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Accurate measurements of the time dependence of the order-parameter fluctuations in the
binary liquid mixture 3-methylpentane and nitroethane very close to the critical temperature

are reported. The experiments were performed by cross correlating the scattered light re-

ceived by two different photomultiplier tubes to eliminate distortions of the observed corre-

lation function due to afterpulsing. The measurements reveal the presence of small but no-

ticeable deviations from exponential decay of the critical concentration fluctuations. The
observed phenomenon can be attributed to the effect of a frequency-dependent critical
viscosity as predicted by Ferrell and co-workers.

I. INTRODUCTION

A system near a critical point exhibits large ther-
mal fluctuations of the order parameter associated
with the phase transition. In general, it is to be ex-
pected that the decay rate of these order-parameter
fluctuations not only will depend on the wave num-
ber, but also on the frequency of the fluctuations. '

However, early experimental work indicated that the
relaxation of the order-parameter fluctuations in a
binary hquid near the critical mixing point, which in
this case is to be identified with the relaxation of
concentration fluctuations, remained exponential
even very close to the critical temperature. The
theory of dynamic critical phenomena, summarized
in several review articles, ' ' shows that the decay
rate of the order-parameter Auctuations in classical
fluids is related to the shear viscosity of the fluid.
The viscosity of a Auid displays an enhancement
near the critical point which does depend on fre-
quency. Hence when the critical viscosity
enhancement was found to have a noticeable effect
on the observed decay rate of the order-parameter
fluctuations, it was predicted by Perl and Ferrell
that the frequency dependence of the critical viscosi-
ty enhancement should not only affect the rnagni-
tude of the decay rate of the order-parameter fluc-
tuations, ' ' but that it should also cause a non-
Lorentzian line shape of the order-parameter Auc-
tuation spectrum.

A first attempt to measure this effect was made
by Bendjaballah in our laboratory. " He concluded
that any deviations of the order-parameter Auctua-
tions from a simple exponential decay law, if present
at all, are quite small and within the experimental
resolution attainable at the time. A similarly nega-
tive conclusion was reported by Chu and co-

workers. ' Subsequently, Ackerson et a/. raised the
possibility of substantial deviations of the relaxation
of the order-parameter Auctuations from exponen-
tial decay on the basis of a dynamic droplet model 3

which were, ho~ever, not found experimentally. '"'
However, the question of whether smaller departures
from exponential decay due to the frequency depen-
dence of the viscosity can be detected experimentally
remained unresolved.

As we shall see the effect is indeed quite small
and can only be observed very close to the critical
temperature, where the interpretation of light
scattering in most Auids is complicated by multiple
scattering contributions. ' During the past decade
we have made some detailed experimental studies of
the concentration Auctuations in the binary liquid
3-methylpentane and nitroethane near the critical
point. ' ' As originally suggested by McIntyre
and co-workers, ' the coupling between concentra-
tion Auctuations and refractive index fluctuations in
this system is sufficiently small so that multiple
scattering contributions remain small even very
close to the critical temperature, while the coupling
is still sufficiently large so that the observed Ray-
leigh scattering near the critical point can be attri-
buted to the fluctuations in the concentration which
is the order parameter of the transition. ' Hence the
3-methylpentane and nitroethane system would ap-
pear to be an ideal system to investigate possible de-
viations of the critical concentration Auctuations
from exponential decay. Nevertheless, the work of
Bendjaballah" had shown that even for the system
3-methylpentane and nitroethane the experimental
resolution would have to be improved substantially
over the resolution previously attainable in our labo-
ratory. Recently, we reported experimental studies
of the decay rate of the concentration fluctuations in
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II. EXPERIMENTAL METHOD

In the experiment we determine the autocorrela-
tion function of the intensity of light scattered by a
sample of 3-methylpentane and nitroethane with
photon correlation spectroscopy. The optical ar-
rangement of the experiment is indicated schemati-
cally in Fig. 1. Light from a 6.4-m& He-Ne laser
source passes through a variable attenuator and in-
tensity stabilizer as described previously. ' ' VA'th

the stabilizer any changes of the incident light inten-
sity were within a few tenths of a percent over a
period of 20 h. Stabilization of the light intensity
was important because of the duration, 4 to 5 h for

incident
laser beom Sornple

200-p. m
Pinhole

Beam-splitting cube N

PMT 2

FIG. 1. Schematic representation of optical arrange-
ment as seen from above.

3-methylpentane and nitroethane near the critical
point with an accuracy significantly better than that
of the decay rate data obtained originally. In these
experiments we consistently encountered small but
noticeable deviations from exponential decay in the
measured light scattering intensity autocorrelation
function very close to the critical temperature.
Since one can imagine several experimental artifacts
that could cause a distortion of the measured auto-
correlation function, ' we decided to perform
some special experiments to investigate whether we
were observing a real physical phenomenon.

