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The conventional thermodynamic fluctuation theory, originated by Einstein in 1907, fails
8t voluIDcs less t48n thc corrc18tloIl voluIIlc because 1t docs not 1ncludc thc cffccts of locRl

correlations. In this paper, a new thermodynamic fluctuation theory is developed in which

an Rttcmpt 1S made to 1ncludc local correlations by consldcrlng succcss1vc fluctuations 1n 8
scqucncc of systcIDs of decreasing volu1Tlc. Thc mathematics used 1s 8 path-integral formal-
ism developed recently primarily for application in irreversible thermodynamics. An impor-
tant result of the new theory is that it predicts the correlation length in terms of purely ther-

modynamic quantities, confirming a conjecture made earlier by the author on the basis of 8
Riemannian geometric model of thermodynamics. There is also a possibility that this new

theory works at volumes less than the correlation volume and, hence, that it provides a ther-
modynamic theory of crit1cal Auctuations. Unfortunately, duc to mathematical difficulties,
this interesting possibility is not put to a direct test in this paper.

I. INTRODUCTION

Thermodynamic fluctuation theory originated
%ith Einstein in 1907. Since then, great advances
over this simple theory have been made, For the
most part, however, these advances have come at the
cxpcnsc of add1ng fcatUfcs to thc theory wh1ch 11c

outside the domain of thermodynamics. As an ex-
ample, consider the program originated by Onsager
ln 1931 of apply1ng 1frcvcfs1blc thermodynamics to
spontancoUs fluctuations; this ncccssltatcs thc 1nt10-
duction of transport coefficients. As another exam-

ple, consider renormalization-group theory in which
CRlculatlons Hlust bc made by means of mlcloscoplc
system models. As 8 %'ofklng tool fof dc811ng with
Auctuations of thcfmodyn81Tlic quantlt1cs pufcly by
thermodynamic, methods, Einstein's theory has sur-
v1vcd %'1th fcw' basic 1Tlodlficat1ons.

Dcspltc its %'1dc fangc of Rppllc8b111ty, thc coll-
vcntional thermodynamic fluctuation theory fails
precisely where fluctuation phenomena are most im-
poft8nt; near cfit1cal points Rt systcHl d1Hlcnslons of
the ofder of the correlation length or less. It is 8.

thesis of the present paper that this failure occurs
because at small volumes the universe can no longer
be scparatcd 1nto t%'0 hoHlogcncous systems, Onc of
which is the Auctuating system A~, which I take to
be an open system with fixed volume V, Rnd the oth-
cf Rn 1nf1nltc reservoir. This scparatlon 1s always
ITladc 1Q tile convcntlonal thermodynamic Auctua-
t10A theory. If V4 (correlation volume), thc ther-
modynamic state of Ay 1s stI'ongly co11clatcd %'ith

that of its local surroundings. This correlation can-
not be taken into account by regarding the reservoir
to be homogeneous.

In this paper, I %'ill attempt to avoid this break-
down of the conventional theory in a way using only
thermodynam1c information. Thc bas1c Idea 1s to
cons1dcr sUcccsslvc fluctuatIons 1Q 8 sequence of sys-
tems of decreasing volume. Each system 1s enclosed
by all the larger systems in the sequence. The small-
est systcHl 1s thc onc %'hose thcfmodyQRHllc flUctUR-

tion probability distribution is to be determined.
%ith this structure w hat is important at each
volume level is not the average state of the infinite
reservoir but thc state of the next largest system in
the hierarchy.

In order to treat this problem mathematically, I
make 8 simple assumption about the fluctuation of
successive systems which allows me to apply the re-
cent path 1ntcgfal formallsIQ dcvclopcd by scvcfal
authors primarily for use in irreversible thermo-
dynaH11cs. %ith th1s 1Tlathematics, the pfob8bil1ty
of finding 8 systcHl 1Q 8 certain state 1s thc suHl of
thc contributions of 811 paths lcad1ng to that st8tc.

A major motivating factor behind the present new
theory h8s bccn to dcvclop 8 stfuctufc f01 under-
standing thc conncctlon bctwccn curvature Rnd ln-
tclactlons ln 8 fcccnt RlcIQRQQ18Q gcoIActrlc Hlodcl
of thermodynamics. ' In this model, 1t, appears that
the curvature allows one to construct a thermo-
dynamic function gG which equals the correlation
length, Pfcv1ously, howcvcf, 11ttlc justlf1catlon was
give~ for this construction aside from the fact that
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it seems to work. In this paper, at least a start to-
wards dealing with this problem has been made. It
is demonstrated that for d-dimensional systems hav-
ing volumes much greater than g G, the path in-
tegral approach agrees with the conventional theory.
At volumes of the order of g o the conventional
theory is predicted to break down and, at lesser
volumes, the new theory predicts fluctuation phe-
nomena radicaBy different from that of the conven-
tional theory. Such behavior is to be expected if gG
is indeed the correlation length.

Perhaps the most exciting aspect of this new ap-
proach is that it gives results which may be valid at
volumes less than the correlation volume. If this is
the case, the consequence would be a thermodynam-
ic theory of fluctuations applicable at small volumes
near critical points. Unfortunately, because of
Inathematical difficulties, no convincing test of this
possibility is presented here.

The outline of this paper is as follows. First the
conventional theory will be summarized in order to
create a background for future discussion and to in-
troduce notation, Second, the path integral ap-
proach will be developed. Finally, the new theory
will be examined both by calculations in the ideal
gas and the one-dimensional Ising model.

II. CONVENTIONAL THERMODYNAMIC
FLUCTUATION THEORY

The basic goal of thermodynamic fluctuation
theory is to determine the probability of finding a
system which is somehow in contact with another
system, usually an infinite reservoir, in some range
of thermodynamic states. In most eases It 1s as-
sumed that the state of the composite system con-
sisting of the reservoir plus the fluctuating system is
held fixed, and that fluctuations are spontaneous.
Also, it is necessary to require that in a real or hy-
pothetical experiment designed to test the theory,
sufficient time is allowed between measurements for
the system to have forgotton its previous state.
Measurements scpafatcd by a shorter time period in-
volve considerations of dynamics; this is beyond the
scope of thermodynamics.

Consider a closed system Az with fixed volume

Vq and fixed, conserved, extensive parameters
denoted by the n-tuple

Xa (Xa,Xg, . . . ,Xa ) .——
The X~'s are the extensive parameters in the entropy
representation; e.g., for fluids, to which the discus-
sion 1n th18 section is pnmarily directed, Xg 1s thc
total internal energy and X~,. . .,X~ are the n —1

mole numbers. Throughout this paper I will use
Greek indices to denote the coordinate and Arabic

indices to denote the system. Imagine now an open
subsystem &,, of W,„which 1 as a fixed volume V,
and whose extensive parameters

Xo ={Xo~,xo2, . . .,Xo )

fluctuate as energy and particles flow randomly in
and out. Denoted by A&, is the system Av /Av.

