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Motion of damped Langmuir solitons in inhomogeneous plasmas

S. Bujarbarua
Department ofPhysics, Dibrugarh University, Dibrugarh 78-6004, India

E. W. Laedke and K. H. Spatschek
Fachbereich Physik, Universitiit Essen, D 4300-Essen, Federal Republic of Germany

(Received 1 December 1981)

The dynamics of envelope solitons accompanied by density depressions (cavitons) is
analyzed with the use of the driven Zakharov equations for inhomogeneous plasmas;
damping effects are included. The acceleration in a spatially inhomogeneous plasma is
found to be dominated by ion inertia, in contrast to the corresponding (adiabatic)
Schrodinger predictions. The maximum speed is the ion-sound velocity. The dynamic-
plasma response hinders the center of the wave packet from obeying a Newtonian force
equation with the inhomogeneity acting as a force. Damping terms in the high-frequency
equation introduce a new acceleration mechanism which is investigated explicitly. We
analyze these effects on the basis of a moment method which starts from conservation
laws. Finally, the complete set of equations, in the presence of a driver, is solved numeri-

cally. Energy transfer and relaxation oscillations are investigated.

I. INTRODUCTION

Since the discovery of the soliton many papers
dealt with the mathematical and physical aspects of
integrable systems. Later on, to cover more realistic
physical situations, a singular perturbation theory
was developed' to describe the long-time cumula-
tive effects of weak perturbations on solitons. For
example, it was shown how the nonlinear
Schrodinger soliton can become synchronized to a
periodic external field and how it moves in gradual
field gradients.

In plasma physics, instead of the nonlinear

Schrodinger equation the so-called Zakharov equa-
tions are often the proper nonlinear equations. The
Zakharov equations consist of an averaged high-

frequency equation which describes, e.g., the en-

velope of an Langmuir field and a coupled equation
for the (linearized) plasma response in the presence
of the ponderomotive force of the Langmuir wave.
No inverse scattering transform exists for the Za-
kharov equations. Therefore one might think of
treating the dynamic-plasma response as a perturba-
tion on a nonlinear Schrodinger equation in order to
apply the well-developed perturbation technique.
There are no objections against such a treatment as
long as the dynamical effects are small. If one
wants to study the motion of perturbed Zakharov
solitons, e.g., the effect of spatial inhomogeneity,
such perturbational calculations would treat the in-

homogeneity (and, in addition the external field,

damping, etc.) on the same footing as the dynamic-

plasma response. However, a perturbation theory
on the fully developed Zakharov soliton would be
more desirable in many physical applications.

Therefore, in the past, mathematically less-

rigorous but physically more-plausible methods
have been proposed " to investigate the motion of
perturbed solitons when the zeroth-order equations
are nonintegrable. One commonly used treatment
consists of approximate solutions of the balance
equations. We shall apply this moment method
here.

We want to investigate the motion of Zakharov
solitons in the presence of spatial inhomogeneity,
damping, and a driver. Physically such an investi-

gation is motivated by many applications. We men-

tion only the mode-converted localized electron
plasma wave at the critical density. ' " The low-

frequency ponderomotive force of the Langmuir
wave drives the plasma, locally creating a density
cavity. Depletion of the local plasma density allows
the cavity to trap the high-frequency fields. The
cavity carrying the local electric field then pro-
pagates out from the resonant region in an inhomo-
geneous plasma. It is still influenced by the incom-
ing radiation; this coupling is usually modeled by a
constant driver. When the amplitude of the soliton
increases because of energy transfer from the driver,
its width is expected to shrink and Landau damping
might become important.

This type of problem was recently considered
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analytically. ' ' '" Chen and Liu presented results
for soliton generation within the static approxima-
tion. Then the soliton can be strongly accelerated
down a density gradient. This acceleration will be
reduced by ion inertia. " One purpose of this pa-
per is to demonstrate this effect in more detail. In
addition we want to investigate the effect of damp-
ing' ' on the motion of the soliton. In the case of
the nonlinear Schrodinger equation, no essential
new effects are expected. However, for the Za-
kharov equations the situation is different as has
been first pointed out by Chukbar and Yankov. A
damping of the high-frequency wave can lead to ac-
celeration of the soliton.

