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Probability density of the Lorenz model
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The three-dimensional flow of the Lorenz model on its strange attractor is approximated

by a two-dimensional flow with a branch curve with the use of the approximation of the
Lorenz attractor by invariant two-dimensional manifolds obtained in earlier work. The
Poincare map on the branch curve and the associated invariant measure are determined.
The probability density generated by the flow on the invariant manifolds in the steady state
is related to and computed from the invariant measure on the branch curve. In a second

part of this paper it is shown how the same probability density arises in the Lorenz model

subject to stochastic forcing as a self-consistent approximation for the case of very small but
finite noise intensity. The distribution transverse to the attractor is determined in the same

approximation.

I. INTRODUCTION

Within the last decade it has become a generally
accepted idea that turbulence may be associated with
the appearance of strange attractors in dissipative
dynamical systems. According to this idea, the
phase-space trajectory of the system, after its evolu-
tion into a turbulent steady state, is captured on an
attracting invariant point set of vanishing volume in
phase space with an infinitely folded highly complex
topological and geometrical structure.

On such a strange attractor the dynamics of the
system is ergodic under rather general conditions
and may even be mixing, and a statistical descrip-
tion becomes useful. In the steady state, the system
must then be described by a time-independent proba-
bility measure, which is left invariant by the flow of
the system in phase space. This invariant measure is
concentrated on the strange attractor in much the
same way as the rnicrocanonical ensembles of
closed, ergodic, Hamiltonian systems are concentrat-
ed on energy hypersurfaces in phase space.

Unfortunately, the explicit construction of invari-
ant probability measures in dissipative systems
meets with great difficulties because neither energy
conservation nor Liouville's theorem hold for such
systems, and one is left without the most important
tools for the explicit construction of invariant mea-
sures in conservative ergodic systems. In this situa-
tion it is useful to study simple model systems.

The model of Benard convection with three vari-
ables x,y,z, satisfying

x = —0.(x —y),
y = —y+(r —z)x,
z = —bz+xy,

was first studied by Lorenz' in this context.
In the following we chose the standard parameter

values

b= » 0=10, r=28. (1.2)

The Lorenz model has played an important role in

exemplifying many features of continuous dynami-
cal systems with strange attractors.

In a preceding paper, henceforth quoted as I, the
first steps towards the explicit construction of a
time-independent probability distribution for the
Lorenz model have been reported. As already indi-
cated, for egodic systems two difficulties must be
overcome in such a construction, which, although
interrelated, may be dealt with separately. The first
difficulty, stemming from the lack of energy conser-
vation, is to find the support of the measure. It has
been dealt with in I where the strange attractor was
approximated analytically by three pieces of two-
dimensional invariant manifolds, each associated
with one of the three fixed points

Pp ——(0,0,0),
P+ ——[(+Nb (r —1},+&b (r —1 },r —1],

(1.3)

of the Lorenz model.
The second difficulty is the construction of the

probability density once its support is known. This
problem is associated with the lack of conservation
of phase-space volume and has not been solved in I,
where only certain local results could be obtained.
In the present paper we want to present a solution of
this second problem and construct the tirne-
independent probability density of the Lorenz
model, making use of the fact that its support can be
approximated by the two-dimensional invariant
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manifolds determined in I.
In Secs. VI and VII of this paper we show how

the approximate description employed in its first
part may be obtained as a weak noise limit of the
stochastically forced Lorenz system

x = —o(x —y)+~6((t),

y = —y+(r —z)x+0@ag(t),
i = bz—~xy yVeP((t) .

Here g,g,g are Gaussian white-noise forces with

(g(t)) =(q(t)) =(g(t)) =0,
(g(t)g(0)) =(g(t)g(0))

=(g(t)g(0) ) =5(t),
(g(t)g(0)) = (g'(t)g(0))

=(q(tg(0)) =0.

(1.4)

The parameters a,P are constants of order 1. The
weak noise limit is e «1.