0 R 0

A~„which has volume Vo ——(Vz —Vo) and exten-
0

sive parameters Xo, acts as a reservoir for A q, .
The conventional thermodynamic fluctuation

theory (cft) describes fluctuations in Xo by means of
the following three axioms:

(I). A„and A~, are each homogeneous systems
0 0

to which the equations of state apply.
(II). The conditional probability of finding Ay in

a state with extensive parameters between Xo and
Xo+dXo provided A~ is in the state with extensive

parameters X~ is given by

Xo Xg

Vo V~

= Qoexp[Sa (Xg,XO) Iks]d "Xo, (2. I )

whcrc Sg(Xg,Xo) is thc cntroPy of Av when Ay

has extensive parameters Xo, kz is Boltzmann's con-
stant,

d "Xo=dXodXO .—. dXO,

and Qo is a normalization factor.
(III). Entropy is an additive function, though not

a conscrvcd onc.
The axioms above are operationally equivalent to

the fluetuation postulate eloquently set forth by
Lewis in 1931. In the limit V~/Vo~ ao, axioms
I—III agree with Callen's postulate II'.

Some authors, including Landau and Lifshitz,
are inconsistent in their statement of Eq. (2.1) by al-
lowing the coordinate system Xo to be arbitrary.
The problem with this is seen on making a coordi-
nate transformation from Xo to n new coordinates
Fo. Since the entropy is a function of state, it
transforms as a scalar, but the transformation of
d "Xo introduces as a multiplicative factor the Jaco-
bian J of the coordinate transformation. Generally,
J is not constant and cannot simply be absorbed in
the normalization factor Qo. Hence, Eq. (2.1) can-
not retain the same form in all coordinate systems.

An attempt to make the form of Eq. (2.1) coordi-
nate invariant is to approximate J by a constant.
Let me explore the nature of this approximation
with a simple example. Consider a system in which
there is only one independent fluctuating parameter
so that Xo ——Xo=x. Take the limit V~/Vo~ oo
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and let Vp be sufficiently large that on expanding
SR(x) about its maximum value at x* in powers of
M =(x —x*) terms beyond the second order in M
are negligible over the range of reasonably probable
fluctuations. Making the coordinate transformation
y=y(x) and expanding M to second order in
4y =—(y —y~), ~here y*=y(x*), yields

needed to enable us to neglect the third-order term
in the exponential, namely, x'&~x "Ay over the fu11

range of important fluctuations.
Landau and Lifshitz, as well as Einstein original-

ly,
' proceeded by truncating the entropy expansion

beyond the second order and by approximating the
Jacobian by a constant. Axioms I and III imply that

tl

P(hy)dy=constxx' 1+, by
X

II

Xexp ——,gby 1+, hy dy,

(2.2)

where g = —{d SR /dy )~ ~~, and the derivatives x'
and x" of x(y) are evaluated at y=y*. (Here and
henceforth, I express entropy in units of ks. ) It is
seen that the criterion for being able to neglect the
first-order term in the Jacobian is the same criterion

where I have defined the densities pp=XO/Vo and

pp=XO/Vo and the entropy per unit volume
s=s(p}. Expanding in Eq. (2.3) to second order
about the maximum at

pp PO PR =+R /VR

and using

APO ———( Vp/Vo )hp()

and Axiom II yields

PO PR
~G V V

d "Po——
1

2m {Vp
' —VR ')

n/2

g(ps} '«p I ] g p(ps)bpobpo 4"po,ir2 p n

2(Vo —VR )
(2.4)

—8 s2

guP(PR) —=
~~p ~p

(2.5)

and g(PR )=—detg(PR ). Summation over repeated in-
dices is understood throughout this paper. The ma-
trix of response functions g is positive definite since
the entropy is a maximum when App

——0. Equation
(2.4), which is the Gaussian approximation to the
cft, will henceforth be referred to as the Gaussian
fluctuation theory (Oft}. In the limit Vs/Vo~ ao,
Eq. (2.4) agrees with Eq. (15.50) in Callen. It
should be noted that the form of (2A) is coordinate
invariant.

In practice, the Gft rather than the cft is usually
used. To my knowledge, it is not clear that the cft is
actually better than its Gaussian approximation.
The question is whether or not the singling out of
the extensive parameters Xp as special coordinates in
Eq. (2.1) is really justified. At least in the infinite
reservoir limit, Callen states that the cft yields the
correct third and higher moments of fluctuation, but
he does not seem to give any independent criterion
for deciding what is "correct." To test this issue ex-
perimentally would require a system small enough
that the Gaussian term in the entropy expansion
does not completely dominate the fluctuations and
yet not so small as to make unreasonable the appli-
cation of Axiom I. I am not aware of any such ex-

periment which has previously been carried out.
This issue will be tested in Sec. IV A by means of

a numerical "experiment" on the monatomic ideal
gas at small volumes. It will be seen that the cft
does not yield results demonstrably superior to those
of the Gft.

An interesting attempt to use higher-order terms
in the entropy expansion is Smoluchowski's theory'
of critical fluctuations. This theory is, however, cri-
ticized as unsatisfactory by Klein and Tisza be-
cause Axiom I fails badly in the region of its appli-
cation.

Let me finish this discussion of the cft with a
qualitative examination of fluctuations in the interi-
or of an infinite three-dimensional ferromagnetic Is-
ing model (A q„)." Take the external magnetic field

h =0 and the temperature T greater than the critical
temperature T, so that the magnetization density of
A~ is zero. If the imbedded subsystem Aq with

magnetization density mp has volume Vp much
greater than the correlation volume g3 of Az, there

is no correlation between spins on opposite sides of
Av and at any time A~, sees itself surrounded by a
system with essentially the same state as that of
A v„. Axiom I should be applicable in this case and

the probability density P(mp) for mp is to a good
approximation a Gaussian with a peak Bt mp =0. If
Vo & g, however, Av is at any time most probably
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inside a cluster of spins which point predominantly
either up or down. Hence, the peak at mo ——0 splits
into two peaks which move out to mo ——+1 as Vo
gets smaller. (Units are chosen such that the max-
imum value of

~
mo

~

is unity. ) A qualitative sketch
of P(mo) for three characteristic volumes is shown
in Fig. 1.

A definitive proof that the cft cannot predict the
behavior shown in Fig. 1 for small volumes is
elusive. This point is probably best demonstrated
with explicit model calculations. However, since the
cft ignores completely local correlations by treating
A, as homogeneous, its Predictions for Vo & (s can-

0
not be valid. The problem of local correlations is
the one which I will attempt to overcome in this pa-
per.

