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Bond-orientational order in materials that form three-dimensional uniaxial solids is in-

vestigated. New phases are found that scatter light strongly, like nematics, but with a
quantitatively different anisotropy of scattering. X-ray scattering from these phases would
also exhibit novel anisotropy. This type of order may occur at higher temperatures in ma-
terials that form "stacked hexatic" phases at lower temperatures, and will occur whenever
a hexagonal crystal melts via dislocation unbinding.

I. INTRODUCTION

One of the most exciting recent developments in
the study of liquid crystals has been the theoretical
prediction' of new phases characterized by
"bond-orientational order" (BOO), and the subse-
quent experimental discovery of a bulk example of
such a phase. In this paper I study the implications
of BOO for three-dimensional systems of simple
hexagonal symmetry. These are of interest because
such phases would scatter light strongly, as do
nematic liquid crystals, ' due to large fluctuations
of the bond angle fields which are the Goldstone
modes for this system. (In contrast, the BOO
phases of cubic or icosahedral symmetry do not
scatter light strongly because their symmetry is too
high. ) This enhanced light scattering provides a
much more experimentally accessible signature of
the appearance of bond-orientational order than the
anisotropy of the x-ray structure factor that is the
chief operational manifestation of cubic or
icosahedral BOO.

The type of order considered here is that of the
stacked hexatic, but without the smectic layering,
and is sketched roughly in Fig. 1. A unique direc-
tion n is singled out by a clustering of the nearest-

neighbor bonds either along or orthogonal to n. (In
the stacked hexatic n is just the normal to the
layers. ) In one of the most ordered phases the pro-
jections of the nearest neighbors of a given molecule
onto the plane normal to n has (on average) hexago-
nal symmetry, with the orientation of the hexagonal
pattern persisting throughout the sample. (A more
precise characterization of the order is given in Sec.
II.) In short, the symmetry of this phase is like the
conventional uniaxal nematic, but with the azimu-
thal isotropy about the uniaxial director broken

down to sixfold order.
Phases in which the sixfold ordering has disap-

peared but the uniaxial (n) order persists are also
possible; these of course just have conventional
nematic symmetry. I will hereafter refer to the
nematic and sixfold phases as N and N+6, respec-
tively.

In addition, there are phases in which the
nearest-neighbor bonds are arranged icosahedrally
{as discussed by Steinhardt et al. ), and a phase in
which this perfect icosahedral pattern is uniaxially
distorted. The latter phase will have the same light
scattering properties as the N+ 6 phase, while the
former would not scatter light any more than an
isotropic fluid.

One or more of these phases could occur in any
material that forms a hexagonal crystal as an inter-
mediate phase between the crystal and liquid state,
coen if the constitutent molecules or atoms are spher
ical. This last point must be emphasized: The or-
der I am considering has nothing to do with the
orientations of the constituents of the material, but
rather, only concerns the bonds' between them;
hence the molecules themselves need not even be ca-
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FIG. 1. Configuration of nearest neighbors in the
N + 6 phase. In this illustration the nearest neighbors lie
predominantly near the plane whose normal is defined as
n; the projections onto the plane form a hexagonal pat-
tern.
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pable of singling out a direction at all. This is a
completely novel feature of these phases and is pre-
cisely the property that characterizes the two-

dimensional hexatic' and the three-dimensional cu-
batic and icosahedral phases as mell.

Either the X or E+ 6 phases could be easily ex-

perimentally distinguished from an isotropic liquid

by their milky appearance, which is a consequence
of the enhanced light scattering. Such an observa-
tion in a system composed of spherical or nearly

spherical molecules would be the most striking (and

easily observable) manifestation yet seen of bond-

orientational order, and ~ould clearly display its in-

dependence of molecular-orientational order.
Qf course, such a milky phase mould hardly be a

surprise in a material composed of nematogens;

indeed, the X phase in such a system is just an ordi-

nary nematic; the uniaxial order of the bonds is in-

duced by that in the molecular directors or vice ver-

sa." The X+ 6 phase, however, mould be quite
novel even for nematogenic systems. The broken
azimuthal rotational invariance mould have two im-

portant experimental signatures: First, light

scattering assumes a more complicated dependence

on the direction of the scattering wave vector q,
and second, x-ray scattering shows a sixfold in-

plane modulation. More specifically, taking the (i)
z axis to be (orthogonal to) along the mean direction
of n, the spatially Fourier-transformed thermal
Auctuations in n (to which light scattering at wave

vector q is proportional} are given by

AT
(nL(q)nL ( —q))

g2 2 2
4q As

Egqq+E7q,

kgT
=&2qi+&3q.