The remainder of the paper is organized as fol-
lows: In Sec. II we make use of a construction due
to Williams .and describe the approximation of the
Lorenz attractor by a two-dimensional branched
manifold M consisting of sufficiently large pieces of
the two unstable invariant manifolds M+~ of the
two fixed points P+,P, which are glued together
along a branch curve C. The local law of conserva-
tion of probability on M is formulated in Sec. III
and solved in Sec. IV. In Sec. V we determine the
boundary condition satisifed by the time-
independent probability density on the branch curve
C. It involves the Poincare map on the branch curve
C and its invariant measure, which are both deter-
mined numerically for the parameter values (1.2).
The final expression for the time-independent proba-
bility density is obtained and evaluated numerically
for the parameter values (1.2). We also present a
comparison with the result of a direct numerical
simulation of Eq. (1.2). In Sec. VI we consider the
Fokker-Planck equation associated with Eq. (1.4)
and simplify it under the assumptions that e «1
and that the probability density is concentrated in
the vicinity of a two-dimensional manifold M, over
which it is smoothly distributed. In Sec. VII we
show that the solution of that equation, under cer-
tain consistency conditions, implying small but fin-
ite noise intensity, may be separated into two parts.
The first part does not involve the noise in an expli-
cit way and leads back to the description presented
in Secs. II—VI, in particular M=M. The second
part depends on the noise explicitly and determines
a narrow Gaussian distribution of the probability
density transverse to the attractor.

II. APPROXIMATION OF THE LORENZ
ATTRACTOR BY A BRANCHED MANIFOLD

for M
x=f (yz),

for Mp,

(2.1)

x =fp(y, z),
where each of the functions f+,fp was determined
as power series in (y —y+),(z —z+) or y, z, respec-
tively. Such power series have been shown to con-
verge in a sufficiently close neighborhood of the
respective fixed point. In addition, using Eqs. (1.1)
the manifolds M+~ ~p at least in principle may
be extended uniquely to a region outside the domain
of convergence of the power series.

For use in Secs. III—VI we now approximate the
Lorenz attractor by a branched two-dimensional
manifold M, which we represent locally by

x=f(y,z). (2.2)

M is chosen to consist of two sufficiently large
pieces of M+ and M which are formally joined
with each other along a branch curve C. The choice
of the pieces of M+Pf and the branch curve Cis
shown in Fig. 1.

Thus the manifold x =f(y, z) is defined to consist
of the following branches

f+(y, z)

for y &y;y &y,z &zp
f(y, z)= '

( )
. (2 3)

(y,z)

for y &y+,y &y+,z &zp

The Lorenz attractor locally is the Cartesian
product of a two-dimensional surface and a Cantor
set. As was shown by Williams a very useful topo-
logical simplification of the attractor results, if it is
approximated by a two-dimensional manifold,
which consists of two branches glued together along
a branch curve. That such an approximation holds
to high accuracy for the parameter values (1.2) is al-
ready obvious from the numerical work in Refs. 1

and 4. In I the Lorenz attractor was approximated
analytically by pieces of the two unstable two-
dimensional invariant manifolds M+Pf of the
fixed points P+P (1.3) and the two-dimensional
invariant manifold Mp associated with Pp contain-
ing the one-dimensional unstable manifold of Pp and
the z axis.

The three manifolds M+~p were constructed in
I in a vicinity of P~gp in the local form,

for M+,

x =fi(y, z),
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FIG. 1. The branched invariant manifold M obtained

by formally joining M+~ along the branch curve C
(full horizontal lines). The boundary of M is the one-

dimensional unstable manifold of I'0 before the second in-
tersection with C from below.

The branch curve C is defined to consist of the two
parts

f (yzo) «ry&y
f+(yzo) «ry&y+

i.e., C is the intersection of M (M+) with the
plane

(2.5)

The joining of M+~ along the branch curve C
is defined as follows: For y ~y consider the two
curves obtained by the intersection of the plane (2.5)
with the mani«lds M ~+

x =f (y,zo),

x =f+ (y,zo),

defining C and C+, respectively. We join M )if+
by identifying points on C+ with points on C by
their values of y. A corresponding construction is
made for y «y+ where we obtain the intersections

x =f+(y,zo),

x =f (yzo),

defining C and C, respectively, of M+~ with
the plane (2.5), and where we identify points on C
with those points on C which have equal values of y.