III. PATH-INTEGRAL APPROACH
TO THERMODYNAMIC

FLUCTUATION THEORY

0.0

P(m, )

0.0

h=o

V «(

Vo »(

A. Discussion of the Riemannian
geometric model of thermodynamics

0.0
-1.0 -0.5 0'.0 0.5 I.O

The construction of the path-integral thermo-
dynamic fluctuation theory is motivated by a desire
both to deal with local correlations and to explain
the connection between curvature and interactions in
the Riemannian geometric model" (Rgm) of thermo-
dynamics; as I hope to make clear, these problems
are not independent. Since the Rgm plays such an
important motivational role here, let me summarize
it. Represent the thermodynamic states of the sys-
tem A~ by points in an n-dimensional manifold or

0

sPace g q, . Take VR/Vo tobe infinite and let Vo be

large enough that the Oft is applicable. Equation
(2.4) suggests that we represent fluctuations
mathematically by assigning the Riemannian line
element

(~I')Rgm—= ogap pR po po (3.1)

to the manifold 0, q at the point with coordinates
0

Po=PR
The physical interpretation of this line element is

evident from Eq. (2.4)—the less probable a fluctua-
tion between states, the further apart they are. Note
also that the expression for an increment of
volume' in a Riemannian manifold with metric Vog
at the point po

——pR,

[Vo g(ps)l'"d"po,

is the same "volume" which appears in (2.4).
The most interesting thing about the Riemannian

manifold 8 v, is that for systems such as pure

fluids or Ising models, where a v, is two dimension-

al, the Gaussian curvature [E(pa)]Rg appears to
yield the correlation length g(pR). Specifically, it
appears that

f (pR)=vo[&(pR)]Rgm ~
{3.2)

where d is the spatial dimensionality of A~. The
0

importance of Eq. (3.2) is that it allows a calculation
of the correlation length on the basis of purely ther-
modynamic information.

In systems tested (3.2) works to a surprising accu-
racy. For example, in the pure fluid along the criti-
cal isochore, both the critical exponent and the criti-
cal amplitude of the correlation length are correctly
predicted. As another example, in the one-
dimensional (1D) ferromagnetic Ising model the
correlation length as calculated with (3.2) was never
found to deviate by more than one lattice site from
the statistical-mechanical correlation length which
gives the range of the spin-spin correlation func-
tion. '

The Rgm is susceptible to criticism on two major

m,

FIG. l. Qualitative sketch of the probability ampli-
tude P(mo) for the magnetization density mo of the fer-
romagnetic Ising system Ay for three characteristic

0

volumes. It is seen that if Vp&(', P(mo) develops two
maximas which approach mo ——%1 as Vo gets smaller.

P(mo) is in arbitrary units and mo is in units such that
the maximum of

~

mo
~

is unity.
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counts. First, Eq. (2.4), and hence the interpretation
of the line element (hl )Rg, has validity only if
g(po) is to a good approximation constant over the
full range of reasonably probable Auctuations. This
requires a sufficiently large volume Vo, but it also
puts a constraint on the choice of coordinate system.
For any given Vo, it is possible to find some extraor-
dinary coordinates for 8 v, such that, when ex-

pressed in these coordinates, g fluctuates significant-
ly about some point. Therefore, the physical inter-
pretation of (3.1) is to some extent coordinate depen-
dent and so not entirely satisfactory. Note that be-
cause of this, though the form of (2.4) is coordinate
invariant its numerical predictions are not.

The second problem is the following. As I argued
previously, the cft breaks down at volumes of the or-
der of the correlation volume. How then can a
mathematical model based on an approximation to
this theory possibly yield the correlation length with
such apparent accuracy~ This contradiction of Eq.
(3.2) cannot be resolved by further study of the
Rgm.

My position in this paper is that the fault here lies
not in the choice of line element but rather in its
physical interpretation in terms of Eq. (2.4). I will

construct the new theory with the line element in

Eq. (3.1) only slightly modified but with a different
interpretation. In this new theory, the curvature
emerges naturally as the approximate volume at
which the Gft fails even with the optimum choice of
coordinates.

I will start the construction of the new theory
with some mathematical preliminaries. First of all,
since I am interested here exclusively in fluctuations
in the interior of large systems where there are no
extraneous constraints to impede the Aow of parti-
cles and energy in any way, attention will be con-
fined to fluctuations in the states of open systems
with fixed volumes. This was also done in Sec. II.
To describe the state of an open system requires two
basically different types of parameters. The first is
the fixed volume, which can be selected arbitrarily,
and the second are Auctuating thermodynamic
quantities which are characteristic of the substance
in question.

It is natural to divide these different types of vari-
ables into separate, independent spaces. The first
space is a parameter space which contains the
volume and all scalar functions constructed solely
from it. The second space is an n-dimensional
Riemannian manifold 6 whose points represent
possible values of the intensiue parameters of any
open system.

I should point out that Griffiths and Wheeler'
separate intensive parameters into two classes,
"fields" and "densities, "according to whether or not

they are continuous on crossing the interface be-
tween coexisting phases. Since I work here only
with systems in a single phase, I will not bother to
make any distinction but treat all intensive parame-
ters on an equal footing.

Assign to 8 the Riemannian line element

dl =g p(p)dp dp~, (3.3)

g p(P)=——8 s(p) (3.4)
Bp Bp

and the p~'s are the densities introduced earlier.
Under a change of coordinates, g(p} is to be
transformed as a second-rank covariant tensor.
With the exception of a factor of Vo, this line ele-
ment is the same as the one in Eq. (3.1) and hence
the curvature of 8 is the same as that of g q up to

0

a factor of Vo
' which cancels out in (3.2). The

physical interpretation of dl will be developed in
the next few sections. Note that all thermodynamic
properties of 8 are calculated by going to the ther-
modynamic limit.

B. Fluctuation swithin Auctuations
%within AuctuatiOnS ...

Let us modify Axiom I in Sec. II by including in-
homogeneities in the open system A v . Consider an

0

open subsystem of Aq, Ai with volume Vi & Vo

and densities p~
—=(pi,pi, . . .,pi }not necessarily equal

to the densities po of Ay, . Hence, allow for the pos-

sibility of fluctuations inside A ~, .
Denote the joint conditional probability of finding

the densities of Av between po and po+dpo and

finding the densities of Aq, between p& and pi+dpi
given that the closed system A y„has densities p~ by

Pi Po Pz
P

V, V, V„d"p~"p& (3.5)

It is assumed that measurements of the states of A v
and A v, are made simultaneously but that successive

sets of measurements are spaced at sufficiently wide
intervals that the system has forgotten its previous
state. The objective is to write down a thermo-
dynamic expression for the joint conditional proba-
bility density in Eq. (3.5).

In order to make progress, it is necessary to make
an important assumption about the probability den-
sity in (3.5). This assumption is that for giuen ualues
of pR and po, the probability density for p, depends
only on po and not on pR, furthermore, we can at
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least begin the task of calculating it by applying Ax-

ioms I II—I as if A v were a closed system. The first
0

half of this statement is in probability theory called
a Markov assumption. ' It allows Eq. (3.5) to be
written as a product of two conditional probabilities:

P1 Po PR P1 PO Po PR

(3.6)

where the conditional probability for p1 on the
right-hand side is independent of pR. The Markov
assumption is here physically quite plausible since

Aq samples A, only through the intervening sys-
1 0

tern Av, /Ay, .
If the probability density in Eq. (3.5) is integrated

over the full accessible range of po, we must obtain
I

the probability density for p1 alone:

f P1 PO PR P1 PR
P

V, V, V, d PO=P
V, V (3.7)

In the theory of Markov processes, this is called the
Chapman-Kolmogorov (CK) equation. It plays a
crucial role in the development of the following
theory since no distribution which violates it is vi-
able. In Appendix A it is shown with a simple
counterexample that in the absence of approxima-
tions it is not possible to satisfy the CK equation if
the conditional probability densities on the rhs of
(3.6) are evaluated with Axioms I—III.