The plan of the paper is as follows. In Sec. II we

derive the basic balance equations and the corre-
sponding ordinary differential equations for the sol-

iton parameters. In Sec. III we study the undriuen

Zakharov equations in an inhomogeneous plasma in
the presence of damping. The undamped inhomo-

geneous case is solved analytically. The results are
compared with previous predictions. Next, the ac-
celeration because of damping is demonstrated. In
Sec. IV we allow for a driver. Analytical estimates
and numerical results for the driven inhomogeneous
case with Landau damping are presented. The pa-
per is concluded by a short summary and outlook in

Sec. V.

II. BASIC EQUATIONS

We describe the evolution of the electric field E
by a nonlinear Schrodinger equation in which the
density modification 5n is governed by the ion-
acoustic wave equation with the effects of the pon-
deromotive force included self-consistently. In the
one-dimensional electrostatic approximation and for
small driving fields E~, the basic equations are

2' +3~A' 2 ~ +L E E+rE. BE 2BE Sn x
Bt ~ 'Bx' ~ n, L

a'Sn , a'Sn I 8 [ E ('
Bt2 ' B~2 16am; Bx2

Here,

co =(47rnpe /m )'

is the electron plasma frequency,

a =(T /4~n e')'"

(2)

is the electron Debye length, L is the characteristic
length of the (linear) density inhomogeneity,

c, =(T, /m;)'

is the ion-sound speed, and I is the damping coeffi-
cient. Introducing the units v 3/roz, and v 3A,, for
normalization of time and space, we find" for

E/( 167Tn p T ) ~E
I /co~~I', 5n /no n, an——d a =V 3A,, /L,

BE BEie + —(ax+n )E=Ed+t I E,
Bx

(3)

(4)

The parameter e is given by the electron to ion mass
ratio, @=2(m,/3m;)'; co~; is the ion plasma fre-

quency.
In order to solve Eqs. (3) and (4), we apply the

approximative but powerful moment method. The
following modified conservation laws are used.

For the plasmon number we get

+oo +ce +oo
ie f EE'dx =—Ed f (E—E')dx —2iI f— EE'dx, (5)

after multiplication of Eq. (3) by E, adding the complex conjugate, and integration. Here and in the follow-

ing we assume that all quantities are localized in space. In a similar way, we find for the total momentum

B +oo +ce +oo—f (ieEE„'+nu)dx = —a f EE'dx 2iI f E—„"Edx, (6)

where the velocity u is related to the density depression n by

Bu Bn

Bx Bt

The energy balance yields
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f (E„E„'+nEE + —,n + —,u2)dx

+co a +00 +co= —a—f xEE dx Ed— f—(E+E )dx+iI f E E*— dx . (8)—00 —oo at at

Eqs. (5), (6), and (8) correspond to the three exact conservation laws for the unperturbed Zakharov equations.
In addition, we use the balance equations for the center of gravity of the motion and the phase l(. We get

+00 +00 + 00

ie f—xEE'dx = —f [2EE'+xEd(E E')]—dx —2il f xEE'dx

—e f f,EE'dx= f [E„E„+(ax+n)EE + , E~(E—+E*)]dx.

Introducing the five time-dependent parameters xo, q, q, a, and b, we use in the balance equations

E=~&(1 xo)'~—qri sech[ri(x —xo) ]exp[i(ax +b )],
n= —2' q sech [r)(x —xo)],
u =—2r)2q'xosech [ri(x —xo)],

(12)

where the dot denotes derivative with respect to time. In this ansatz velocity, amplitudes, and width as well as
the phase of the soliton are free parameters.