Some of our results were announced in an earlier
letter. In this paper we describe the experiment
and evaluate various possible experimental errors
that could effect the observed time dependence of
the critical concentration fluctuations. In addition,
we present a detailed analysis of the temperature
dependence of the effect.

each single run, necessary to acquire adequate statis-
tics. The variable attenuation enabled us to fix the
incident light intensity at a given level. The experi-
mental data reported in this paper were obtained
with an incident light intensity of 1 m%. This in-
cident beam is focused at the center of the sample
ceil by a lens with a focal length of 7.5 cm. The
binary liquid sample, the thermostat, and the system
for regulating and measuring the temperature were
the same as described in our previous paper. The
composition of the liquid sample is equal to the crit-
ical composition to within 0.6%. The critical tem-
perature of the mixture is T, =299.545 K.

The major difference between our previous experi-
ments and the experiments reported in this paper
concerns the method by which the correlation func-
tion of the scattered light intensity is measured. In
our previous experiments this correlation function
was determined by registering and processing the
signals from the scattered light received by a single
photomultiplier. In the present experiment we mea-
sure this autocorrelation function by cross correlat-
ing the signals as received by two separate pho-
tomultipliers located at equal optical path lengths
from the center of the scattering cell. This cross
correlating scheme, originally suggested to us by
Bendjaballah, " eliminates distortions of the correla-
tion function due to afterpulsing processes in the
photomultiplier tubes ' ' as will be further dis-
cussed below. For this purpose the scattered light is
divided by a beam-splitting cube and diverted to the
two photomultiplier detectors. Ideally, the scattered
light intensity should have been divided equally; in
practice, the ratio turned out to be closer to 3:2.
This difference may be due either to an asymmetry
in the beam-splitting cube or to differences in the
gain and sensitivity of the two photomultiplier
tubes. In any case, this difference ln sensitivity be-
tween the two detectors is not important. The ob-
served scattering volume is specified by a pinhole
with a diameter of 200 pm located just outside the
sample cell and the diameter of 1 mm of the two op-
tically conjugate photocathodes of the photomulti-
plier tubes. The distance between the pinhole and
the photocathodes also determines the spatial coher-
ence of the detected radiation. As discussed previ-
ously" the observed scattered intensity correlation
function may deviate from simple exponential
behavior as a result of mixing between light scat-
tered from the incident beam and light scattered
from a beam reAected off the wall of the scattering
cell. To avoid this effect all experiments were done
with a scattering angle of 90'.

In Fig. 2 we give a schematic representation of
the signal processing system. The pulses detected by
each photomultiplier tube were standardized in am-
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FIG. 2. Schematic representation of signal processing
system.

plitude and duration with discriminators. The
widths of the output pulses were set at 30 ns with a
dead time following each pulse of also 30 ns. The
count rate on either photomultiplier tube did not
exceed 5000 counts/s. The outputs thus obtained
from the two photomultiplier circuits were then
cross correlated with the same single-clipped digital
autocorrelator used in our previous experiments.
The correlator has two input circuits. The output of
the photomultiplier with the lower count rate was
directed to the clipper, while the output of the other
multiplier was used to supply the unclipped signal.
A detailed description of the home-built correlator is
contained in a separate report. The correlator has
128 channels. For all experiments reported in this
paper the delay time between two successive chan-
nels was set at 2 ps.

The clipped-count rate nk(t) at time t is defined
such that nk(t) =0 if n (t,5t) & k and nk(t) = 1 if
n {t,5t) p k, where n(t, 5t) is the number of counts at
time t during a time interval 5t and where k is the
clipping level. In our experiments the time window
5t was 2 ps, equal to the delay time between two
succcss1vc channels, and thc clipping lcvcl k was
zero. In principle, clipping could distort nonex-
ponential correlation functions, if n & 1. This is
not a problem here, first, since the observed devia-
tions from exponential decay are very small, and
secondly, since the probability of registering more
than one count is negligibly small. The probability
of finding n counts in the time interval 5t may be es-
timated from the Poisson distribution

P(n, n)=e "(n)"/n!,

where n is the average number of counts. Typically,
th1S avcragc nuIYlbcr of counts n Icgistcred in a salTl-

ple interval 5t was 0.011„and we conclude that the
probability of finding n counts larger than unity is
less than 6&10

The experimentally observed photoelectron-count
autocorrelation function is to be identified with the

light intensity autocorrelation function

It can be related to the electric field autocorrelation
function

G"'(&)=(&*(t)&(0)&,

if the electric field is assumed to be a Gaussian ran-
dom variable

(2.1)

The coefficient p depends on such factors as the
spatial coherence of the scattered light at the detec-
tors, count rate, clipping level, and sample time. In
our experiments the coefficient p was treated as an
unknown constant in the fitting procedure; it was
found to be between 0.56 and 0.58. The intensity
autocorrelation function was measured at various
temperatures T above the critical temperature T,
down to a minimum temperature difference

hT=T —T, =1.8 mK .

