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Long-range orientational order in two-dimensional liquid crystals
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We have shown, using Monte Carlo stimulations, that long-range order exists in the nematic
liquid-crystal phase in two dimensions when realistic interparticle potentials are used.

Virtually no two-dimensional system with continu-
ous degrees of freedom has long-range order (LRO)
at finite temperatures. This result follows from har-
monic or continuum theories."”? It has been demon-
strated rigorously using Bogoliubov inequalities for
superconductors, superfluids, magnets, translation or-
der in crystals,® and certain classes of liquid crystals.*
In this paper we present evidence for the existence of
LRO in two-dimensional nematic liquid crystals when
there is a ‘‘realistic’’ interaction between the mole-

cules.
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If the pair potential between liquid-crystal
molecules can be written as

V(r,0)=3, fu(r)g.(0) , (1

where r is the distance between the centers of mass
of the molecules and @ is their relative orientation,
then no LRO exists in two dimensions at a finite tem-
perature.* However, realistic potentials do not have
this form. An example of a realistic potential® for in-
teracting ellipsoidal particles is

V(ity,i,F) ==4€(131.132){

where
E(ﬁ],ﬁz) =€0[1 —Xz(ﬁ 1 qu)Z]~1/2
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Here X=(a%?—1)/(a%+1), where a is the anisotropy
of the ellipse and #; is a unit vector in the direction
of the long axis of the ith molecule. We will call this
potential nonseparable (NS) because it cannot be
written in the form of Eq. (1). If 4, 4, and 7 are
parallel then o= aol (1+Xx)/(1—=x)1"2, but if &, is
parallel to #, and both are perpendicular to 7 then
o = o and the repulsive interaction is much weaker.
We have simulated this model using Monte Carlo
techniques. The potential was cut off at 3 in the y
direction and 3a in the x direction. This means an
imaginary rectangle of size (64 x 6) surrounds the
ith molecule and only molecules whose centers are
within this rectangle interact with the /th molecule.
Although this procedure introduces an anisotropic
potential, its tendency is to disorder the angular de-
grees of freedom by leaving out interactions of
molecules which would tend to orient the ith
molecule. Thus, LRO in this system clearly implies
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LRO in the system where all interactions are includ-
ed. This procedure was used because it reduces the
computer time by an order of magnitude. The rec-
tangular box enclosing the molecules was v3/2L by
aL in size, where L x L = N is the total number of
molecules. Periodic boundary conditions were used
and the starting configuration was usually one of per-
fect order.

For comparison we also simulated a system with a
separable potential:

, (3)

12 6
V(r)=4e [l—acos(e,«—-oj)][%] - [9’;]

€e>0, a>0 .
We call this model separable (S) since it is in the

form of Eq. (1). This potential favors alignment of
neighboring molecules. The cutoff here was 3o and
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the box size was /3/2L by L.

The Monte Carlo step consisted of a move in r
space and a simultaneous move in §. Both systems
were run at a reduced temperature such that spatial
order was absent. This is discussed in more detail
below. The reduced temperature was 7" =1.6 for the
separable system and 7" =2.0 for the nonseparable.

To determine whether LRO exists the following
quantities were computed. (a) (r?) is the mean-
square deviation of the particles from their original
lattice sites (corrected so that the center of mass is
fixed). (b) (#?) is the mean-square fluctuation of
the angular orientation of the particles (—r <0<
for the S model and —7/2 < 0 < 7/2 for the NS
model). The angle 6; for the ith molecule was mea-
sured relative to the instantaneous net direction of
the molecules, i.e., such that 3,8;=0. The quantity
(8?%) denotes the average (1/N) 3., (8?), where
(8?) is the average of the square of 6; over all con-
figurations. (c) g(x) and g (y) are the pair distri-
bution functions, where g(x) =g (x,y:y <1) and
x and y are the molecular separations in the x and
y directions, respectively. (d) ¢ (x), ¢(y), and
¢ (r) are the angular correlation functions. Here
c(r)=(cos[6(0) —0(r)]) for the S model and
c(r)=/{cos{2[6(0) —0(r)]}) for the NS model.
The factor of 2 does not appear in the S model be-
cause this model was originally meant to simulate a
magnetic system. In fact potentials of this form are
appropriate for classical magnetic systems and not for
liquid crystals. In a liquid crystal we expect {r?) to
increase during a Monte Carlo run, showing that the
system has no translational order. In addition we ex-
pect the correlation function g (x) to be liquidlike.
If, however, there is no long-range angular order
then harmonic theory predicts that (6?) ~ InN for
large N and ¢ (r) ~r™" where 7 is a small exponent
which depends on the temperature.? With LRO then
(9%) ~const+f(N), where f(N)—0as N —
and ¢ (r) —const as r — oco.