Introducing Eqs. (11), (12), and (13) into Eqs. (5), (6), and {8)—(10) we get the following five coupled ordi-

nary differential equations:

e [q ri{1——xo)]= Ed(1 x—o—)'~ q sec—h sin(b+axo) —2I {1—xo)riq~,

at 3
—[eariq (1—xo)+ —ri q~xo]= —a(l —xo)riq2 —21'ar)q (1—xo),

q g(1 —xo) —,g +a ——,q g +&xo + Edq(1 —xo)' cos(b+axo)sech
2'

+ —, g q + —,g xoq =2I (1—xo)gq (b+axo), {16)

(2a —exo)gq (1—xo)= +(I—xo) sech tanh cos(b+axo),-2 d ~ ~ 2 )/2 am' a&
2vZ ri . 2q . . 29.

0—{b+ "o)= ri +u +axo qri + [—qg—(I—xo)'~ ] 'sech cos(b+axo) .

%'e should note that the additional linear conserva-
tion laws

and

l

amount of radiation of ion-sound waves. 9

%e have not been able to solve these differential
equations (14)—(18) analytically. Therefore, in Sec.
III we treat some limiting cases and in Sec. IV we
present numerical solutions of the initial-value
problem.

are not appropriate since one can not expect that
they hold for the localized solitonlike solutions
separately. They can be used to estimate the

III. THE UNDRIVEN SOLITON (Ed ——0)

If we set Ed ——0, the problem considerably simpli-
fies. Physically, this situation occurs far from the
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resonance, where the soliton moves in an inhomo-

geneous plasma only under the influence of damp-
ing. Then Eqs. (14)—(18) simplify to

e—y= —2I y,8
Bt

(2a —exo)y =0,

—e(b+axp)= 3q +a +axp ——,q q, (25)

3 4.
Bt
—(cay+ —g q xo)= —ay —2I ay, (22)

y:—q g(1 —xp) .=2 '2
(26)

[y—( 3
rl'+a 3q—'r) +axo)

+ , rl'(1+—xo)q']=2ly(b+uxo),
The rest of this section is devoted to a discussion of
this set of equations.

A. Undamped inhomogeneous case
(I =0)

Setting I' =0, we obtain from Eqs. (21)—(24) [Eq. (25) will be an independent differential equation for b],

qoqoxo+ 3q g xo= —aqogot,
2

2 ~ 2 3 s ~ 2 3 4 2 4 1 2 1 ~ 2 3 ? 2 4 1

4
—9oqoxo —r)oqo(1 —xo) q [(—,q —

~ ) —(2q —3»ol+rloqo( 3qo —
3
)= —aqor)oxo, (2g)

if we set g(t=0)=go xp(t=0)=O
q(t =0)=qo.

Making use of the identity

d
xo t= xo,

Jxo dxo

one finds after some algebra

e . 4q' xot= — xp-
2a 3a (1 xo )&

(35)

b= ——xp .

The variation of b with the time follows from Eq.
(25). Note that for large t, this equation can be ap-
proximated by

(q —1)(xo—1)= —2xpq {q —1) . (30)
Lfx p

Thus, either

For completeness we present the solution for a,

a =exp/2 . (37)

q:—1 (31) In Fig. 1, the relation (35) is depicted for the value

or

q =q, (1—«, )-2 2 '2 —1 (32)

are the solutions. We disregard the first one, Eq.
(31), since it is unstable. Any fluctuation will cause
the solution (31) to Aip to (32). Together with the
formula

0.8

q q(1 —xo)=const,

which follows from Eq. (21), we immediately get

(33)
0.2-

g =const. (34) 0
)O-1 1Q ]O2

Setting, for simplicity, qp ——1, we get from Eq. (27)
the time variation of the velocity xo in the implicit
form

FIG. 1. Plot of the velocity u (in units e, ) vs time t (in
units V3/cop, ) for a=0.003 and Eq=l'=0. Broken line
depicts the result of Chukbar and Yankov, Ref. 6.
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g=0. 1. We clearly see that the maximum speed is

~xo
~

=1, corresponding to c, in dimensional

units. This termination originates from the second
term on the right-hand side of Eq. (35). Note that
the first term is identical to the nonlinear
Schrodinger result when the dynamic-plasma
response is ignored. Because of ion inertia now the
acceleration is much smaller than for the pure
Schrodinger case.