At this temperature the correlation length g is about
420 nm. Hence a typical cluster size ( =7X10
m associated with the critical fluctuations is still
small compared to the scattering volume

V=10 nlm =10 "m
and the assumption of Gaussian statistics remains
justified. Introducing normalized autocorrelation
functions

onc obtains

G(2((t)yg g(2)(t) i+p
~

g((((t)
~

2

where in the sequel we refer to 8 = (I ) as the "base
line. "

An error in the base line will cause an apparent
deviation from exponential decay of the observed
correlation function 6' '(t) —B. Therefore special
attention was paid to an accurate determination of
the base line. The base line can be determined ex-
perimentally in two ways. The first way is to mea-
sure the intensity correlation function at t —+ cc. In
practice, this is done by observing the number of
counts in the 128th channel of the correlator which
is constructed so that the delay between the 127th
and the 128th channel is equivalent to 1208 sample
intervals. The shift rate of 2 ps per channel was
chosen so that the first 127 channels cover approxi-
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mately a time interval of two relaxation times of the
intensity autocorrelation function. Hence the 128th
channel yields the value of this correlation function
at a time corresponding to twenty relaxation times.
The random error associated with this method of
determining the base line may be estimated as

»m (6'"(t))'",

since the count rate is low. Each individual run
for measuring 6' '(I, ) yielded a base line of approxi-
mately 6.7X10 counts with an estimated random
error of 0.12%. A determination of 6' '(t) at a
given temperature was always based on 5 to 7 runs,
so that the final expected error in the base line deter-
mined by this method would be about 0.05%.

The second method of determining the base line
takes advantage of the fact that the base line is
equivalent to the accidental coincidence rate. Thus
by recording the total number X of pulses received

by the correlator, the total number of clipped events

Ek, and the total running time t„, in units of the
sample interval, the base line can be deduced from
the relation

8 =XXk/t, ,

Each individual run yielded approximately
N

~
-9&( 10 and $2-6)& 10, so that

X&X2-5&10' (1+0.0002), while any errors in the
time measurements were negligibly small. Averag-
ing over 5 to 7 runs thus yields an error in the base
line of about 0.007%. While this random error is al-

most an order of magnitude smaller than that ob-

tained with the first method, the second method will

lead to systematic errors if during the course of a
run the laser intensity would shift or if the sensitivi-

ty of the photomultiplier tubes ~ould change. A
simple example of such a case was pointed out by
Oliver. ' lf the average count rate for one half of
the run is n and for the other half n(1+6), then the
method leads to a loss of 5 /4 in the accuracy of
the base line. The first method does not suffer from
this deficiency, since in that case the coincidence
rate is monitored continuously. Hence in order to
judge the actual accuracy obtained with the second
method we must consider the stability of the average
count rate. At any given temperature the normal-
ized correlation function

10
Running Time 7.1P h

N=1, 59 x10
Baseline = 9.78 x 10

Timebase = I ps/channel
Count Rote =619Q counts/s

runs at the same temperature, and it was found that
the variations in the count rate were typically +1%.
Except for the measurements at

hT=T —-T, =3.8 mK,

the difference in the average count rate between any
two runs at the same temperature never exceeded
2.65%. As a consequence, any systematic errors in

the base line calculated from the accidental coin-
cidence rate due to variations in light level and gain
or sensitivity of the photomultipliers are typically
0.0025% and never exceed 0.018k. The measure-

ments at hT =3.8 mK are somewhat anomalous in

that the maximum difference between the average
count rates of two different runs is 4.1%, ho~ever,
even in this atypical case the error in the base line
would be less than 0.042%. %'e conclude that the
method of calculating the base line from the ac-
cidental coincidence rate has the higher accuracy,
and this was the method adopted in deducing the
normalized intensity autocorrelation function g (t)
from the observed photoelectron-count correlation

function 6' '(t). In retrospect, we had noted that
our earlier decay rate measurements also became
more reproducible when this method of determining
the base line was employed in the reduction of the
data.

Correlated afterpulsing, arising from feedback
mechanisms in a photomultiplier tube, will cause a
distortion of the measured correlation function at
small times. ' ' In our previous experiments per-
formed with a single photomultiplier tube a
correction for afterpulsing effects was made by cali-
brating the afterpulsing probability of the photomul-
tiplier tube. In the measurements reported here
the intensity correlation function was determined by

was determined by concatenating 5 to 7 individual
runs. Each run lasted 4 to 5 h and we circumvented
part of the problem by normalizing the correlation
function from each run individually. Furthermore,
the stability of the average count rate could be
checked by comparing the results from the different

1 1 1 1
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FIG. 3. Experimental correlation function 6' '(t) —8
of a thermal light source as observed from autocorrelation
with a single photomultiplier tube. The size in the early
channels indicates afterpulsing effects.
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cross correlating the output of two photomultiplier
tubes. Given an uncorrelated light source, which is
our lowest-order assumption, an initiating event can-
not cause a correlated afterpulse in the other tube.
Hence in the cross-correlation experiments this
lowest-order afterpulsing contribution to the intensi-

ty correlation function must be absent. In Fig. 3 we
show the correlation function 6' '(t) —8 observed
with a single photomultiplier tube for Gaussian
white light produced by a light bulb driven with a
constant current source; the sharp rise in the early
channels is a measure of the afterpulsing probability.
In Fig. 4 we show the corrdation function
6' '(t) —8 of the same Gaussian white light, but
now observed by using the two photomultiplier
tubes configured for cross correlation. The actual
quantity displayed is [6' '(t) —B]/a, where rr is the
standard deviation; the base line is as flat as can be
expected from statistics. The base line may be es-
timated by averaging over all the bins; the base line
so derived agrees to within statistical accuracy with
the value obtained from the count rates in each
channel and the running time. A comparison be-
tween Figs. 3 and 4 demonstrates the efficacy of
cross correlation in the removal of afterpulsing ef-
fects to lowest order.