In order to produce consistency with the CK
equation it is necessary to go to the Gft. Using Eq.
(2.4) yields

P1 Po PR P1 Po Po PR
G V, V, V,

—G V, V, G V, V„

1

2~(V, ' —V„-')

n/2

g( )1/2 1

2m(V) ' —Vo ')

n/2

g(po)' '

&(exp — ( )6 6 ~— ( )5
1 1

, g~P PR PO PO-, , g.P PO P1 P1
0 R 1 0

(3.8)

where +I'—:(Pri —P$). If Vo is sufficiently large,
fluctuations in po are small and it is possible to
make the approximation g(po) =g(pR ) for important
fluctuations. With this approximation it is straight-
forward to show that the CK equation holds'

f P1 PO PR P1 PR
PG V V V d po=PG V V1 0 R 1 R

The program started above of considering inho-
mogeneities in Av can be continued by imagining

an open subsystem A v of A v with volume V2 & V1,

an open subsystem Az of Az with volume V3 ( V2,

and so on down to the final system Aq with volume
m

V~. Generally, A z is an open subsystem of A v .i+1 l

Figure 2 shows this structure, which is the basic
idea in this paper. The ultimate goal is to write a
thermodynamic expression for the fluctuation prob-
ability distribution of the final system A v =A& .f m

Again, I make the Markov assumption that at
given pR, po, p1, . . .,p; the probability distribution for

Ay
R

I

Aq
I I

I

I r I

L

I

I '

FIG. 2. Diagram of the basic structure in this paper
for the case d =3. A large closed system A v containing

R

a sequence of open systems A q, A t, . . . , A & of decreas-
0 1 m

ing size. Each system samples only the thermodynamic
state of its immediate surrounding system. In this way,
local correlations are taken into account. The final sys-
tem A v in the sequence is the one whose fluctuationf
probability distribution is to be determined.
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p;+1 depends only on p; and can be calculated by
starting with Axioms I—III as if Aq were a closed

t

system. This allows the conditional probability of
finding A z in a state with densities between pp and

0
I

pp+ dpp, A y, with densities between p1 and

pi+dpi, . . ., and A v with densities between p and

p +dp, given that the densities of Av are pR, to
R

be written as

Pm Pm —1
' ' '

Pp PR

v v . . . v v dp/pl' dpm

Pm Pm -1 Pm -1 Pm -2
=P P

Vm Vm -1 Vm -1
PP PR

"p 'd p . (3.10
0 R

As previously with m =1, the Chapman-Kolmogorov equation can be satisfied only by first going to the
Gft. Repeated applications of Eq. (2.4) on the right-hand side in (3.10) yields

Pm Pm —1 P0 PR
PG V V 1

. -
Vp VR

m
1

2 (v-' —v-')
n/2

g(p )1/2

1 1X"p —
~ X» g tt(p )~p'~p'—

p (V~
' —V; 't)

where 6p& —
(p&

—p&~ 1) and Ay =Ay—1 R

If the volume V 1 is sufficiently large, fluctuations in pp, pi, . . .,p 1 will be small and we can make the
approximation g(p 1)=g{p q) = . - =g(pp}=g{pR) over the full range of reasonably probable fluctua-
tions. %ith this approximation, repeated applications of the CK equation (3.9) yields the necessary relation

Pm PP PR Pm PRf ~G v. . v, v„""p- '""«-=~G v v„ (3.12)

Take now the limit of an infinite number of systems, m ~ 00, in such a way that 6V; =( V; —V; 1)~0 for
all i. Also, fix the final volume in the sequence V = Vf and let Vp be very large so that fluctuations in pp are
negligible and pp=pR. For simplicity, I will simply let A~ ——A~ which will henceforth be taken to be an in-

finite system. %'e now define the continuous parameter:

t=V (3.13)

U ltimately, the particular choice of the parameter function t =t ( V} makes no difference in the theory so long
as it is monotonic in V. The selection made here is one of convenience; it facilitates a comparison with other
path-integral theories.

Returning to Eqs. (3.11) and (3.12) and. taking the limit described above we get

m —1

P v v
—g'~'(p ) lim f f . f „, „,gg' '(p;)d"p;

m

Xexp ——, g —g tt(p; &)hp; hp;
' —07

where ~=—At; =(V; ' —V; '1) and pf
—=p . Introducing path-integral notation, we get

Pf' PR

t t
ff=g' (ptt)!! / D[p(t)]exp —f W(p, p)dt (3.15)
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where tf =t(Vf), tz ——t(Vq)=0 since Vz~oo,

D[p(r)]= lim
1

m~m (27')n(m+1)/2

m —1

X g g' '(p;)d"p;,
i=a

and

(3.16)

(3.17)

The integration in (3.15) is the functional integra-
tion over all paths connecting the initial and final
states. Equation (3.15) should be regarded purely as
shorthand notation for (3.14). Note that

4p(t)p:—lim
r~0

does not even exist for all paths.
Equation (3.15) manifests the beginnings of two

major advantages of this approach over the conven-

tional one. First, and most important, local correla-
tions are taken into account since each system in

the sequence samples only the state of the immedi-

ate surrounding system and not directly that of the

infinite reservoir. This gives hope of avoiding the
breakdown at volumes less than the correlation
volume. Second, at least a start is made towards
eliminating the problem mentioned in Sec. IIIA of
the metric g in the Gft varying significantly over
the range of fluctuations. We see from Eq. (3.11)
that the size of a typical fluctuation

hp; -O(v' )~0 as ~~0. Hence, variations in g
at each step vanish in the limit regardless of the
choice of coordinate systems.

If Vf is large, we can take

n

W= —, g(~ )2.
a=1

(3.18)

Using Feynman's method' to evaluate the func-
tional integral in these coordinates and then
transforming back to p coordinates yields

g(p(t) ) =const =g(pz )

for all paths which contribute significantly to the
sum in Eq. (3.15). Finding local Cartesian coordi-
nates x about the point p~ in which g(pz) is the
identity matrix yields

p6 dpf ——(2ntf )
"

g
'

(p& )exp — g~p(p~ )~pf ~pf d pf,
, tf 0 2tf

(3.19)

where 5p&r =(p~r —p$ ). This is in agreement with the Gft equation (2.4) as it must be since at large volumes,
the Gft is correct.

For future reference, let me also point out that in the constant g approximation, probability densities can be
written in terms of the path joining the initial and final points which minimizes the "action":

p p r+r
PG t+ t d p constXexp — ~(p p)dt d"p (3.20)

This is easily verified with the coordinates x in
(3.18).

Thus far, attention has been confined to volumes
sufficiently large that the constant-g approximation
is satisfactory. Consider now smaller volumes.
Does Eq. (3.15) still hold? Since local correlations
have been included, the initial hope is that it does.
In actuality, however, Eq. (3.15) is mathematically
consistent only if we are in global coordinates where

g is constant. Such coordinates exist if and only if
the fourth-rank Riemannian curvature tensor R of
5 is zero. ' The basic source of difficulties here is
that the CK equation (3.9) fails if g is not constant.
Even in the limit ~~0 variations in g make a con-
tribution. The resolution of this problem will be
discussed in Sec. IV.