Chukbar and Yankov calculated the velocity of
an undamped soliton in an inhomogenous plasma

by a different (perturbative) method. If we rewrite
their result in our notation, it reads

8 22a 8g
E 3E

Integrating with respect to time and using the same
initial conditions as before we obtain

E . 4'9o 3 xo 1 xot= — xp—
2a 3a 2 (1 x ) 4

1+xp——ln
1 —xp

(39)

We have also shown this result graphically in Fig.
1. Although the curve is not identical to our result,
the two curves reasonably agree. This is an addi-
tional strong argument for the validity of the mo-

ment method used in this paper.

B. General aspects

We find the new result in our investigation that
the width g

' is constant. This mathematical re-

sult can be supported by physical arguments. The
dynamical behavior of the width of the soliton is

described by the following balance equation:

+oo +oo + CS2

iE f —(x xo) EE'—dx= —4 f (x xo)EE„'d—x —2 f EE'dx

+E f (E' E)(x —x —) dx —2iI f (x x)2EE—'dx, (40)

which follows from the perturbed Zakharov equa-
tions (3) and (4) after some straightforward algebra.

Introducing the ansatz (11)—(13) into Eqs. (40),
we get

I

equation (40) to the closed system of equations
(21)—(25), we do not find a contradiction. This
strongly supports the present method on physical
grounds.

e—(1—xp)q
a 222

6g

2

q (1—xp).
31

(41) C. Acceleration because of damping

Combining Eqs. (21) and (41), one finds

a -2=
at

(42)

Since y+0 can be assumed without any loss of gen-

erality, we obtain g=const, which agrees with Eq.
(34).

This result is interesting also in another respect.
By adding the additional, in principle, independent

We now want to demonstrate another effect
which does not occur when the dynamic-plasma
response is neglected (as it is done in the cubic non-

linear Schrodinger case) ~ For that we can even con-
sider a homogeneous plasma (a=0) but retain the
phenomenological damping coefficient I . From
the basic equations (21)—(26), with the initial con-
dition qp

——1, we obtain the differential equation for
xp,

( —, +4xp)g exp( —2I t/e)(1 —xpp)
xp +

2 (1—xp)

16 I
g xp( 1 —xp ) exp( —2I t/e)( 1 —xpp )

~ 2

3
(43)

where xpp is the initial velocity. Since Eq. (43) clearly shows

~ ~

xp I xp (44)
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we have proven the existence of acceleration be-

cause of damping. In Fig. 2 the solution of Eq. (43}
is shown. We have also depicted the result of
Chukbar and Yankov, which, in our notation,
reads (a =0) Q8

xo —+ —,q (1+5xo)(1—xo)

=4—v)'xo(I —xo) '.
Again we find reasonably good agreement. We re-
mark that such an acceleration due to damping does
not folio~ from the Schrodinger description (when
ion dynamics is neglected). This can be clearly seen
from the perturbation treatment in Ref. 7.

We now generalize these findings to the undriuen

inhomogencous case in the presence of damping.
Then Eq. (43) has to be replaced by (for xoo ——0)

( —, +4xo)rl exp( 2I'r/e—}
xo —+

2 (1—xo)

qxo(1——xo) exp( 2r r—/e)
16 I
3

(46)

and Eq. (45) should read

xo —+ —,g (&+»0)(&—xo) '

0.2-

0
0 20 IO 60

t
80

FIG. 3. Plot of the velocity u (in units e,}vs time f (in

units V 3/mp, ) for the undriven case (Ed =0). Parameter
values are a=0.003 and I =0.003.

enhances the velocity over that due to inhomogenei-
ty. With increasing inhomogeneity strength and/or
damping the velocity reaches sound velocity faster.
Note that soon after a few characteristic ion times

(~p,. ) the sound velocity is reached for realistic a
and I values. Then the velocity will not grow

anymore. This has strong consequences for the po-
sition of the soliton. In contrast to the Schrodinger

prediction, after a few characteristic ion times

(cop, ) the soliton is still close to the resonance re-

gion (x =0). This will be important for thc driven

case which we will investigate now.