III. EXPERIMENTAL CORRELATION
FUNCTION DATA AND CUMULANTS

Our prehminary measurements indicated that any
deviations of the concentration correlation function
from exponential decay, if present at all, only occur
at temperatures within 20 mK of the critical tem-
perature. In this temperature range we determined
the correlation function at six different temperatures
corresponding to AT =20.3, 11.7, 5.5, 3.8, and 1.8

For two cross-correlated PMTs with a white-light source

Running Time 1.57 h

Nl = 1.26 x 10
N2= 1.17 x 10

Baseline = 5.23 x IQ

Tirnebase = 2 ps/channel

Count Rate Ch 1

Count Rate Ch 2
22.3 kHz

20.8 kHz

Avg. of channels 1 through (27- Baseline/Baseline = -2.45 x 10

Channel 128 —Baseline/Baseline = +1.50 x 10
"

1

20 40 60 80 100 120 140
Channel Number

FIG. 4. Experimental correlation function G"'(t)—8
of a thermal light source as observed from cross correla-

tion with two photomultiplier tubes. The data are plotted
in units of the standard deviation o and the observed
correlation function is flat within statistical accuracy.
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K(t)=[B '6' '(t) —1]'

so that

1m'(t) =e + lng' "(t),

(3.1)

where c is related to the instrumental constant p in-
troduced in Eqs. (2.1) and (2.2) by c = —,lnP. As
noted earlier, p is approximately constant; it de-
creased by only 4% as we approached the critical
point from ET=20.3 to 1.8 mK. If the scattered
light is Lorentzian, g'"(t) has the form of an ex-
ponential function with a single decay rate I

g'"(t) =exp( —I t) . (3.3)

To investigate whether actual experimental correla-
tion function data decay exponentially, one often in-

-I ""'. i=l
l i I t I t I ( l t I t l

0 ZO 40 60 80 iOO IZQ I 40
Channel Number

FIG. 5. Experimental data obtained for
[G"'(t)] ~G' '(t) Bas a fu—nction of channel number
(time base: 2 ps). The data correspond to AT =20.3 mK
(i =1), 11.7 mK (i =2), 5.5 mK (i =3), 3.8 mK (i =4},2.7
mK (i =5), and 1.8 mK (i =6).

mK. The experimental data obtained for [6"'(t)]
are shown in Fig. 5 as a function of the channel
number of the correlator; as mentioned earlier the
distances between two successive channels corre-
sponds to 2 ps. The data at each temperature were
obtained as the sum of 5 to 7 different runs, each
run lasting 4 to 5 h. The experiment yields
[6"'(t)] in arbitrary units. For convenience, the
data were normalized so that the value at the first
channel was unity. The data were then multiplied
by 10 ' ", where i =1,2, . . . , 6 is a number as-
signed to each temperature, so as to display the
correlation function data at all temperatures in one
single figure. The experimental correlation function
data were corrected for multiple scattering and
second-order afterpulsing effects as described in
Secs. IVA and IVB. The original experimental
data, together with the small corrections applied to
the data, are documented in a separate report.

To analyze the data we consider the function
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TABLE I. Decay rates deduced from the experimental
data.

hT=T —T,

1.8
2.7
3.8
5.5

11~ 7
20.3

K)+2og
1

(s ')

3739+14
3749+18
3763+ 18
3769+15
3876+ 14
4047+22

I ff+20 I

(s ')

3673+5
3688+5
3690+6
3724+4
3839+4
4034+6

troduces a cumulant expansion truncated after the
second term

lng"'(t) = —K, t+ —,K,t' . (3.4)

lm(t) =c'—I,gt . (3.7)

It is worth noting that the values obtained for I d~
reproduce our earlier set of data to within 1%.
The agreement becomes almost perfect if account is

If g"'(t) has the exponential form, then KI ——I and

Kz ——0. In practice KI, the initial slope, is the best
estimate for the decay rate determining the time
scale, while the normalized second cumulant

k2 ——K2/K )

is typically used to characterize the magnitude of
any deviations from exponential decay.

As a first step we thus fit the experimental data at
each temperature to the quadratic polynomial

lmc(t) =c—K) t+ —,K2t (3.6)

In Table I we present the values obtained for the
first cumulant K& which provides an estimate of the
decay rate; the quoted errors are two standard devia-
tions. For comparison, we also give in Table I the
values of an effective decay rate I d~, when the data
are fitted to a straight line

made of the fact that the present data correspond to
a laser light intensity of 1 m%, while the decay rates
published earlier correspond to zero light intensity
level.