At this stage one may well question whether or
not progress can be made by reconsidering terms
higher than second order in the entropy expansions
in Eq. (3.11). Earlier, such terms were dropped be-
cause of problems in satisfying the CK equation,
problems which have now cropped up anyway. I
believe that attempts to make progress by including
higher-order terms are futile. With 5p; -O(r' ),
as predicted by the Gft, it is straightforward to
show that the third-order term in the ith step
6 Sz -O(~ '

) which diverges as ~~0. Fourth-

and higher-order terms have similar divergences.
These divergences lead to the conclusion that if

higher-order terms are to be included, the Gaussian
term cannot dominate in the limit v ~0. However,
it is difficult to see in this case how we could have



our resulting theory even be consistent with the Gft
at large V~. I believe that the only productive way
forward is to patch up the Gaussian theory as in
Sec. III C.

f W(a, a)dt .

%C define the following:

C. Thermodynam&c fluctuation hypothes&s

The resolution of the problem for gQconst is not
an easy one. Fortunately, a mathematically analo-

gous problem has been encountered and dealt with
in irreversible thermodynamics. I will make use of
this analogy.

The physical problem in irreversible thermo-
dynamics is different from that in this paper since
it deals with the time evolution of the thermo-
dynamic state of a system of fixed volume. This
necessitates the introduction of transport coeffi-
cients. In 1953, Onsager and Mschlup' (OM)
wrote down the solution to this problem in terms of
a minimum principle. The solution is represented

by Eqs. (4)—(7) in their paper which for n =1 is
formally analogous to Eq. (3.20} here if the "drift'"
term y is set to zero snd if we remember that here
the "time" parameter t gives volume rather than
real time and that their metric contains transport
coefficients. The extension of the analogy for n & 1

ls obvious.
In the Onsager-Machlup paper, constant trans-

port coefficients and response functions are as-
sumed; this assumption is analogous to the
constant-g assumption ln thc previous section. Re-
cently, several authors have undertaken the
task of generalizing the OM formulation to regions
outside this "linear" regime. I will use here the
method of Grabert and Green who start from a
minimum principle rather than the Fokker-Planck
equation as other authors do. The basic idea is to
rewrite Eq. (3.20) in a coordinate invariant form
(i.e., covariantly) in such a way that the Chapman-
Kolmogorov equation is satisfied to order v;

Define the covariant vector q with components

where the Lagrangian

W(a, a)= —,g~p(a)a a

has been written in terms of arbitrary coordinates
a =a(p). Consider now two times t and t+w,
where ~ is small, and two states with coordinates
a =a(t) and a'=a(t+w}. Joining these states there
is a unique path which minimizes the action

Rather than specifying this Ininimum path by the
endpoints a snd a', let me specify it by means of the
initial state a and the initial q=q(t) which gives
the initial direction of the path. In this sense,

a'=a'(a, g, r)
OI'

g =q(a, a', ~) .

By analogy with the work of Grabert and Green, I
write for small r the thermodynamic fluctuation hy-

p0fA8$ls

exp[ —A, (a'
i
a) jd"ri

t+r t, f d"rt exp[ —A, (a'
~
a)]

d "q =(Bq /Ba')d "a',

where (Bg/Ba') is the Jacobian of the transforma-
tion in (3.26) with a and v held fixed.

There are three motivating features behind the
fluctuation hypothesis. The first is that it reduces
to (3.20) in the event that g is a constant matrix.
The second is that it satisfies the Chapman-
Kolmogorov equation to order v as Grsbert and
Green show. The third is that it msnifests covari-
ance as can be seen by multiplying the top and bot-
tom of the rhs by d"a and noting that d"a can be
moved in or out of the integration in the denomina-
tor. The product d "a d "q transforms as a scalar.

At this point, two questions occur. First, al-
though it is certainly necessary that the numerical
results of any reliable theory be independent of
coordinates, is it essential that the form of the fluc-
tuation hy pothcsis bc coofdlnatc lndcpcndcnt7
From s physical standpoint, the answer to this
question does not seem clear as it is difficult to rule
out special coordinates as in Eq. (2.1). The second
question is whether or not (3.27) is unique given the
thrcc condltlons which lt sstisfles. Grabcrt snd
Green give no discussion of this point.

Answers to these questions are necessary to
evaluate the status of the thermodynamic Auctua-
tion hypothesis. Is this hypothesis merely an exten-
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sion of Axioms I—III dictated by necessary condi-
tions of consistency and covariance, or is it funda-

mentally deeper~ Further consideration of this im-

portant, and difficult, question is beyond the scope
of the remainder of this paper which is devoted to
an examination of the consequences of Eq. (3.27).

D. Path-integral formulation

Grabert and Green prove that

+, P, dQ

where v ~ ~' and the conditional probability densi-
ties are given by Eq. (3.27). Hence, repeated appli-
cations of (3.28) in the limit ~~0 yields a result for
thc fluctuation plobablllty dcnslty for non1nfln1-
tesimal time intervals which is consistent with the
CK equation:

Qf QR Qf Qm —1 Qm —t

P
&m —

&

''' P d Q~ ]''' d Q(4
(3.29)

where '7 = (fg tj $ ) —ff /P7l slncc fg =0. Terms of 0 ('7 ) do not Inakc a contribution 1n th1s limit
A more 111umlnat1ng cxpIcss1on 18 obta1ncd on cxpandlng thc I'hs of Eq. (3.27) 1n powers of AQ~=—(Q ~—Q~)

up to terms contributing factors of order v. This task is straightforward but very laborious. Grabert and
Green obtain

Qy Qg fg
P t 0

g'~ (a~)Q——D[a(t)]exp —f W(a, a)dt
I

where

D[a (t)]—= lim
1

P8~ 00 2lTT
g 1/2( )d n

i=1
(3.3 I)

~(Q,Q )= 2 g p(Q)Q Q ~+ —,8 (Q); (3.32)

here E. (Q) is the Riemannian curvature scalar of 8,
Equation (3.30) is the central result of this paper. It is designed to generalize the cft by including local

correlations. So far, the application of this equation in irreversible thermodynamics does not seem to have
yielded any useful new results. Here, however, Eq. (3.30) makes almost immediately a strong prediction as I
will show.

Let me start by examining the case where ty is small, and the final volume Vy large. In this event, paths
which deviate appreciably from the initial point Q~ contribute negligibly to the suInmation in Eq. (3.30) since
they have large Q ~'s, Hence, for small ty we can treat R (Q) as a constant =8 (Qq ). VA'th this approximation,

t

Qy' Qg
P 0 =exp

Ef

(Qg ) f [
g (ay) ( ( D [a (t)]exp —J —,g tt(a)a a ttdt (3.33)

th«'rst «rm on th«hs is umty. In addition, as I will demonstrate explicitly below for
n =2, the criterion for being able to find local coordinates in which g is a constant matrix for all important
paths is also It ~~ l~(aa) I. Hence, in this limit, the path-integraT approach yields the Gft by the same
reasoning which led to Eq. (3.19).

The Schwarz inequality for square-integrable functions f(t) and g (t) is



GEORGE RUPPEINER

r t tf f(t)g(t)dt & f f'(t)«f, g'(t)«.