=4 rJ xo( 1 —xo ) —0 . (47) IV. THE DRIVEN SOLITON (Eg~)

In Figs. 3 and 4, we have plotted the solutions of
Eqs. (46) and (47). They show that damping

We now return to the general case Ed&0 as
described by Eqs. (14) to (18). Before presenting the

80

O.c,-
40-

0.2- 20-

200 4h 60 80

FIG. 2. Velocity u (in units c,} vs time t (in units

~3/pl„) for I'=0.003 and Eq=a=0 Broken line de-.
picts the result of Chukbar and Yankov, Ref. 6.

0
0 20 60

FIG. 4. Posltloll xp (in units V 3A,,) vs time t (in units
l/3/cop;) for the same parameters as in Fig. 3.
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numerical solutions, we briefly discuss the damping
decrement I. So far we set I =I o (constant)
modeling some collisional damping. In order to
also incorporate the Landau damping rate,

and the density depression

(52)

2
QP~ 3 N~

(g I )3 2 2I 2 2

where u, is the electron thermal velocity and k the
wave number of the Langmuir wave, we proceed as
follows. %e use the dispersion relation

ro =a~(1+3k A.,),
to eliminate k. Then„we take into account the spa-

tial inhomogeneity and the definition of the critical
density to find

1/2

I.
I

(50)

Xexp[2(axo) ']+I'0,

where I o is the collisional damping rate. %'e there-

fore have a change of the damping rate with the sol-

iton position xo. This is physically plausible since
the soliton is moving into the underdense region.
For a fixed frequency of the carrier wave the wave

number k thereby changes with position. This is
exactly the meaning of Eq. (51) when seen in com-

parison with Eq. (48).

The numerical solutions show the following gen-

eral behavior. The soliton formed will have its
height increasing because of energy input due to the
driver. The soliton saturates and becomes damped
when it moves out of the resonance region due to
acceleration in the density gradient and because of
damping. The width of the soliton remains approx-
imately constant. Large relaxation oscillations oc-
cur.

To demonstrate these results in more detail we
show in Figs. 5—13, for different parameters Ed
and o,', the time dependence of three characteristic
quantities: the velocity U =

~
xo ~, the "energy"

»s«ing Eqs. (49) and (50) into Eq. (48) and using

the appropriate normaliZatiOn, , the result for I is
1/2

(1+axo) ( —cxo) /

under the influence of collisional as well as Landau
damping.

Let us ftrst consider the velocity. The accelera-
tion, and thereby the velocity of a soliton, is strong-

ly inAuenced by ion mass effects. After an initial

phase, the averaged velocity approaches the result
for E~ ——0. The velocity is always smaller than c,.
The bigger a and I, the larger is the acceleration.

In Figs. 6, 9, and 12 the relaxation and saturation
behavior of the field energy is shown. %'e first ob-
serve that the field energy reaches a peak on the ion
time scale. Saturation occurs in the undamped
cases after many ion periods. If we compare with
the curves for the Landau damped situation we

recognize that Landau damping will change the re-
sults significantly; much less energy is contained in

the solitons.
The density depression does not show large relax-

ation oscillations. As is seen from Figs. 7, 10, and
13 it slowly increases with time. Because of the
coupling with the heavy ions, the response of the
Quid density to radiation pressure oscillations is
quite moderate.

The numerical results show that Landau damping
becomes important after the soliton has traveled
several Debye lengths away from the critical density
(xo ——0). By inspection of formula (51) we can ex-
plain the drastic decrease of W in Fig. 9 (for
t &400) and Fig. 12 (for t &80) by the Landau
damping. Before these times, the constant collision-
al damping I o is actually dominant. It causes the
smooth damping of trapped radiation as seen in

Fig. 6 for all times, in Fig. 9 for t & 400, and in Fig.
12 for t & 80. But when the soliton is moving, into
the underdense region, for a fixed frequency of the
carrier wave the wave number increases with posi-
tion. For +=0.02 and t &400, as well as o, =0.2
and t&80, the Landau damping term overcomes
the collisional damping rate I 0. Note that formula
(51) tells us that the larger a is, the earlier Landau

damping becomes important. Then, within short
times the total daInping rate increases significantly.
Simultaneously, there is a drastic change in velocity
as seen in Figs. 8 and 11. The reason for that ac-
celeration because of damping has been discussed in

Sec. IIIC. Finally, less trapped radiation results,
via Eq. (4), in a smaller density cavity. When we

solve for n, at least in the adiabatic approximation
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0.08-

0 06.