As a consequence of this construction, a smooth
flow on the branched manifold M which, for y gy
arnves at the plane z =zo from below on the branch
M, continues smoothly across the plane z =zo and
remains on M . If, on the other hand, it arrives on
M+, our definition of joining implies that the Aow

jumps discontinuously from M+ onto M as soon
as it traverses from below the plane z=zo for
y ~y . Corresponding statements, with M+ and

M interchanged, hold for y &y+.
In the following, we make use of the fact that M

constructed in this way gives a satisfactory approxi-
mation of the Lorenz attractor for the parameter
values of Eq. (1.2) in the sense that each point of the
Lorenz attractor is close (within a distance & 10 )

to a point of M. In Secs. VII and VIII of this paper
we show how this approximate description also
arises in a natural and self-consistent way if one
considers the noisy Lorenz model (1.4) for very
small but finite noise intensity. The immense ad-

vantage of this approximation is that one avoids the
necessity to consider the Cantor set substructure of
the strange attractor explicitly.

For parameter values different from (1.2) (in par-
ticular, larger r) this approximation may not be as
satisfactory. However, the Cantor set structure of
the attractor necessarily involves arbitrarily small

length scales in the distances of the respective sheets
in phase space. Thus one would still expect that the

gross features of the attractor may be approximated
by invariant two-dimensional manifolds, possibly
folded into several sheets if these are resolved on the
length scale of interest in phase space. All the
remaining substructure of the Cantor set may then
be neglected after introducing a suitable branch
curve C, along which the two-dimensional manifolds
are connected. In this way it should also be possible
to improve the construction of M described above if
this is desirable, however, at the cost of calculating
larger pieces of M+ Pf, containing also back«lded
parts of these manifolds, requiring more numerical
work. For example, in Ref. 6 a large piece of the
folded stable two-dimensional manifold of I'o has
been calculated.

III. CONSERVATION OF PROBABILITY
ON THE BRANCHED MANIFOLD M

In the steady state, the trajectory of the system
lies on the strange attractor in phase space. In o'ur

approximation, it is then sufficient to consider the
flow (1.1) on the branched manifold M defined in
Sec. II. %e obtain, locally on M

x =fyy'+fzz ~

y = —y+(r —z)f =g(y, z),
z= bz+yf =h(y, z),—

where f~ =Bf/By, etc. , and f is given by Eq. (2.3).
In Eq. (3.1) and in the following, we label a point on
M by its (y,z) coordinates.

Moving forward in time starting at an arbitrary
point on the curve C (2.4), the flow (3.1) first moves
upwards in z, curves around I'+ or P, then moves
downwards in z between I'+,I', curves again
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around one of the points P+ or P, and then again
intersects from below the plane z =zo for y gy or
y &y+. This intersection defines a new point on C
by the joining rule laid down in Sec. II. From the
new point on C the Aow starts again. It is clear that
this Aow on M is a semiAow, which can be followed
forward in time uniquely, but cannot be followed
backward in time through the branch curve C.

%e now consider a two-dimensional probability
measure

do =p(y, z, t)dA {y,z)

on M with density p(y, z) and dA (y,z) =dy dz. The
permanent trapping of phase points on M implies
that probability is conserved on M under the semi-
flow (3.1). This conservation law is expressed by the
continuity equation

p+(y&ZO, ~)+p (y~ZO, t) =p+(ysZO ~f) s

p+(y, zo, t)+p (y,zo, t)=p (y,zo+, t),
for y g y+ and y gy, respectively, where

zo ——r —1+a (e &O,e~O) . (3.6)

Equation (3.5) serves as a boundary condition for
Eq. (3.2).