Qf more interest to us in the present paper are de-
viations from exponential decay as indicated by the
normalized second cumulant k2. The values ob-
tained for this normalized second cumulant are
presented in Table II. At ET=20 InK the devia-
tions from exponential decay are still within experi-
mental error, but closer to the critical temperature
k2 increases to k2 ——0.038+0.014 at AT =1.8 mK.
The minor differences with the values quoted in the
earlier publication are due to small corrections ap-
plied to the experimental data. In Table II we also
give an estimated random error, identified with two
standard deviations, when the data are fit to (3.6),
and an estimated maximum systematic error due to
uncertainties in the base line and heterodyning ef-
fects as discussed in Secs. IV C and IV E.

It should be noted that use of the cumulant ex-
pansion presupposes that lng'"(t) is an analytic
function of the time t. As we shall see, this assump-
tion is in fact not valid. As a consequence, the
values obtained for k2 will depend on the number of
terms retained in the cumulant expansion and on the
time interval covered by the correlation function
data. %'e therefore present the values of' the cumu-
lants deduced from the experimental data only as a
phenomenological indication that the experimental
correlation function data do indeed deviate from ex-
ponential decay. A more detailed discussion of the
time dependence of the correlation function will be
presented in Sec. V.

IV. CORRECTIONS AND ERROR ANALYSIS

Since the observed deviations from exponential
decay are small, it is important to ascertain that
these deviations are indeed to be attributed to the
concentration fluctuations in the liquid sample and

TABLE II. Normalized second cumulant k2 for the correlation function near the critical
temperature.

Experiment

~~=~ —~c
(mK)

Estimated
random

error (2o.l, )

Estimated
maximum
systematic

error
Theory

k2

1.8
2.7
3.8
5.5

11.7
20.3

0.038
0.035
0.042
0.025
0.020
0.006

0.008
0.010
0.010
0.008
0.007
0.010

0.006
0.006
0.006
0.006
0.006
0.006

0.027+0.002
0.026 +0.002
0.025+0.002
0.023+0.001
0.016+0.001
0.009+0.001
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not to any artifacts associated with the measurement
procedure. ' In particular we have investigated
the possible effects due to multiple scattering, after-
pulsing, uncertainties in the base line, mixing of
light scattered from the incident beam and a reflect-
ed beam in the sample, heterodyning, local heating,
and convection.

A. Multiple scattering

Light scattering measurements in fluids very close
to the critical point are commonly affected by multi-

ple scattering contributions. Since multiple scatter-
ing contributions will cause deviations from ex-
ponential decay in the scattered intensity correlation
function, ' ' ' it is important to evaluate the effect.
For the 3-methylpentane and nitroethane system the
multiple scattering contributions are known to be
small, ' and it is sufficient to consider doubly scat-
tered contributions only.

For our experimental arrangement the theory was
formulated by Ferrell and Bhattacharjee. They ex-
pand 1ng'"(t} in a power series in terms of ~=I t,
where I is the decay rate associated with the corre-
lation function of the singly scattered light. Trun-
cating the expansion after the term quadratic in ~,
one obtains

(4.1)

where e is a small parameter proportional to the
scattering strength of the liquid sample. At the crit-
ical temperature AT =0, the coefficients C~ and Cz
are given by

Ci(AT =0)= —0.17yo '(lnyo —2.2),
C2(AT =0)=+1.12yo '(lnyo+0. 13), (4.2b)

in terms of a parameter yo ——2rp/h, where ro is the
radius of the scattering cell and h the height of the
observed scattering volume. For our experimental
configuration e =0.021 and yo-50 as determined in
a previous paper. The first term m =1 in the ex-
pansion (4.1) represents a correction to the decay
rate as a result of double scattering. From (4.2a) it
follows that eC~-0.01%, and we conclude that this
correction to the decay rate is completely negligible.
The second term m =2 in the expansion (4.1}
represents a contribution to the curvature. From
(4.2b} we find eC2 1.9&10,which is equivalent
to a second normalized cumulant value k2-0.004.
On comparing with the normalized second cumulant
values presented in Table II we conclude that double
scattering cannot be responsible for the observed de-
viations from exponential decay, but a correction for

this effect is obviously desirable. The coefficient C2
may be estimated as a function of temperature
from

C2(o,') =C2(0)/(1+a+ —,a ), (4.3}

where C2(0) is the value of C2 at the critical tern-
perature quoted in (4.2b). The parameter o, is de-
ttned as a=(qog) ', where g is the correlation
length and qo

——1.37& 10 cm ' is the wave number
of the incident light in the liquid medium. The
correlation length can be represented by the power
law

B. Afterpulsing

As demonstrated in Sec. II, our cross-correlation
method eliminates afterpulsing effects to the extent
that an initiating pulse in one photomultiplier tube
cannot cause a correlated afterpulse in the other tube
given an uncorrelated light source. Ho~ever, it is
possible for an afterpulse in one tube to be causally
related to a pulse occurring in the other tube, when
the incident photons are temporally correlated.

In order to evaluate the effect we relate the actu-
ally measured count rate n(t) to the true count rate
n(t) by

n(t)=n(t)+ f a(t —t')n(t')dt'

=n (t)+ f a(t')n (t t') dt', — (4.6)

where u(t') is the probability of finding a correlated
afterpulse after a time interval t'. The average ap-
parent count rate (n ) is related to the average true
count rate (n ) by

(n ) = (n )( )+a), (4.7)

where 0,'is the total integrated afterpulsing probabil-
ity of the photomultiplier tube

a= f a(t')dt'.