We simulated both systems in a region where (r?)
increased steadily during the simulation. In Figs. 1
and 2 we show g(x) for each model. The steady de-
cay of the oscillations in g shows clearly that there is
no translational order. We adjusted the reduced tem-
perature for each model to obtain this result. To
determine the presence or absence of angular order it
is important that the system have no translational or-
der. We confirmed these data by making plots of the
Monte Carlo trajectories of the particles. These also
showed translational disorder. Similar results were
found for g (). The distances in Figs. 1 and 2 are in
units of L/100.

Figure 3 shows a plot of (#%) vs InN for the S
model which clearly shows that this model has no
long-range order. The slope of the line is consistent
with the predictions of harmonic theory.? To make
this prediction we used an elastic constant, for the
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FIG. 1. g(x) vs x. For the S model, N =256,
T*=kgT/e=1.6, poc?=0.856, «=0.8, and x is the molecu-
lar separation in units of L/100. Number of passes is
16 000.

angular displacements, of 4ea. Our confidence in
these data is in part based on our experience® with the
magnetic X-Y model where we were able to generate
similar data for the magnetic order. We should also
mention that Young and Alder’ have shown that the
positional disorder in the two-dimensional hard disc
system increased without limit as InN. The (8?) data
for the NS model after long Monte Carlo runs have
error bars that are too large to allow us to determine
the dependence on N. Because this model has a
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FIG. 2. g(x) vs x. For the NS model, T*=2.0, N =256,
a =4, pa5=0.206, and x is the molecular separation in units
of L/100. Number of passes is 7200.
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r harmonic predictions.? A virtually identical curve is
found for c(y). However, in the NS model, Fig. S,
040k ¢ (r) rapidly reaches a constant value. This is strong
evidence that LRO exists in this model. Indeed, un-
less there is a very slow decay of the asymptotic
value this result shows we have long-range order.
<% L We note that it is easier to show the asymptotic form
0.30 of ¢ (x) than it is to show that (#%) remains finite as
N increases. To find the asymptotic form for ¢ (x)
025k we only have to simulate one system with a large
enough number of molecules. To determine the
behavior of (2) we have to simulate several systems

0351

o201 with different N values—including at least one with a
value for N considerably larger than that used for
015 F c(x). Moreover, (8%) and (r?) take a much longer
¥ time to reach equilibrium than do the correlation
L . n . N . functions. This explains why we can find strong evi-
30 40 50 ' ‘;O 70 8O dence for LRO in ¢ (x) but cannot detect it in (62).
n

(Note that since the box is longer in the x than the y
direction for most values of r, r =x.)
We now discuss the reasons why we have found

FIG. 3. (6?) vsInN for the S model. T*=kgT/e=1.6,
po?t=0.856, a=0.80. Number of passes averaged over as

follows: N =16, 153600 passes; N =64, 64000 passes; . o
N =256, 16000 passes; N = 1024, 4000 passes; N = 4096, LRO in the NS system and the phase transition from

4800 passes. About 30% of the passes were used in each t.he .orderfad liquid-cry.stal phase t? the disordered

case for equilibration. liquid. First the continuum elastic theory, which is
nearly always qualitatively correct,’>* may not work
in this two-dimensional (2D) system because it does
not predict LRO.2 In 3D the molecules can roll
arcund each other using three degrees of freedom so
that the orientational degrees of freedom are only
loosely coupled to the translational degrees of free-
dom. This is not true in 2D, which necessitates a
continuum theory where this coupling is strong.

Such a theory has not been constructed. Nelson and
Pelcovitz® have shown that, if the two Frank con-
stants for splay and bend are not equal, nevertheless
they are renormalized at very long wavelengths where
they become equal. Thus, LRO may appear to exist
over many interparticle spacings, but not on longer-
length scales. This idea was extended by the work of

much more complicated potential the computation
times were much longer than for the separable
model. In addition the strong coupling of the angular
and translational degrees of freedom appear to in-
crease the Monte Carlo relaxation times. These
differences prevented us from acquiring data of com-
parable accuracy.

In Fig. 4 we show a plot of the angular correlation
function for the S model. In this model there is a
monotonic decrease in the correlation function ¢ (x)
consistent with a power-law decay. Harmonic theory?
based on small deviations from perfect angular order
predicts that the correlation function will have a
power-law decay ¢ (x) ~x~™. This type of decay is of
the same form as that predicted in other two-
dimensional systems where strong fluctuations des-
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troy ‘‘long-range order.””? If the data are fitted to a
power law then the exponent 7 is consistent with the
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FIG. 4. c(x) vs x for S model. The parameters are the FIG. 5. c¢(r) vs r for NS model. The parameters are the

same as in Fig. 1. same as in Fig. 2.
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Ostlund and Halperin® who suggested a crossover
from the two behaviors as a function of temperature
and system size.

If LRO exists, then the Kosterlitz-Thouless!®
theory of 2D phase transitions cannot be adequate
for our NS model since that theory assumes that the
Hamiltonian can be broken down into a nonsingular
continuum part and a disclination part. The strong
coupling of the translational and orientational degrees

of freedom prevents such a simple decomposition.
One might speculate that the transition to angular
disorder will be first order.
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