as continuous across C, then probability conserva-
tion implies that the probability density must also be
continuous. Using the notation

p+(y, z, t) on M+
P=

ip (y, z, t) on M (3.4)

the continuity condition along C may be expressed
as

Equation (3.2) must be accompanied by a boundary
condition on C, which can be derived from probabil-
ity conservation, and the fact that p must be finite
along C. In the usual manner we infer from both
conditions that the normal component of the proba-
bility current density

Jy g
(3.3)

Jz

is continuous across C. The drift velocity (f) has a
small discontinuity across C, which is caused by the
discontinuity of the joining condition along C. Our
basic approximation consists in neglecting this
discontinuity. The quality of the this approximation
depends on how close M+ and M are to each oth-
er along C. For the choice of C given in Sec. II and
the parameter values (1.2) the distance of M+ and
M along C is of the order 10,which defiiles the
quality of our approximation in the numerical ex-
amples given in Sec. V. If the drift velocity is taken

IV. SOLUTION OF THE CONTINUITY
EQUATION ON M

Equation (3.2) must be solved with the boundary
condition (3.5) and some given initial condition

p{y,z, 0) =p (y,z)

p, +(y,z) on i@+

po (y,z) on M

The procedure to solve Eq. (3.2) may be subdivid-
ed in two parts:

(i) Finding p(y, z, t) along the branch curve C,
(ii) computing p(y, z, t} on M.

Both parts require some numerical work, which will
only be carried out for the case of the steady state in
Sec. V. The second part is comparatively easy.

Once p(y, z, t) is known along C, we obtain, by in-
tegrating Eq. (3.2) alongs its characteristics satisfy-
ing Eq. (3.1),

~(y, s)
p(yz, t)=exp — A~~(y(r), z(r))dr p(y(y, z),z0+, t —r(y, z)) . (4.2)

Here,

A,
~
~(y,z) = +Bg Bh

By Bz

is the local rate of divergence of trajectories on M,
{y( ),z( )) is the trajectory of the semiflow (3.1),
passing through (y,z) and, a time interval ~(y,z) ear-
lier, through {y(y,z),zo) on C. The necessary in-

I

tegrations along the characteristics can only be per-
formed numerically.

In order to solve the first part of the problem, i.e.,
to determine p(y, z, t) along C, one has to evaluate the
continuity condition (3.5). For this purpose we need
to consider the return map y~y' of the branch
curve C into itself, which is induced by the semiAow
(3.1). It is obtained by integrating Eqs. (3.1) for one
round trip, starting from any point on C. A numeri-
cal construction of this Poincare map for the param-
eter values (1.2) is given in Fig. 2. It consists of two
parts
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F+(y) y &y+
t

F (y) y&y
(4.4)

D. 75

T+(y) (y, zo ) on M+

T (y) (yzo ) on M

Now Eq. (3.5) may be restated in the form

(4.5)

which arise from the two parts of the branch curve
C. In addition to the return map, the return time T
from C to C is of importance. Considered as a func-
tion of the end point on C labeled by y, T(y) also
has two branches, which distinguish whether the
trajectory arrives at (y, zo ) on M+ or on M

By definition
T=v.(y,zo )

D. 50

0.25

0.25 0. 50 0.75

FIG. 2. The return map y~y ' of the branch curve C
of Fig. 1 into itself. The curve C is parametrized by a
parameter y which is linearly related to y and chosen to
run from 0 to 1/2 on the left part of C in Fig. 1, starting
in P, and from 1/2 to 1 on the right part of Cin Fig. 1.

T (y)

p+(F+ (y)»o t —T (+y)) epx—I )j.~~(y(~),z(~))d~
T (y)

+p (F '(y), z ot —T (y))exp —I A~~(y(w), z(r))dr =p+(y, zo, t), y &y+

(4.6)

and corresponding for y &y . In each term of this equation p+ and p may be replaced by p, since there is no
ambiguity concerning the branch of M on which each expression is defined. It is convenient to introduce the
time-dependent surface element

dA (y,z, t) =exp k~~(y(~), z(~)d~) dA(y, z, t), (4.7)

where the integration is carried out over a trajectory of (3.1) which passes through (y,z) at time t and through
(y, z) at time t [t t &w(y, z)].—

Probability conservation is then expressed by

p(y, z, t)dA (y,z, t) =p(y, z, t)dA (y,z, t) .