Let n;(t) and n;(t) be the count rates received and
processed by photomultiplier tube i and a;(t) the
afterpulsing probability of photomultiplier tube i

where b, T*=(T—T, )/T, and where

go
——0.228 nm, v =0.625

as determined previously. " %ith C, thus deter-
mined we subtracted the calculated double-
scattering contribution eC2~ from the experimental
data for lim(t) prior to the analysis of the experi-
mental data.
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(i =1,2). From (4.6) it follows that the observed in-

tensity correlation function

G' '(t) = (n ~ (t)nq(0) )

is related to the true intensity correlation function

Gi '(t) = (nl(t)nq(0) )

by

(n, (t)np(0)) =(ni(t)np(0))+ f ai(ti )(ni(t tI )np—

(0))dt's

+ f a, (t', )(n, (t+t', )n, {0))dt;

+ f f a&(t&)aq(tq)(n~(t t'~+—t'z)nz(0))dt~dtq, (4.9)

if the output of photomultiplier tube 1 is used to supply the delayed unclipped signal to the correlator. Since a
single photon cannot generate photoelectrons in the two photomultiplier tubes simultaneously, it is desirable to
decompose (4.9) into

(ni(t)nq(0)) = (ni(t)nq(0))+a i(t)(nl )5iq
t —e

+ hm f a, (t', )(ni(t tI )nq(0—))dtI
0

+ lim f a~{t'~ )(n~(t t~ )nq(0—))dt's
p~O i+6'

+ f a, (t,')(n, (t+t', )n, (0))dt;, (4.10)

where 512 is a delta function such that 6,J-
——1 if i =j, and where we have neglected the last term in (4.9) which

is quadratic in the afterpulsing probability. %'e assume that the true intensity correlation function decays as

G' '(t)=(n~(t)nq(0)) =(n~ )(nq)[1+P exp( —21
~
t

~
)],

where I is the decay rate of the electric field correlation function. Substitution of (4.11) into (4.10) yields

(n, (t)n, (0)) =(n, )(n, )(i+a, +a, )+a, (t)(n, )5„+P(n, )(n, )e

X 1+ f a~(t~ )e 'dt', +e+ "'f a~(t~ )e 'dt',

—2r~',
a1(t2 )e 'Ct2

0

The first term in (4.12) represents the observed base line

&=(nI &(n~&=(n~ &(n~&(1+al+a~) .

(4.11)

(4.12)

(4.13)

The second term in (4.12) is eliminated by the cross-correlation method. However, to assess the effects of
afterpulsing completely we also need to consider the remaining contributions in (4.12).

To estimate the effects we assume that the afterpulsing probabilities a;(t') can be characterized by a function
of the form

Qg(t ) =2&)/)8 (4.14)

where the amplitude is normalized so as to satisfy condition (4.8). An examination of Fig. 3 suggests that this
is a reasonable assumption. A comparison between Figs. 3 and 5 also indicates that y; gpI . Substitution of
(4.14) into (4.12) yields

(n, (t)n, {0))=(n, )(n, )(1+a,+a, )+a, (t)(n, )5„+P(n, ) (n, )e

+171 +272
X 1+ ~+ ~+X2+I

+13 1 +1/1 —2(yl —I")t
e

X1+I

Since I &&y;, we expand (4.15) in terms of I /y1 and I"/y2. If we retain only terms linear in a; and I"/y;, we
obtain for the observed normalized correlation function g' '(t) =6' '{t)/8

r

M2) a1I aPI ~, o'1I
g (t)=1+a&(t)(n&&5»+P 1+ — e- '—2P e

Fl 72 71
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The third term simply modifies the instrumental
constant P, but the last term in (4.16) represents a
small correction to be applied to the data.

From a calibration of photomultiplier tube 1 we
find a&-0.8X10 ' and y&-0. 55X10 s '. On
comparing yi with the values quoted in Table I we
conclude I /y&-0. 07. An inspection of the output
of photomultiplier tube 2 indicates that a2 and y2
will be of the same order of magnitude as a ] and y].
We conclude that the effect of the correction term

C. Uncertainty in the base line

The normalized electric field correlation function
g"'(t) is related to the intensity correlation function
G['](t) by

(4.17)

Let us assume that the observed base line B differs
from the true base line by a relative error 5B

B=B(1+5,) . (4.18)

—2Pa((&/y()e ' = —Pa)(t)&/y'(,

which was taken into account, is very small; contri-
butions from terms of order a; I /y; or a;(I /y;)
are obviously negligible.

by a factor (1+5&/P). The third correction term
contributes an amount 25')/P=45t) to the normal-
ized second cumulant k2. Estimates for the errors
5B in the determination of the base line were
presented in Sec. II. For a typical error
5B-0.0025% the contribution 45B to kz is only
1X10 and thus negligibly small. Even for the
largest error 5B ——0.042% at hT =3.8 mK the con-
tribution to kz is only 1.7X10 . We conclude that
the observed deviations from exponential decay can-
not be attributed to uncertainties in the base line, but
we do include the estimate 45B in the quoted sys-
tematic error for k2.