(3.34)

Letting f(t)=(g tta a~)'r andg(t)=1 yield~

tf ~ maxf —g tta a ~dt &
2t

(3.35)
f

where the geodesic distance r» of the farthest
point on the path from the starting point aq is not
greater than the total path length,

r,„&f (g tta a ~)'r dt . (3.36)

For a path which contributes significantly to the
summation in Eq. (3.33),

f 2 gutta a df & 1, (3.37)

and hence

(3.38)

for the important paths.
If a local Cartesian coordinate system in which g

is constant for all iInportant paths is to exist, the
geometry must be reasonably Aat over the interest-
ing region. For the case n =2, it is not difficult to
derive a criterion that this obtains. Imagine a circle
of radius r,„centered at a~. Because 8 is curved,
the circumference C of this circle will deviate from
its Euclidean value. It can be shown that

volume of a system in the state az. Since R(a) is
determined coInpletely by the thermodynamics, the
prediction is that the correlation length can be
determined by Ineans of thermodynamic inforrna-
tlon alone.

There is an arbitrariness involved in any defini-
tion of the correlation length; how weak must the
correlation between particles or spins be before we
say that they are uncorrelated? This arbitrariness
shows up here as a proportionality constant between
R(a~) and the volume Vf at which we decide that
Eq. (3.30) no longer agrees sufficiently well with the
Oft. I will select the same constant which yielded
successful results in the Rgm. This gives

("(ag )= ——,R (aa ),
where g(a„) is the thermodynamic correlation
length. g was denoted by go 1n Ref. 5. Henceforth,
I will use g since the Gaussian curvature yields g
only lf n =2.

Equation (3.41) is the most important conse-
quence of the path integral theory to be presented in
this paper. Note that previously this hypothesis
was made and tested only for systems with n =2
where the scalar curvature provides complete curva-
ture information. For n g 2, the uniqueness argu-
ments used in the Rgm are no longer valid. The
present new theory gives the answer for all values of
n. To test Eq. (3.41) in systems such as Auid mix-
tures, where n ~ 2, would be interesting.

C =2mrm»+ —R(ag )rm, „+0(r,„) . (3.39)
6

If we want the geometry to be reasonably Aat, it is
necessary to have the first term on the rhs of this
equation doIninate. This requires

(3.40)

which is the condition stated previously. Similar
arguments can also be made in higher dimensions.

If Vf- ~
R(az) ~, the Gft is predicted to fail re-

gardless of the choice of coordinate systems. I will

assume that this breakdown occurs because Axiom
I in Sec. II fails rather than because not enough
terms in the entropy expansion have been kept.
While a general proof of this quite plausible as-
sumption may not be possible, I show in Sec. IVA
that for the monatomic ideal gas, higher-order
terms in the entropy expansion make little differ-
ence even at small volumes.

Physically, Axiom I falls lf Vf ls of the oI"del of
the correlation volume. The consequence of this is

IV. ADDITIONAL RESULTS

A. Monatomic ideal gas

In this section I will investigate Auctuation
theory at small volumes for the monatomic ideal
gas. Here (Ref. 4), R =0 so the path-integral theory
predicts that ln Cartesian cool dlnates the Gft
should work all the way down to micr'oscopic
volumes where thermodynamics ceases to have any
validity. This prediction can be put to the test since
exact information about Auctuations can be ob-
tained from elementary kinetic theory. I will here
also compare the cft and the Gft in a system in
which such a comparison can be made exactly.

The common belief is that thermodynamic Auc-
tuation theory is applicable only to systems contain-
ing a macroscopic number of particles. Yet, it was
found in the 1D ferromagnetic Ising model that g
and g agree very well with one another even if they
are small; for example, if g =5 lattice sites the devi-
ation is only about 15%. The implication is that
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(4.1)

for the probability of finding the particle number
between X and N+d¹ Here, X'=nqVy, where

n~ is the particle density of the infinite Av . As

calculated with Eq. (4.1), X* is also the average
value of X.

Kinetic theory predicts the exact probability of
finding an integral number I of particles in Av to

be

geI —N*

(4.2}

Note that (4.1) is a continuous probability density
whereas the exact (4.2) is discrete.

As Landau and Lifshitz prove, the probability
distributions above have the same first and second
moments for all values of X*. Hence, these mo-

ments do not provide any measure of how these dis-
tributions deviate from one another as a function of
N*. Instead, let me compare w (X) and wI by intro-

for weakly interacting systems, the path-integral
theory works well even at microscopic volumes.
This will be confirmed here for the monatomic
ideal gas.

Initially, I will make the most naive choice of
coordinates in the Gft and worry about the difficul-
ties involved with a transformation to Cartesian
coordinates later. Let me start by comparing the
predictions of kinetic theory and the Gft for fluc-
tuations in the particle number X of the system A z .
(For brevity, I will drop the subscript f on the
parameters of Av. ) For the ideal gas it is easy tof
show ' that Eq. (2.4) yields

w(N)dN=(2mN') '~ exp — dN
(X—E')

2N*

ducing the auxiliary continuous probability density

wr, I &X«I +1
0, if Xg0. (4.3)

The insert in Fig. 3 shows graphs of w(N) and
w'(X) for X*=5 particles. It is seen that the agree-
ment between the two is fair even at such a small
average particle number.

%e define

&w= —,f i
w(N) —w'(N)

i
dN (4.4)

which, geometrically, is one half of the area con-
tained under one and only one of the curves w(1V)
and w'(N). 5w varies between 0 and 1; the
minimum value corresponds to perfect agreement
between w(X} and w'(X) and the maximum value
to no overlap at all. 5w has been calculated numeri-
cally as a function of X'. Results are shown in Fig.
3. It is seen that 6w exceeds 0.1 only if VF is so
small that E' & 3. Hence, the Gft is fairly success-
ful in predicting fluctuations in X even down to mi-

croscopic volumes.
A more complete test of the Gft is obtained if en-

ergy fluctuations are considered also. For the
monatomic ideal gas the entropy per unit volume
$33

n
s(u, n) = so+n ln

no uo

5/2
no

(4.5)

where u and n are the energy and particle densities,
respectively, and so

—=s (uo, no) is the entropy density
at some arbitrary reference state. Axioms I—III
yield

P„„„( U, N) dUdN= contsX expN ln
U

U+

5/2 3X, s

2UQ 2( U —U*)+—(X —X*) d U d%,

where U is the total energy in Aq and U'—=uz V~. I am using an abbreviated notation for probability densi-f
ties in this section. The Gaussian approximation of this is

PG( U, N)d U dX

(2~)—1( }I/2 exp (+ +4~ }2+ ( U U4 )(Pf Q4 ) ( U U+ )2 dUd+
2 U* 4+* 2U* 4 (U')'

(4.7)

Using the Maxwell velocity distribution, we can find an exact expression for the fluctuation probability den-
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sity. The details are worked out in Appendix 8 where it is shown that the probability of finding an integral
number I of particles in A~ with total energy between Uand U+dUisf

e(U, I)dU= .

3I/2
3I 3N*

I Nl 2U'

5(U}dU, I =0

U(3I/2)-lexp U dU I &1
—3N*

2U*
(4.8)

9"(U,N) —=
9'(U, I), I&N gI+1
0, N (0 or Ug0. (4.9)

We define

where 5(U) is the Dirac delta function of U. In
order to compare H(U, I) with the thermodynamic
probability densities, let me again introduce an aux-
iliary probability density continuous in the variable
¹

small; it drops to less than 0.15 for N' & 12 parti-
cles and curves sharply upwards only for N' &4,
where 5PG 0.3. However, convergence to zero for
large N' is slow; if N'=50, 5PG ——0.071.