Equation (4.6) now assumes the form

(4.8)

p(F+ '
(y),zo, t —T+ (y) )dA (F+ '

(y),zo+, t —T+ (y ) )

+p(F '(y), zo+, t —T (y))dA(F '( ),yz Ot
—T (y))=p(y, zo+, t)dA(y, zo, t) (y &y+) .

(4.9)

The same equation is also obtained for y &y
Defining

dA (y,zo+, t)
Ic(y, t) =p(y, zo, t)

dy dA,

where dA, is a differential independent of y, t we obtain from Eq. (4.9)

p(F+'(y), t —T+(y)) p(F '(y), t —T (y))
=p(y, t) .

~

F'+(F+'(y))
( ~

F' (F (y))
~

(4.10)

(4.1 1)

Equation (4.11) shows that the one-dimensional
time-dependent measure p dy on the branch curve C
is conserved. This conserved measure is related to
the two-dimensional conserved probability measure
do =pdA by

der(y, zo+ ) =p(y, zo+, t)dA (y,zo+, t)

=p(y, t)dy di. . (4.12)

In order to construct the explicit connection between

p, and p we still have to construct the relation be-
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tween dA and dy dk. To this end we use Eq. (3.1)
and write

dz =h (y,z)cd', , (4.13)

where e is a constant of normalization and edA, is
chosen as the invariant increment of the time
parameter along the trajectories. Then we obtain

dA (y,zo, r) =dy
i h(y, zo+ ) i

cd', .

We therefore obtain from Eq. (4.10)

(yz+ t) py»( , r)

c IIi(yzo+)
I

(4.15)

0 7S

FIG. 3. The invariant measure p„(arbitrary units) of
the return map of Fig. 2, obtained by iterating an arbi-

trary initial distribution under the map until convergence
is obtained (20—30 iterates are needed in practice).

The continuous-delay equation (4.11) has to be
solved numerically for p(y, t). Equation (4.15) then
yields the time-dependent probability density p
along the branch curve C.

In the present paper we only want to construct the
time-independent probability density by explicit
computation. This will be done in the following sec-
tion.

V. PROBABILITY DENSITY
IN THE STEADY STATE

In the steady state p(y, z, t)=p (y,z) is indepen-
dent of r and Eq. (3.2) reduces to

—gp+ —hp=0 .
By Bz

The solution (4.2) becomes time independent and
reduces to

v(y, s)
p„(y,z) = exp —I A ~~(y(r ),z(r ))dr

tained by iterating a number of different initial dis-
tributions under the map. The invariant measure of
the return map was then used in Eq. (4.15) together
with the invariant manifolds f+ J' determined in I
in order to obtain the boundary condition p (y,zo+ )

for Eq. (5.1) along the curve C. This boundary con-
dition is shown in Fig. 4. It must have the property
to reproduce itself under the flow (3.1) after one
round trip [by the time-independent version of Eq.
(4.6)], a property which we checked and found to be
satisfied within the accuracy of our approximation.
The boundary condition was then used in Eq. (5.2)
in order to construct the two-dimensional density

p„(y,z). Our result is shown in Figs. 5(a) and 5(b).
In I we have also generated the two-dimensional

density p„histogrammatically by numerical integra-
tion of Eqs. (1.1) for long times. The data obtained
in this way are in very good agreement with the
two-dimensional density of Fig. 5, as can be seen
from the comparison in Fig. 6.

Xp„(y(y,z),zo+ ) . (5.2) VI. STOCHASTICALLY FORCED
LORENZ MODEL

The probability density on the branch curve p„ is
also time independent and related to a time-
independent measure p„(y) on the branch curve by
Eq. (4.15). The measure p„(y) satisfies the time-
independent version of Eq. (4.11)

p„P'+'(y)) p„(E (y))
=p„(y) .