D. Scattering from multiple beams in the sample

As demonstrated in a previous paper, part of the
incident light will be reflected at the glass-air inter-
face upon exiting the optical cell. As a consequence,
the observed scattered light intensity contains not
only light scattered from the incident beam, but also
a contribution due to light scattered from the re-
flected beam. Mixing of these two types of scattered
light will cause apparent deviations from a simple
exponential decay with a single relaxation rate, if the
scattering angles 0& and 02 and hence the wave
numbers

The experimentally observed apparent electric field
correlation function g "(t), such that

P[g ' (t)]'=[6"'(t)—B]/B
and

q ] ——2qosin(0
&
/2)

is then related to the true electric field correlation
function g'"(t) by

g '(t) =g'"(t)
1/2

5t) 1+P [g (')(t) ]
p g' "(t)

(4.19)

where we have only retained the first-order correc-
tion term in 5B. After taking the logarithm and ex-

panding the exponential function

[g"'(t)] =exp( —2I't),

we obtain

q2 ——2qosin(0z /2)

associated with the light scattered from the incident
beam and with the light scattered from the reflected
beam, respectively, are in fact different. If the laser
and sample are aligned in such a manner that the in-
cident and reflected beams are colinear and if the
scattering angle is 90', then 0] ——02 and no distor-
tion will be present in the observed correlation func-
tion. We now consider the effect of small deviations
from this ideal optical configuration.

As argued in a previous pa~er
0 the observed

intensity correlation function 6' '(t) minus the base
line becomes

G' '(t) —B=I e l +I e
zr

lng (t) = lng (t)—-() ) (() 5t) +p 2I I+ (4.21)

It — I t +
5B 5B 2 2 (4.20)

The first correction term in (4.20) modifies the in-
strumental constant e in (3.2). The effect of the
second correction term is to modify the decay rate I

where I; is the intensity of the light scattered from
the fluctuations with wave number q; and where I;
is the decay rate of the corresponding electric field
correlation function. The apparent electric field
correlation function g "(t) is thus related to the true
electric field correlation function g"'(t) by
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2

g (r) =g (r) 1+—2exp[ —2(I 2
—I'~)tj+ exp[ —(I 2

—I'~)r]-[1) 2I2

I1 Ii

' 1f2

(4.22)

The intensity I; of light scattered from fluctuations with wave number q; is inversely proportional to (1+q; g~)

in the Ornstein-Zernike approximation. We thus estimate the strength I2 of the light scattered from the re-

flected beam relative to the strength I1 of the light scattered from the incident beam as

I2 1+qf(
(4.23)

1+qpg'

I2 I2 2I2——1+—(r2 —r1)t+—l+ (r2 —r, )'—+ . .
I1 I1 Z1 I,

where 8=0.04 is the reAection coefficient of the glass-air interface. The decay rates r2 and I 1 are related by

jeff

(4.24)
qi

where z,ff is an effective dynamic scaling exponent introduced in previous papers, ' and which, for the tem-
peratures of the present experiments, is close to 3. Since I2/I, =0.04«1 and

~

I z
—I,

~

r &&1, we obtain
from (4.22) after expanding the exponential functions

lng (t) lng (t)+ 1+
I1 2I1

The first correction term again affects the instru-
mental constant c in (3.6), the second correction
term modifies the first cumulant E1 by a negligibly
small amount, and the third correction term yields a
small contribution 5k2 to the normalized second cu-
mulant k2

r

I2 2I2
5k =—l+ (4.26)

1 1

If me assume a liberal estimate of a 5' difference be-
tween the two scattering angles, i.e., if we assume
the scattering angles to be 87.5' and 92.5', we find
that (r,—r, )/r, =O. 14 so that Sk,=8.SX10-'.
We conclude that the effect is very small; it is in-
cluded in the error estimates assigned to the experi-
mental values of k, in Table II.

E. Heterodyning

In principle, the observed correlation function can
be affected by heterodyning effects if the scattered
light detected by the photomultiplier has also a con-
tribution from local oscillators such as from dust
and glints in the sample. If me assume coherent
mixing, the observed intensity correlation function
6' '(t) minus the base line mould become

G' '(t) —8=I e '+2I I e

where I1 is the intensity of the light scattered by the
Auid and I2 the intensity of the local oscillator, If
the wave fronts of the light scattered by the Auid
and the local oscillator are not parallel over the

detector surface, the heterodyning will be less than
indicated in (4.27). Hence for given intensity I2, Eq.
(4.27) represents an upper estimate of the effect.
Assuming I2/I1 gg 1, we obtain from (4.27)

lng "(t)=lng"'(t) — +—e"'I2 I2

2I1

The last term (I2iI~ )er' causes a deviation from the

assumed linear behavior, —I t, of Ing'"(t).
A detailed study of the intensity of the light scat-

