
tive, we will first formulate a general thermodynamic
model of equilibrium polymerization. For simplicity
we treat the two-dimensional case. An extension to
three dimensions is straightforward. Let us divide
the space into simple square cells containing on the
average one monomer unit. By assuming that in

each cell there may be only one monomer unit and
that through each face there may pass at most one
polymer, the excluded volume is automatically taken
into account. Furthermore, we assume that each
monomer end may fuse to only one other monomer
end (if they meet at the same face) and that each
monomer has two ends. Thus, we include bifunc-
tionality.

The allowed configurations (states) of a monomer
in a single cell are shown in Fig. 1. Note that the al-

lowed configurations are "average" and correspond-
ing changes in enthalpy and entropy may contain a

nonsingular temperature dependence.
We will assume that interaction energies depend

only on the states in cells sharing a face. The biggest
contribution will come from two polymer ends meet-
ing at a face. This contribution is the fusing energy v

oo

FIG. l. Allowed single-site-monomer configurations,
states (0 to 6), associated energies, and degeneracies.
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of two polymers. Some of the possible configurations
and their interaction energies are shown in Fig. 2.
Clearly, the two polymer ends may come from two
different linear polymers or from a single one.
Therefore, we include a possibility of formation of
ring polymers.

Various energies which we have introduced have a
clear physical interpretation. The energy e is the en-
ergy required to activate a monomer. Therefore, it is
expected to be a positive decreasing function of tem-
perature. The energy 8 is associated with the rigidity
of a single monomer. Therefore, it is related to the
elastic energy of a monomer. The energy u is a fus-
ing energy of two polymer ends. This energy is ex-
pected to be a negative increasing function of tem-
perature. The energies u i, u2, . . . are, similar to 5,
associated with the stiffness of a polymer. They in-

clude interactions of a slightly longer range than
these included in 5. When 5 and u's are zero our
model is equivalent to the one of Ref. 1, except that
we include ring polymers, or to the one of Ref. 2, ex-
cept that we account for bifunctionality.

Let us further associate with each cell i an occupa-
tion number n —;(I) of the state I. n -, (I ) = 1 or 0
depending on whether a monomer in cell i is or is
not in the state l. By definition

2S

Xn-, (l) =1 for all i
la

where we assume a total of 2S +1 states of a mono-
mer. Furthermore, we denote the configuration en-
ergy of a monomer in a state I by e(l ). Similarly, the
interaction energy between two monomers, one at a
site i in a state land the other at a site i +e in a
state I', we denote by v(l, l';e). In both cases we uti-

lized the translational invariance of the energies.
Complete energy of our polymer system is given by

where i runs over all lattice sites and e over all vec-
tors connecting i to its nearest neighbors. The first
term in the brackets comes from the single-site ener-
gies while the second term counts the two sites, in-
teraction, energies. For example, in terms of Figs.
(1) and (2) we have e(1) = e, v(1, 1;x) = v, etc.

The model Eq. (2) is very general and only some
of its particular realizations such as the spin S Ising
model and (2S+1) state Potts model have been stu-
died. However, neither of the two models studied
corresponds to polymerization and we expect that po-
lymerization shows a complex critical behavior with

possible crossovers from one universality class to
another.
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FIG. 2. Allowed two-site-monomer configurations, states,

interaction energies, and degeneracies. Configurations relat-
ed by symmetry are represented by a single configuration.
The interaction is anisotropic.

Despite complexity of the general model Eq. (2) its
mean-field equations are simple:

C~-Coexp[e(0) —e(I)]; /A=1
I

(3)

with the effective energies

(4)

Cl is the thermodynamic average population of state
I, which is to be determined self-consistently. (C~ is
the concentration of monomers which are in state 1.)
We also assumed, for simplicity, a uniform state,
which need not be the case in general.

The case of rigid polymers may be simulated, for
example, by 8 ))0 or by ui, u2, u3 ))0. We will

consider the former case and ui = u2= u3=0. By let-
ting 5 ~ the problem reduces to a three-state one:
At each site there is either an unactivated monomer
(a ring) or an activated monomer which may be ei-
ther along x or y" directions. This problem is analo-
gous to an S = 1 spin system on a square lattice but it
is different from the cases usually treated" in that
our interaction D-, S-, S-, +-, is anisotropic D„-=—D-.

Ground states of a rigid polymer system are indi-
cated in Fig. 3. From the ground states it becomes
immediately clear that polymerization will occur for
sufficiently large fusing energy (—v), depending on
the size of binding energy (e). The transition will be
the ordering one characterized by symmetry breaking
manifested in preferential population of one of the
states 1 = 1 or 1 = 2 (the ground state is a doublet).
Experimentally, this will be manifested by formation
of boundels (domains) of parallel polymers.

In the mean-field approach, anisotropic interactions
are averaged and our problem becomes identical, cf.
D„-+D-=0, to the mean field of the Blume-Emery-

Griffiths model. Thus, we introduce the monomer
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FIG. 4. Schematic, mean-field variation of the order
parameter and relevant polymer variables, along a line indi-

cated by an arrow in the phase diagram of Fig. 3.

FIG. 3. A mean-field phase diagram and ground states of
a two-dimensional polymerization. ~ is the energy necessary
to activate a monomer. (—v) is the energy released by fus-
ing of two monomers; (—u) & 0 corresponds to a repulsion
between monomer ends which is not the case for polymeri-
zation. Corresponding checker-board ordering must be con-
sidered an artifact of the model. The continuous transition
becomes, at tricritical point, a discontinuous one (shaded).

concentration

p =2C /[I —m' —(1 —C )'] (7)

Consequently, in the polymer state m =0 and p in-
creases as m and C are increased. These con-
clusions are confirmed by an explicit calculation.