~F'p(++'(y))
~

~F' (+ (y))
~

In the approximation of the Lorenz attractor by a
branched Inanifold, the Cantor set substructure of

P(~, Z,')

Remarkably, the return time T+(y), which appeared
in the time-dependent equation (4.11), has dropped
out from Eq. (5.3). Equation (5.3) is satisfied by the
invariant measures of the return map (4.3).

The invariant measure of the return Inap of Fig. 2
was determined numerically. Quick convergence to
the invariant measure p„shown in Fig. 3 was ob-

0, 2S 0.50 0.75 Y

FIG. 4. The invariant probability density p„{y,zo )

along the branch curve obtained from p„ in Fig. 3 by Eq.
(4.17).
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20 30 40

FIG. S. (a) The probability density in the steady state

p+(y, z, oo) concentrated on M+. Cuts with y=const are
shown. The probability density vanishes on the unstable
manifold of I'o and in the vicinity of I'+ and satisfies the

jump condition (3.5) along C. The probability density on
M follows by symmetry. (b) The probability density in

the steady state p„{y,z) summed over M+, and M for
fixed y, z. Cuts with y =const are shown.

the attractor is neglected. Intuitively, it is clear that
this corresponds to some sort of course graining in
phase space. One way in which such a course grain-
ing arises natura11y, is in the presence of noise, like
in Eqs. (1.4). Therefore, we want to consider here
and in the following section, how the description
given in Secs. II—IV arises naturally from Eqs. (1.4)
in the limit of weak but finite noise Og e && I. %'e

start analyzing Eqs. (1.4} by assunling that the pro-
I

f(y' z, e)=f (y,z),

x =f(y, z)

is the branched manifold defined in Sec. II.
In order to consider Eqs. (1.4) in a close vicinity

of M (6.1) we introduce the scaled variable

I:~ f(y,z.~)]— (6.4)

aild considcI' thc three-dimensional probability den-
sity I'(p,y, z, t;e) which depends on e.

It satisfies the Fokker-Planck equation

FIG. 6. Comparison of p„(y,z) of Fig. 5(b) obtained
from Eqs. (5.2), (5.3) (full lines) with the histogrammati-

cally determined probability density (dots), as a function
of z (for y=0,3,4, 10,16,22 from top to bottom for Z=20).
Both probability densities are normalized to 1. No fit
parameters are involved in the comparison.

cess is sharply concentrated around 3 two-
dimensional manifold M, which we represent locally
by

x =f(y, z, e) .
%'e also assume that the process has a smooth prob-
ability density on the manifold M. Later, the con-
sistency of these assumptions with the stochastic
dynamics described by Eqs. (1A) has to be checked.
It will then turn out that M cannot be chosen in an
arbitrary way, and must possess properties which,
under certain conditions on e, forces the choice
M=M

dP 1 8
clr 6 Bp

(rr(f y)+f «& »f y)—+f.(yf —»)P—'+ (IJ«—+f « »+f.y )P'—
Bp

3'

+ [y —(r z)fp'+ (bz y—f)P+ —(1+—ref „'+pf—,')P
Bg Bz Bp

p- a
Z

f»P
Z

f»P —+
Z

l (—r z)I Pl+
Z,

( —yj P—)—
af~p+ pf, p +—a +—p z

e BI' BP
Bp By Bz 2 Qy2 Qz~
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The boundary conditions are that I' and its deriva-
tives vanish at 00. %e now consider the case of
small e, with the goal of keeping only terms up to
order e . This makes it necessary to choose f(y, z, e)
in such a way that a term of order e ' does not
appear. This term is eliminated from Eq. (6.5) by
requiring that f satisfies, to lowest order in e,

o (f(y,z, O) y)+ —[(r z)f(—y, z,O) y]f,—(y, z, O)