0
0 1500

t

FIG. 7. Absolute maximum density de ression 5ensi y epression n (in units no) vs t (in units 2 m
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FIG. 8. P. Plot of velocity v vs time t for E =0.014 14 and a =0.02 (see also Fig. 5).
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FIG. 10. Sn vsn vs t for the same parameters as in Fig. 8 (see also Fig 7)~ ~
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0$-

LJ

LJ

0.6-
f~

I

)

I

I

0.2-
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0
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0
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FIG. 12. 8' vs t for the same parameters as in Fig. 11
(see also Fig. 6).

FIG. 11. u vs t for Ed ——0. 1414 and a=0.2 (see also
Fig. 5).

the velocity also enters the picture. There are two

competing effects: less trapped radiation (after
damping) needs a smaller cavity but larger velocities
make a larger cavity depth necessary. In Figs. 10
and 13 the resulting density depressions are present-
ed where we can also see significant changes for
t )400 and t )80, respectively. %Then 8' has been

damped out, the ion equation (4) reads

Bn Bn
(54)

o.e-

indicating that the density depression can propagate
unchanged in both directions. In our results we
have shown only pulse propagation in one direction
leading to 5n =const (U & 1 after sufficient damping)
in Figs. 10 and 13.

0.2-

8. Analytical estimates

Besides the already discussed (or obvious) effects
of acceleration, energy growth, and damping et
th

) ) gi ec-)
t e relaxation oscillations are the basic new features
of the driven case. %e now briefly estimate the fre-

0
0 100

FliIG. 13. 5n vs t for the same parameters as in Fig. 11
(see also Fig. 7),
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b+ax, =——+—t .a
2 2E'

Furthermore, for e g q we have

sech =1
2'

(58)

and, in the undamped case, we get from Eq. {14)
' 1/2

d8' m 8'
sin ——+—t

a
2 26'

(S9)

The solution of Eq. (59) is

1/2
3/2 1/2 1/2 1/22 a

a1/2t

1/2~1/2 1/2~1/2
(60)

quency of these oscillations.
%e have learned already that for t~ 00,

~
xo

~

~1 and therefore

ixo i
-1

grows unlimited. Now, Eq. (18) can be approximat-
ed by

d a—(b.+ax ) —t
df

where we have neglected all bounded terms as well

as the term proportional to Ed. The latter neglec-
tion follows from

(1—xo) -t ~&t .—1/2 1/4

We take the following solution of Eq. (56):

Looking at the graphs (see Figs. 6, 9, and 12), we

recognize that exactly with these frequencies a soli-
ton is heavily pulsating. This phenomenon might
be interpreted as a quasiperiodic generation of
electric-field peaks and ion-density cavitons in the
resonance region.

V. SUMMARY AND OUTLOOK

In this paper we have investigated the motion of
Langmuir solitons in an inhomogeneous plasma
under the influence of damping and driving terms.
We have shown that ion inertia effects as well as

damping effects are very important. Our numerical
results show the energy transfer from the driver to
the soliton and show its damping and acceleration.
Analytical estimates for the relevant physical
parameters are derived.

The method used is approximate and can describe
only the gross behavior of the exact time-
development. The emission of ion sound, the ap-
pearance of fast particles, and the generation of
multisolitons and spikes need a more detailed inves-

tigation. Some of these problems are under investi-

gation.
Another comment is in order: The Zakharov

equations are only valid in the subsonic region and
not when

~
x&&

~

—1-O(e). This puts an upper lim-

it in time on the validity of our physical results.
However, the moment method could be also applied
to the near-sonic regime when a Korteweg —de
Vries-like density response is taken into account.

Finally we mention that a related method has
been successfully applied' to similar problems in

molecular systems.

where C(z) is the Presnel integral. Prom {60)we see
that the characteristic frequency at the nth max-
imum,

' 1/2

scales as a' /
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