The conclusion here is that the Gft in (U, N)
coordinates works reasonably well even down to mi-

croscopic levels. As I will show below, switching to
Cartesian coordinates leads to only a slight im-
provement.

Also shown in Fig. 4 is a graph of

5Pconv

(4.10)

Again, 5PG varies between 0 and 1 corresponding
either to total agreement between PG(U, N} and
H'(U, N) or to no overlap at all. Note, 5PG is in-

dependent of U' since U and U* occur always in a
ratio to one another. Hence, a change of variables
to U/U' in the integration in (4.10) removes all
dependence on U'.

Figure 4 shows 5PG as a function of N'. It is
seen that for a given value of N*, 5PG is generally
larger than 5'. However, it is still reasonably

,
' f -f ~P..„„(U,W ~(U, W~dUd~

(4.11)

as a function of N~. (5P„„,is also independent of
U~. ) It is seen that for X*p3, 5P„„„is greater
than 5PG indicating that, for Inost values of N*, the
Oft is actually better than the cft by the test used
here.

The results presented here support my earlier
contention that Gft fails at small volumes because
of a breakdown in Axiom I rather than because of a
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FIG. 3. A graph of 5m as a function of N*. For an
average particle number N & 3, it is seen that 5m drops
below 0.1. Insert shows the Gaussian w(N) and the step
function m'(N) for N* =5. Agreement between the two

is seen to be fair. Area of the shaded region shown in the
insert is twice 5ur for N~ =5.

FIG. 4. A test of thermodynamic fluctuation theories
as a function of N~. Data here support the prediction
that for the ideal gas the Gft should work, at least ap-
proximately, down to microscopic volumes ~here ther-
modynamics fails. Data also support the contention that
third- and higher-order terms in the entropy expansion
help little.
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where the temperature T equals 2u /3n.
The coordinates (T,n) are convenient since there

is no cross term in the line element. Making the
coordinate transformation

T
x, =2v n cosln

To

x, =2v n sinln

'

T
'~3»s

To

failure to take into account enough terms in the en-

tropy expansion.
Finally, let me test the Gft by first attempting to

transform into Cartesian coordinates. This will
lead to an unexpected difficulty. For the monatom-
ic ideal gas the line element of 8 ~in (T,n) coordi-
nates is given by

where To is an arbitrary constant, yields

(4.14)

the line element in Cartesian coordinates for a sur-
face with zero curvature.

If 8, for the ideal gas were topologically
equivalent to the two-dimensional plane, we could
immediately write

I'(x, ,x, )dx, dx, =(2~~~)- exp dx, dx, ,2'

where d is the straight line distance between the
points on 8 corresponding to the states of Aq and

Ai . However, 0 is more complicated. The short-

est distance between points having endpoints at
(T, ,ni) and (Tq, nq), where T2 & Ti ts

2[n ~ +n2 —2c(n ~ll2) ], & exp&n &/'2

T] ' 3
' 1/2

2 8
2(n, )'"+2(n, )'", & exp

1

(4.16)

T2
e =—cos ln

Tl
(4.17)

Clearly, if Tz/T» exp[(8/3)'» m. ], d depends only
on differences in one coordinate, behavior not con-
sistent with the plane. This behavior results since
we can go from any point (Ti,n] ) to the line n =0
by moving along the geodesic segment
T =const=T~ which has finite length 2~n~. T
can now be varied as much as desired with no cost
in distance by remaining on the line n =0. Finally,
we go out to the end point (T2,n2) by moving along
the geodesic segment T=const=T2 with length

2~n, .
To take into account these complications in the

structure of 8 in performing the numerical evalua-
tion of Eq. (3.30) is too difficult to attempt here. If
V~ is sufficiently large it is also unnecessary since,
in this case, regions far from the initial point contri-
bute little and Eq. (4.15) works well as long as it is
not applied to relatively improbable states.

Again, computations were made numerically.
The distance d was evaluated with Eq. (4.16) pro-
vided T was in the range where the first part of this

equation was applicable; otherwise, d was simply set
to infinity. A check on the accuracy of this pro-
cedure was provided by its prediction of the nor-
malization factor; for N~ ~5, it was within better
than 1%. For smaller N~ the accuracy dropped off
rapidly. Figure 4 shows

u, ,„,=-,' f f ~~(U,w —~'(U, w ~dvdx,

which is independent of U~, as a function of E~.
P(U, N) was calculated from (4.15) by including the
necessary Jacobian. As can be seen, P( U, X) yields
the best results.

8. 1D Ising model

Having just examined a noninteracting system, let
me now consider a system in which there may be
strong interaction -the 1D Ising model in zero
field. A complete analysis of this problem with Eq.
(3.30) is difficult and will not be attempted here.
Some observations can be made, however, without a
great deal of effort.
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For the 1D Ising model of V~ spins, the Hamil-
tonlan 18

g 0' + I
—b $ 0'.

where 0'; =+1 18 thc magnetization of thc 1th Spin,
h is the external magnetic field, and J is the cou-

pling constant between ncarcst-QclghboI' splns. In
ihe limit of large Vq, the partition function can be
Shown to bc

Z(v, b) =[e"coshb

+(e "sinh b+e ")' ], (4.20)

where v =J/T Rnd 6 =—A /T.
For R segment of Vf splns, define thc Magnetiza-

tion M to be the number of up spins minus thc
number of down spins Rnd the magnetization dcnsl-

ty m:—M/Vf. I will regard M Rnd m to be con-
tinuous variables. The line element for 8 in (T,m)
coordlnatcs 18

d/ =grdT +g» dm

gr ——(I/T)(» /I) T)

g~ =(I/T)(BA/Bm)T .

All thermodynamic properties of 8 are calculated
from the partition function in the limit V~ —+ Oo.

For h =0, the correlation length can be worked

out exactly

exp( —r/g') =
i (0;IT;+,) i

=
i
tanhv

i

' . (4.22)

As T~O, g diverges according to the asymptotic
form g = —,exp(2

~

J
~
/T).

I will first examine the case J g0 and h =0. For
J gO, g is less than one lattice site and hence, Eq.
(3.30) predicts that the Gft should be valid down to
voluIIlcs containing only R fcw lattlcc sites. Howcv-

cI', ln this cxaIQplc this plcdlctlon fails bccausc Auc-

tuations reach microscopic levels at volumes of the
order of the correlation length g. The criterion for
judging fluctuations "microscopic" is that they be
of thc order Gf thc contrlbutlon of a slnglc spin Alp

in which case

Used thc Gft prediction ln (Q,m) cooldlnRtcs. It ls

straightforward to show that for h =0 and T small,

g =exp(2
~

J
~
/T) =4l g„=2/ .

Therefore» fluctuations ln M Rnd U arc predicted to
reach microscopic levels if Vf-( and the Gft
should suffer thc saIQc type Gf breakdown evident

in Sec. IV A at small volumes.
This prcdlctlon makes good physical scnsc. If

Vf g Rll thc spills lll thc systclll Rrc cofrclRtcd Rlld

wc cRQ think of them as bclng locked into place
with one another.