+[yf(y, z, O) bz]f—,(y,z, O}=O . (6.6}

This equation is locally satisfied by any two-
dimensional invariant manifold x =f(y,z,O) of the
Lorenz model. Thus, locally, the manifold M
[x =f(y, z,e)] must be approximated everywhere by
a two-dimensional invariant manifold of (1.1).
However, globally, the topological structure of
x =f(y, z, e) need not be similar to the topological
structure of a two-dimensional invariant manifold of
(1.1), even with a function f depending very weakly
on e. Indeed, in order to eliminate the e '~ term in
(6.5) to order e, it is already sufficient to require

o(f(y, z, e) y)+ [—(r z)f(y, z, e) y—jf~(y, z,E)—
+[yf(y, z, e) bz]f (y,z, e—)=0(e"r"+~)

with any A, ~ 0. Thus the requirement on M merely
is that the (Euclidean) distance between M and an
invariant two-dimensional manifold of (1.1) must be
of order e"~"+~. %'e note that this condition can be
satisfied by the choice M=M, if e is sufficiently

large to satisfy

~
f+(y zo) f (y zo)

I

=0«""'—+")

VII. PROBABILITY DENSITY
OF THE STOCHASTICALLY

FORCED MODEL

The solution of Eq. (6.9) may be approached in
two steps. In the first step we integrate over p and
consider the reduced equation satisfied by the two-
dimensional probability density

p(y, z, t)= I dpP(p, y, z, t) . {7.1)

According to our assumptions, p(y, z, t) may be con-
sidered as a probability density of M. It satisfies

Bp B

BI; By
= —[y (» z)f—]p—

(7.2)

In a second step, we enter Eq. (6.9) with the hy-

pothesis

P(p,y, z, t) =P(p
~ y, z;t)p(y, z, t) (7.3)

and fix the normalization of I' by

J d} P(1 lyz t}=1.

In the following section we consider the solution of
Eq. (6.9) and further consistency conditions which
have to be satisfied by M.

for all points on curve C (2.4). In the following, we
assume that e is sufficiently large so that Eq. (6.8) is
satisfied, at least for all points in the support of the
invariant measure p„on C which was determined in
Sec. V. For the parameter values as given in Eq.
(1.1) this requires a=4&10 . It then remains to
be shown that the choice of M =M is not only possi-
ble, but indeed necessary, and to determine the prob-
ability density P in the vicinity of M.

In the following the weak e dependence of f is
neglected, when the order of magnitude of terms in
Eq. (6.5) is considered. Then, the Fokker-Planck
equation to order e reads

Using Eq. (7.2) we obtain

p(o+ (r z)fy +yf,)P-
Bt Bp

—BP —BP
+ [y (r z)f] +(bz yf—)— —

Bz

Equation (7.5) is solved exactly by the normalized
Gaussian

P(y i y, z, t) =
&2~q(y, z, t)

+exp
p

2g(y, z, t)

&
[ (o+(» z)f, +yf.)]P-

Bp

+ [y (» z)f]P+ (bz ——yf }P- — —
By Bz

+—,(I+of, +13f, )P .
Bp
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with the local width v'q(y, z, t)&0 satisfying the
linear equation

&+2[&+ (r z)f,—+yf, ]g [y ——(r z)f]—
By

tegrating along the characteristic [y( },z( )] passing
through (y,z) at time t and through (y,z) at time
t=O we obtain

t 2 2&( r' (dw'

q&(y, z, t)= I dec

(b—z yf—) = 1+af»+Pf,' . (7.7)
Z

We note that the inhomogeneity in Eq. (7.7) is en-

tirely due to the noise in Eq. (1.4}. In fact, this is
the only place where the noise enters at all.

Not for all choices of f(y, z, e) do Eqs. (7.2) and
(7.5) possess solutions which are consistent with our
initial assumptions. We now show that in order to
satisfy all consistency conditions, M must be a
branched two-dimensional manifold in the
0(e"~2'+ ) vicinity of the attractor of Eq. (1.1).
Then, provided Eq. (6.8) is satisfied, the simplest
branched manifold with these properties is M =M.
There exist more complicated choices of M (contain-
ing more branches) which approximate the attractor
even better. However, if Eq. (6.8) is satisfied, these
more complicated choices will not lead to distin-
guishable results for P if inserted in Eq. (7.3). On
the other hand, if e is so small that Eq. (6.8) is not
satisfied, one is forced to make a better choice of M.
Thus, as e decreases below the order of magnitude
given by Eq. (6.8), more and more of the complex
substructure of the attractor has to reappear in the
branched manifold M.