(nr(q)nT( —q))

nL(q)=qz n(q)/qz (1.1c)

&T(q) =—(& X q~). n(q)/q~ . (1.1d)

Fluctuations in nr [Eq. (l. lb)] are the same as in
a nematic, ' while those in nL are modified by the
K4 term. Note that despite the sixfold ordering
these expressions are azimuthally symmetric; the
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FIG. 2. Phase diagram for systems with a weak ten-

dency towards sixfold ordering. Light and heavy lines

denote continuous and first-order transitions, respective-

ly.

in-plane symmetry is still too high to modulate
light scattering in the plane.

Fairly detailed suggestions as to hom the %+6
phase might be found in liquid-crystal systems can
be made with the help of a knowledge of the phase
diagram. In Sec. II a Landau theory is constructed
for these phases and solved in mean-field theory. A
variety of phase-diagram topologies are found~ de-

pending on the values chosen for the parameters in

the Landau theory. Given the paucity of systems
that exhibit hexatic 8 phases, it would seem reason-

able to suppose that the interactions favoring six-
fold ordering are quite meak; choosing values of the
parameters consistent with this leads to the phase
diagram of Fig. 2. Should this assumption of weak

sixfold ordering prove incorrect, a number of dif-
ferent topologies (Fig. 3) are possible. The
icosahedral regions are probably unphysical for
nematogenic systems (a set of long rods would

hardly seem prone to icosahedrally arranging their
centers of mass); on the other hand, they may be
fairly common in systems of spherical atoms.

In the discussion that follows I mill only consider
nematogenic systems for which BOO is already
known to exist. The result of interpolating the al-

ready known phases into the phase diagram of Fig.
2 is shown in Fig. 4. (The topology around the
point I' 1 is not known. )

To find the N +6 phase in such a material an ex-
perimentalist must somehow "tune" the Landau
parameters into the appropriate range. Operational-

ly, this might be done as follows: Suppose one has
a material which, under certain conditions (of pres-
sure, composition, etc.), exhibits the sequence of
phases HexB~SmA —+N with increasing tempera-
ture. (Many such materials are known. ' ) This
would correspond to tracing out path 1 in the phase
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FIG. 4. Interpolation of Fig. 2 onto the already known

liquid-crystal phases. Path 1 corresponds to the locus of
r2 and r6 traced out with increasing temperature in the
systems reported to date; note that this does not pass
through the N+ 6 phase. By varying external parame-
ters one might be able to move this locus to 2; continued
change of the parameters in the same direction might
lead to 3 and the N+ 6 phase. Again, heavy and light
lines denote first-order and continuous transitions,
respectively.
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FIG. 3. Phase diagrams for progressively stronger six-
fold tendencies. Light and heavy lines have the same sig-
nificance as in Fig. 2.

diagram of Fig. 4. Now let us imagine that after
changing one or more of these conditions the ma-
terial has the same sequence of phases, but with

T~z and Tz~ closer together than before (i.e., the
smectic A exists over a narrower range). This
would correspond to having moved to path 2 in Fig.
4., which passes closer to the N+6 phase. ' Contin-
ued change of the external parameter in the same
direction could thus eventually bring one to path 3
and the N +6 phase.

The above phase diagram was derived entirely
within mean-field theory, and it is important to de-

cide what features of it will persist in the presence

of fluctuations. Using Ginsburg criterion argu-
ments one can conclude fairly confidently that the
topology of the phase diagram will only be altered at
those points where, in mean-field theory, two con-
tinuous phase-transition lines cross. This only oc-
curs at the point P1 in Fig. 4. In addition, the de-
tailed geometry at P2 may be incorrect, although
the topology is correct. Otherwise, the only effect
of fluctuations is to change the critical properties of
the continuous transitions —that is, the N~N+6
transition. Because this transition involves the or-
dering of a single phase varible, it should be in the
universality class of the three-dimensional X-Y
model. One would therefore expect a A.-like
specific-heat anomaly and a correlation length g
which diverges like ! t !,where v, = —, is the su-

perfluid correlation-length exponent.
While this length might be difficult to measure

experimentally, it can be probed indirectly through
the Franck-type constants X4, E5, and K7 of Eq.
(1.1a) which can be measured by light scattering.
These are analogous to the superfluid density in He
and should vanish like' '

g
' as the transition is

approached from below.
There is a complication of the nematogenic sys-

tems, however. In studies of the Hex-B~Sm-A
transition the specific heat has been found to depart
appreciably from the helium analogy, diverging in
fact with an exponent a ——,. ' Bruinsma and Ap-
peli' have interpreted this anomaly as evidence that
the system is near a tricritical point induced by her-
ringbone packing of the nematogenic molecules.
This interpretation is supported by recent measure-
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ments' which show a small latent heat at the tran-
sition corresponding to a fluctuation-induced first-
order transition. If their theory is correct, then
these effects should modify the %+6—+N transi-
tion as well, giving rise to the same specific-heat

1

behavior (o, = —,, small latent heat) as is obser ved at
the Hex-8 ~Sm-A transition. Furthermore, the
correlation-length exponent v would then take on its
1=3 tricritical value of —,, and E4, K5, and Ep
would vanish as

~

r
~

'~. Crossover between this
behavior and a A, transition might also be observed.
If, on the other hand, the anomalous features of the
Hex-B~Sm-A transition are due in some way to
the layering of the Hex-8 phase, then the %+6~%
transition (for which neither phase is layered)
should be heliumlike over the full critical regime.