The above result is a most interesting one for it
implies that thermodynamic information can be
used to dcducc thc corrclatloll lcllgth g also ill R sys-

tem where repulsive interactions dominate and
I ct lllc polllt oil't, llowcvcf, tllRt tllls bcllRvlor

need not necessarily obtain in higher-dimensional

systems with rcpulslvc lntcractlons.
A comment ls also ln ol'dcl about thc provocative

result —, g g g 1 for J ~ 0. This result led to the in-

tcrplc'tatloll of g Rs thc Rvcl'Rgc lcllgtll, duc to 111-

tclactlGQs, of clusters of Rllgncd splns. Thc plcturc
which emerges ln this paper lndlcatcs that this re-

sult is fortuitous since here Eq. (3.30) fails if Vf -g
and there is no basis for interpreting f- I if g » l.

The behavior exhibited at Vf -g by the Ising fer-
romagnet (J &0) differs from that of the antifer-

rornagnet since Auctuations in M no longer merely
dccrcasc monotonlcally to mlcl oscoplc values but
rather show a clossovcr from thc Gft to qultc dif-
ferent behavior as shown in Fig. 1. The interesting
question is whether or Qot Eq. (3.30) is consistent
with Fig. 1. For J & 0, g =g to within a single lat-
tice site so Eq. (3.30) predicts the crossover from
the Gft to different behavior at Vf -g. A test of
whether or not the crossover is to the expected
probability distribution is difficult. I will present
no final conclusion herc, but will lndlcatc onc of the
difficulties ln making thc calculation.

A common tech01quc for obtaining information
in path-integral theories is to examine paths of ex-
tremal action and make perturbation expansions
about them. Let me show that, in at least one case,
paths which cxtrcmizc thc action Rrc not thc Inost
important GQcs» and hcncc» they ylcld little physical
information. Extrcmal paths satisfy the EUlcr-
Lagrangc equation

d
BQ; dt Qg;

where al Tand aq ——m. ——Since gr, g, and g are

even functions of m, the line m =0 satisfies the
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second of Eqs. (4.24). Along this line it is easy to
show that for small T, where for J=1, gT has the
asymptotic form

gT ——(4/T ) exp( —2/T)

and g = —, exp(2/T), the equation for T can be writ-

ten

df 2 df 1

dx x dx

where f=(T ' —Ta ), x—:V/g(a~), and

a~ ——(T~,O) is the fixed state of A~ .
In Fig. 5, I show numerically generated solutions

(Runge-Kutta) to Eq. (4.25). In these calculations, I
selected initial values x = 10000 and f=0 and then
let x decrease. The initial value fo of df/dx was
varied. Note that as x~0, the solution f(x) be-
comes negative for each of the initial df/dx. This
corresponds to increasing T as x~0. Physically,
however, we expect the most probable state for
x &&1 to have a low energy density and temperature
because the spins tend to align at small volumes.
Therefore, the paths which extremize the action do
not provide much information about the physically
important paths. Note, however, that paths with
the largest actions are the ones with T small because

g increases with decreasing T, but these paths do
not satisfy the Euler-Lagrange equations. It ap-
pears that the only way to include the effects of
these most important paths is to evaluate Eq. (3.30)
by a direct numerical summation of paths or, more
likely, by a numerical solution of the associated par-
tial differential diffusion equation. While this task
is surely difficult, it may well be tractable.

V. CONCLUSION

A thermodynamic fluctuation theory which in-

cludes local correlations has been developed. This
theory both confirms and expands a hypothesis
made earlier on the basis of a Riemannian

geometric model of thermodynamics that the corre-
lation length is a known function of the thermo-

dynamics. In addition, since local correlations have

been included, there is hope that this theory works

at volumes less than the correlation volume, and

hence, that it provides a thermodynamic theory of
critical fluctuations.

Many problems remain. The most important one
is the issue of the validity of the theory at volumes

less than the correlation volume. Another impor-
tant task is the calculation of the curvature scalar
for systems, such as fluid Inixtures, where the di-

mension of 8 is greater than two. There also
remains the problem of understanding the thermo-

dynamic fluctuation hypothesis with statistical
mechanics. The attainment of this goal appears dis-

tant; my view is that a serious attack on this prob-
lem is best preceded by further tests and applica-
tions of the path-integral theory to add further con-
firmation that its predictions do indeed correspond
to reality.
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APPENDIX A: VIOLATION
OF CHAPMAN-KOI. MOGOROV EQUATION

%'ITH cft

0

The proof will be by counterexample. Let n =1
and take s(p)=lnp, where p&0. (The violation of
the third law of thermodynamics is of no conse-
quence here. ) In dimensionless units, let Vq ——4,
Vo ——2, and Vi ——l. It is straightforward to show
that

lO „ lO lO lO

PIG. 5. Numerical solutions of the differential equa-
tion (4.25) with initial conditions x =10000, f =0, and
four choices of f&&. For all values of fo tested, f becomes
negative for small x.

3 —3 2

pl po 4 po (2plpo p1

~coIIv V V 0 Q pi (2po,

0, otherwise
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l5 22
p p ) ~6PR (~PR Po Po)

~conv p p' 0 Kpo 4 2pg

0, otherwise .

In order to derive these expressions it was necessary
to use the conservation equations

~1 Pi+ ~1 Pi= VOPO

~oPo+ POPO= ~z PR

as well as the condition that all densities be positive.
Note, V~ and p& are the volume and density, respec-
tively, of the system A, —:A~ /Aq .

o

It is immediately apparent that
v

2P~ P1 Po Po PR
con v p p" conv p' p PO

P1 PA
Wp, onv I p.

1

since the left-hand side contains a term proportional
to ln(4p~/p1) while the rhs is a polynomial in p~
and p1. This demonstrates the failure of the
Chapman-Kolmogorov equation if probability den-

sltlcs arc cvaluatcd %'1th the cft.

APPENDIX 8: DERIVATION
OF EQ. (4.8)

From elementary probability theory

H~(UI)dU=wi&(U
~
I)dU,

where +(U ~I)dU is the conditional probability
that the energy is between U and U+dU given that
there are I particles in A~, and auI is, as before, thef'
probability that I particles are in the system. The
Maxwellian velocity distribution yields

i'(U
~

I =1)dU=- 3, ~U exp( —U/Ttt)dU,
2

where TR is the temperature of the infinite reser-
VO11.

If thcrc arc two part1clcs 1n A v w1th kinetic cncr-f
gies e1 and e2 it is necessary to do a convolution in-
tegral' to find the distribution of the random vari-
able U =(e&+e2):

U
.~P(U i2)= j H(U —x

i
i)P(x

i
1)dx

U2= —— —

3 exp( —U/T~) . (83)
2 Tg

Continuing to add particles yields

H(U iI)= I 9'(U —x
i
I)9'(x iI —1)dx

n —3112r r(,3I/2) -1
Tg U exp

Using T~ ——2U*/3N* now yields the first part of Eq. (4.8).
Equation (B4) does not hold if I =0. H( U 10)=0 if UAO. Also, we require

j"~(U ~0)dU=I .

Therefore P(U ~0)=5(U).
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