It has already been shown that M must locally be
approximated to order 0(&[ t )+

) by a two
dimensional invariant manifold of (1.1). From the
condition y & 0 it follows that M must be locally at-
tracting. This condition must be satisfied by an ac-
ceptable solution of Eq. (7.7) (cf. below). In order
that (7.2) has a nontrivial solution for t~ao, M
must be close to the invariant point set of (1.1) ap-
proached for t~ ao. By the same condition we must
require that all trajectories of the flow

X [1+af»(r)+Pf, (r))
2 I A&(~')dr',

+e 0 '
yo(y, z),

where we assumed as initial condition

y(y, z, O) =q o(y, z)

and introduced

(7.11)

Ai —— cr (r —z)f—»
—yf, . —

Noting that A,i (7.12) and A,
((

(4.3) satisfy

Ai(y, z)+)(,(((y,z) = + — +—,-/X ()y 8Z

Bz

(7.12)

(7.13)

where xpp are given by Eq. (1.1), we recognize
A, i(y, z) as the local rate of attraction (if A,2&0)
transverse to the manifold M. Clearly

I A](r)d~
0 ]. 0 (7.14)

must be satisfied, otherwise the steady-state distribu-
tion P(u,y,z, 00 ) does not exist independent of the
initial distribution. In this case we find

f
2 2.i(r'(ar'

qr(y, z, co ) = d~ e

X[1+af2(r)+Pf,'(r)] . (7.15)

Equation (7.15) may be simplified under the as-
sumption that [I+af»(r)+Pf, (r)] varies slowly
with w compared to the fast decay of the exponential
exp[2 I , 1((2'2) d'2] with increasing

~

r t
~

for-
fixed t. The integral over ~ in Eq. (7.15) is then
dominated by its contribution for ~=t and we ob-
tain

y = —y+(r —z)f,
z = bz+yf, —

('7.8)

(7.9)

[ I +af,'(y z}+Pf'(y»z}]
q(y, z, oo)=-

2k,g(y, z)

starting out on M remain on M for all times. On
the other hand, M is two dimensional and cannot
contain a fixed point. This necessarily means that
the flow (7.9) must be a serniflow, and M must be a
branched two-dimensional manifold. Therefore, we
must identify M by M in order to achieve self-
consistency for the ansatz (6.1). Equation (7.2) is
then identical to Eq. (3.2) and solved by the invari-
ant probability density p„determined in Sec. V.

We finally turn to the solution of Eq. (7.7). The
characteristics of Eq. (7.7) satisfy Eq. (7.9). In-

~

A,,(y, z)
~

{7.17)

If A,
( ~(y, z) & 0 everywhere on M, then by Eq. (7.13)

{7.16)

The width of the Gaussian (7.6) expressed in the ori-
ginal x variable is ~eq(y, z, 00). It must be small
compared to distances of order 1, otherwise the
course graining introduced by the noise ~ould be too
strong. This condition is equivalent to

' 1/2



PROHABILITY DENSITY OF THE LORENZ MODEL 110S

A,j(y,z) & +—+-Ox Bp Bz

8x Bg clz

and Eq. (7.17) is satisfied if

~e ((&o+b+1 .

On the other hand, as has already been discussed
above, the noise must be sufficiently strong to
smooth out the small-scale structure of the attractor

~
—(o+b+1 j)T {7.20)

The lower bound on v e in (7.20) is just a reformu-
lation of Eq. (6.6).

of Eq. (1.1). This small scale can be inferred from
the homogeneous part of the solution (7.10) as of the

order of e ' where T is a typical round trip
time, and of order 1 for the parameter values (1.2).
Thus we obtain the condition on e

' 1/2
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