The mean-field phase diagram is sketched in Fig. 3.
An ordering above the upper critical line, v = 1

+ —,exp(a+ I ), is not related to polymerization [m

here refers to one sublattice and the sign of m'
should be changed in Eq. (7)]. On the other hand,
below the lower critical line, v = —I ——,exp(a —1),
the system orders and polymerizes. A characteristic
of this transition is that m changes at T, in a mean-
field fashion, m —

~
T —T, )'~', while C and p change

as
~
T —T, ), exhibiting only a finite discontinuity in

the slope. The critical line ends at the tricritical
point, v = —,, ~here the transition becomes discon-

tinuous as indicated by shading in Fig. 3. At this
first-order transition both m and C change discon-
tinuously.

As an example, let us consider a physical system
along a line indicated by an arrow in Fig. 3. In such

C~ = Ci+ C2=1 —Co

and the order parameter

m =Ci-C2 .

Therefore, an order-disorder transition is character-
ized by m A 0 going to m =0. The change in m will

couple to C and produce a cusp in C . On the oth-
er hand, within the mean-field theory the average
polymer length p is simply related to C and m:

a case both C and p would show a break in the slope
at T, but p would peak only after the transition (Fig.
4). Particularly interesting is a possibility of "reen-
trant" behavior. That is, at some higher temperature
a second, continuous, order-disorder transition may
occur at which polymerization is destroyed. '

Our analysis remains essentially valid for all 8 & 0
since the ground state stays the same. " Therefore,
we expect that both nonordering (5 ~ 0) and order-
ing (5 & 0) polymerization may occur. " Experimen-
tally, it is best to look for the ordering polymerization
in solutions where the rigidity depends on solvent
characteristics. "

In summary, we emphasize the new results which
we find when treating all the relevant aspects of poly-
merization (i.e., monomer activation, growth of
linear polymers, growth of ring polymers, bifunc-
tionality, excluded volume, and polymer rigidity).

(i) Complementary to currently adopted views, '~
equilibrium polymerization may be an ordering tran-
sition (8 & 0).

(ii) %hereas other studies'6 find a single transition
point, v 0, v —a=const, we find a transition line
(in the v~ plane) along which a continuous transition
occurs below the tricritical point and a discontinuous
one occurs above the tricritical point.

(iii) In our model, C„ is nonzero on both sides of'

the transition, whereas elsewhere' C is found to be
zero in the nonpolymer phase.

(iv) Finally, we find that both C and p have only
a "mild" singularity at the transition (~ T —T, ~

vs

( T —T, ~'~2, in a mean-field approach).
The above results, valid for 5 & 0, were exempli-

fied here in the limit 8~+c ." %e have treated
only the two-dimensional case, but in three dimen-
sions an additional, negative, isotropic interaction
between parallel monomers is necessary to stabilize
an ordered phase. '~

The ordered phase is somewhat reminiscent of a
polymeric liquid-crystal phase. An inclusion of the
vacant sites into the model provides a vehicle for a
more detailed study of polymeric liquid crystals.
Ho~ever, this will not be pursued here.



EQUILIBRIUM POLYMEMZATION AS AN ORDERING. . .

We acknow&ledge partial support from the Deutsche Forschungsgemeinschaft. M.V.J. acknowledges an Alexander
von Humboldt research fellowship and a stimulating discussion ~ith Professor P. Pfeuty.

'Present address: Physics Department, Montana State
University, Bozeman, Mont. 59717.

~On leave of absence from Freie Universitat Berlin, D-1000
Berlin 33, Federal Republic of Germany.

'J. C. %heeler, S. J, Kennedy, and P. Pfeuty, Phys. Rev.
Lett. 45, 1748 (1980).

2J. C. %heeler and P. Pfeuty, Phys. Rev. A 23, 1531 (1981).
3G. Gee, Trans. Faraday Soc. 48, 515 (1952); A. V. Tobol-

sky and A. Eisenberg, J. Am. Chem. Soc. 81, 780 {1959).
~P. G. De Gennes, Phys. Lett. 38A, 339 (1972).
5%e interpret noncrossing of polymers as a condition on the

bifunctionality of monomers, whereas the excluded
volume is automatically observed in a lattice description.

6R. Cordery, Phys. Rev. Lett. 47, 457 (1981).
7D. Mukamel and M. Blume, Phys. Rev. A 10, 610 (1974).
J. Lajzerowicz and J. Sivardiere, Phys. Rev. A 11, 2079

(1975};11 2090 (1975};11, 2101 (1975).
M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A

4, 1071 (1971);for more detailed mean-field analysis of a

general nearest-neighbor isotropic S =1 model, see Refs.
7 and 8.

' Khe last transition is analogous to nematic-isotropic or
cholesteric-isotropic liquid-crystal transitions.

"A more detailed study of the ~hole region 5 C f —~, +~]
will be given else~here.

' As 5 is reduced a short-range ordering may be physically

more realistic.
'3See theoretical treatment by J. C. %heeler and P. Pfeuty,

Phys. Rev. Lett. 46, 1409 (1981) and references therein.
In our model solvent effects may be partially accounted
for in variation of 8. However, the model may be extend-
ed in a more rigorous fashion by including, for example,
"no monomer" states and a constraint on the concentra-
tion (the chemical potential).

~41f this interaction is positive, mechanically strong sheets
consisting of crossed layers of ordered polymers may be
formed. Such structures may be important in understand-

ing the architecture in various biological systems.