In Sec. II of this paper the Landau free energy is

constructed and the phase diagram and critical
properties are discussed, and in Sec. III the light
and x-ray scattering intensities are calculated.

II. PHASE DIAGRAM
AND CRITICAL PROPERTIES

1 /2
[6(n —

~
m

~
)]!(12n+1)

4~[6(n+
~

m
~
)]!

(2.2b)

where n and m are integers (m &n) and all other

Qi 's vanish. The only essential feature of this re-

sult is that all the nonzero Qi 's are harmonics of
just two, Q2o and Q6+6, which characterize the
uniaxial and sixfold order, respectively. Thus in

constructing a Landau free energy of phases with
this type of orientational order it should be suffi-
cient to consider only the Qi 's and Q6 's explicit-

ly, treating the others are tied to these.
This free energy must, of course, be invariant

under rotations of the reference coordinate system.

By construction, the Qi transform like quantum-
mechanical angular momentum eigenstates under

rotations; thus the problem of writing a rotationally
invariant free energy is equivalent to the familiar
one of constructing a zero angular momentum state
out of higher ones.

The sole quadratic invariants are simply

(2.3a)

As shown in Ref. 4 any three-dimensional bond-
orientationally-ordered phase can be described by a
set of order parameters Qi defined as follows: As-
sociated with each molecule a set of nearest neigh-
bors (by, for example, a Voronoi construction).
With the ath such neighbor we can associate a set
of polar angles (8,$ ) giving the direction to that
neighbor from the central one. We then define

Qi =(X &r (&

and

6

I2,6 — g I Q6m I' (2.3b)

I ) ??l2 —??Ii —m2

as follows:

while the cubic invariants can be constructed with
the 3-j symbols

[2+6( —1)"](2n —1)!!
[2"(4n +1)/41r]'

(2.2a)

where the F~ are spherical harmonics and the an-

gle brackets denote thermal averaging. In an isotro-
pic liquid the angles are distributed uniformly over
the sphere and hence all the Qi are zero except Qoo
(which is just the average number of nearest neigh-
bors). Thus a nonzero Qi with /+0 is the signa-
ture of a phase with orientational order beyond that
of a liquid, and so these quantities make useful
orientational order parameters.

This paper focuses on phases with the Q2 's and
Q6m's as the important ordering fields. To motivate
this let us evaluate all the Qi 's for a simple, perfect
hexagonal lattice. Performing the sums in Eq. g.l)
gives

2 2 2
I222=

???.i 7?f 2
—mi —m2

m&m2

6 6 6

Ptl2 —??? i —Nlg
os] Nt2

+Q6m i Q6m& Q6—m
&

—m& ~

I2 mi m2 —mi —m2
Nt ) 1ll2

&&Q6, Q6, Qg

(2.4a)

(2.4b)

(2Ac)
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large orientational Auctustions, which manifest
themselves in tremendously enhanced light scatter-
ing. One can visualize these fluctuations by imagin-

ing that, at different points in the material, the local
arrangement of nearest neighbors has the same
shape' but varies in orientation. %e can obtain

any such local arrangemcnt from some reference ar-
rangement by rotating the reference configuration
through some angle about some axis. Following
Ref. 4 I will parametrize this rotation (at each point
r ) by a vector field 8{r) which points along the ro-

tation axis and whose magnitude is the rotation an-

gle.
If we define the z axis to point along the average

uniaxial direction, then for small
~

8 ~,

8„~»~{r) =n„~»~(r) [where n(r) is the local uniaxial

direction] and 8,(r) gives the angle of rotation of
the in-plane sixfold pattern about that direction. In
the X phases, which are azimuthally isotropic, 8,
does not exist, and 8„[~~ or, equivalently, n are the
only important variables. The long-wavelength

static and dynamic properties of these phases are

therefore just the standard nematic ones.
Even in the N+ 6 or uniaxial icosahedral phases

only Auctuations of 8„and 8~ are detected in light
scattering. This is because light scattering measures

only fluctuations in the dielectric tensor, which de-

pends only on 8„and 8„:

I will keep only two of the plethora of fourth-order
invariants (namely, I2 2 and I2 6) since all the essen-

tial symmetry features are already contained in the
three cubic invariants. The free energy is then

E= r2I2 2+m2I222+u2I2 2+r6I2 6
2

+&6I666+~6I2,6+gI266 .

The mean-field phase diagram is now found by
minimizing this free energy, treating r2 and r6 as
variables and all other parameters as fixed. There
are four types of minima possible: (i) Isotropic,
which are all Q~ ——0; (ii) N, which are Qqo~,
Q60~, and all others =0; (iii) %+6, which are

Q20, Q60, Q6+6~, and all others=0; (iv)
Icosahedral, which are Q60, Q6+,~,

~ Qs5/Q60 ~

=—„,and all others=O; where in all

cases I have assumed that the orientation of the
coordinate axes has been chosen so that as many

Q~ s vanish as possible. Minimum (iv) was previ-

ously considered in Ref. 5. The topology of the
phase diagram depends upon the dimensionless ra-
tio a—=

~
W6u2/gtc2~ and upon the sign of the

product gm2. For nematogcnic materials, which
have a strong proclivity to uniaxial {Qt~) ordering,
I expect ~2 to be quite large compared to m6 and
hence, all other things (i.e., u2 and g) being roughly
equal, a should be quite small. The phase diagram
in this case is Fig. 2. With decreasing values of n
one obtains the sequence of phase diagrams shown
in Figs. 3(a) and 3(b), while when F2 ~0 one ob-
tains Fig. 3(c). This last possibility is certainly not
realized in materials that exhibit stacked hexatic
phases, since such phases cannot be continuously in-
terpolated into Fig. 3(c). The effect of fluctuations
on these mean-field results was discussed in the In-
troduction.

(3.l)6)~ =6'o+EEtl]PfJ.

(recall that 8„»=n„,» ).
Nonetheless, the existence of 8, in these systems

has important consequences for light scattering be-

cause it couples to 8„& and thereby modifies their
fluctuations. These modifications provide an in-

direct way of determining the elastic constants for
8„which cannot be measured by direct observation
of the sixfold order through, say, x-ray scattering.

To calculate fluctuations in 8 in the X+ 6 or
uniaxial icosahedral phases we need the elastic free
energy for 8(r } for uniaxial systems, which by ele-

erations must, at the har-

wing form '

III. LIGHT AND X-RAY SCATTERING

where I denotes that part of a vector orthogonal to
z. The harmonic approximation to the Fourier-
transformed 8-8 correlation function can now readi-
ly be computed. For wave vectors q in the x-z
plane the results are

AT
(8 (q)8, ( —q)&

2 2=&in+&3q.
2 2 2&4' q.

4(K5q„+E7q, ) (3.3a)

The most experimentally strking consequence of mentary symmetry consid
the type of order discussed here is the existence of, monic level, have the folio

F= —,fd r[K( (Vg 8j) +K2
~

Vq8q
~

+K3(8,8j)

+K;a,8,(V, e,)+K,(V.,8, )2+K', (V,8, ) (a, 8,)+K', ~
a,8,

~

'],
t
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kgT

(8s(q)8s( —q))
(3.3b)

in the expansion of S(q ) in spherical harmonics

S(q) = +At~(q)Yt~(q) . (3.5)

(8„(q)8s(—q) ) =0, (3.3c)

(3.4)

In an isotropic liquid S(q) should be independent
of the direction of q; but this will not be the case
when BOO is present. Then one should expect that

where K& =K& +K2 and K4 =—K4+K6.
Note that the first two terms in (3.3a) are all that

one would have in a nematic; the last term is the
correction due to sixfold ordering in the plane, and
vanishes when either q„or q, =0. The y-y and x-y
correlations are exactly the same as those of a
nematic.

Operationally, one can determine K~, K2, and K3
by looking only at scattering with either q„or
q, =0; the ratios K4/K5 and K4/K7 can then be
determined by fitting the deviation of
(8„(q )8„(—q ) ) ' from the neinatic prediction ob-
tained from the known K~ and K3. '

The orientational order can also be probed by x-
ray scattering. Here one would measure the
Fourier-transformed density-density correlation
function

The AI 's will be nonzero for all values of I and m

such that Qt~+0, i.e., A2~o and As„+p for the
N+6, and A2~0 and A6„+5& for the uniaxial
icosahedral phase, for the m, n, and p integers,
should be nonzero. This implies that

(3.6)

in the N + 6 phase, and

S(q)=F(
~ q ~,2a-, 5$-„) (3.7)

in the uniaxial icosahedral phase, where (a-,P-)q~ q

are the polar angles of q with respect to the uniaxi-
al direction, and F is periodic (with period 2m.) in its
last two arguments.
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