tered from the same sample at 90' was made earlier
in collaboration with Chang. ' To obtain an esti-
mate for the intensity ratio I2/I1 we examined the
intensity of the scattered light at a temperature
AT = T —T, =10 C far away from the critical tem-
perature. The intensity of the scattered light by the
Auid can also be estimated theoretically from an
analysis of the thermodynamic properties of the 3-
methylpentane and nitroethane mixture as discussed
earlier. ' Such an estimate appeared to account for
at least half of the scattered intensity at this tem-
perature. If we attribute the other half to spurious
contributions from local oscillators, we conclude
that for the temperatures considered here
I2/I 1 & 0.0025. An analysis of (4.28) with the
values for I observed experimentally indicates that
the correction would lead to a shift 5k2 of the nor-
malized second cumulant k2 of not more than 0.002.
Since this is a maximum estimate, we do not apply
any corrections for heterodyning effects to the ex-
perimental data, but we do include an amount 0.002
in the estimated systematic errors assigned to k2.
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F. Local heating and convection

In principle, the temperature of the scattering
volume will differ from the temperature of the sur-
rounding Auid in the optical cell due to local heating
by the incident laser light. We assume that the tem-
perature rise 5T is proportional to the incident
power per unit area that is proportional to the power
U of the laser light and inversely proportional to the
square of the focusing length I;

5T=DU/I (4.29)

In our previous experiments' ' the coefficient D
was found to be D=-0.0056 Km /W which for the
focusing length used in our present experiments im-

plies a temperature rise of about 1.0S mK/mW. In
our previous investigation of the decay rate of the
concentration fluctuations the measurements were
obtained at various laser power levels down to levels
as small as 4S pW. Since at a given power level and
at a given count rate the cross-correlation method
quadruples the time required to make a measure-
ment, the measurements reported here were per-
formed at a laser power level of 1 mW so as to avoid
excessively long experimental runs. Since the criti-
cal temperature T, was determined under the same
conditions, the estimated local heating of about 1

mK should not affect the values measured for
AT =T—T, .

However, if the laser is heating a portion of the
fluid sample it is possible for therma, 1 convections to
develop. Convection currents could induce in the
scattered light a Doppler shift proportional to q v,
where v is the local fluid velocity which in turn
could cause apparent distortions ln the spectrum of
the scattered light. Starting from the nominal tem-
perature corresponding to hT =T —T, =S mK, we
made a series of measurements in which the laser
power level was increased from 1 to 7 mW. The
data were again subjected to a cumulant analysis,
and the normalized second cumulant k2 was deter-
mined as a function of the laser power level. The re-
sults are shown in Fig. 6. The circles represent the
values of k2 previously obtained from the measure-
ments with a power level of 1 mW; the error bands
correspond to the sum of the random and systematic
errors quoted in Table II. The squares represent the
new values of k2 obtained with higher power levels;
they are displayed at the estimated equivalent tem-
peratures b, T=[0.5 + (U —1)1.05] mK. Although
the resolution of these additional po~er level depen-
dent measurements is not as good, the results defi-
nitely indicate that k2 decreases with increasing
power level by amounts comparable to what one
would expect from the dependence of k2 on tem-
perature. On the other hand, if Doppler effects due
to convection were important, we would expect the

observed deviations from exponential decay to I',n-

crease with the power level. We conclude that there
are no detectable contributions from convection
currents to the observed time dependence of the
scattered light intensity.

V. COMPARISON WITH THEORY

Although Perl and Ferrell had predicted the pres-
ence of deviations from exponential decay of the
order-parameter correlation function in fluid~ very
close to the critical point, their theory was not suf-
ficiently developed to enable us to make a quantita-
tive comparison with our experimental results. As
an alternative we considered a paper of Qhta and
Kawasaki which seemed to give an expression for
a frequency-dependent decay rate. However, the ef-
fect predicted by Ohta and Kawasaki appeared to be
much smaller than the deviations observed experi-
mentally and also implied the opposite sign for the
curvature of lng'"(t) as a function of time.
Motivated by our experimental results, the theory
was further developed by Bhattacharjee and Ferrell3

and by Ohta. Both theories lead to essentially the
same curvature of lng' (t) at the critical point.
We consider here the more detailed theoretical
analysis of Bhattacharjee and Ferrell which includes
an estimate of the temperature dependence of the ef-
fect.

A theoretical description can be based on either
the mode-coupling theory of dynamic critical phe-
nomena as developed by Kawasaki ' or on the
decoupled-mode version of critical dynamics as for-
mulated by Ferrell. According to these theories,
which are equivalent in the Ornstein-Zernike ap-

Laser Level (m'+)

0 l 2 5 4 5 6 7 B 9 l0

0.06—

OQ5—

000 I I I I I l I I I l I i + t I ! i

l 5 l0 20
QT= T- Tc (mK)

FIG. 6. Normalized second cumulant kz as a function
of AT =T —T, . The circles represent the values deduced
from the measurements with a laser power of 1 m%. The
squares represent the values deduced from some check
measurements with higher laser power levels. The trian-

gles represent values of k2 estimated from the theory as
discussed in Sec. V.
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proximation for the static order-parameter correla-
tion function, the decay of the order-parameter Auc-

tuations in fluids is coupled to the decay of the
shear modes. A theory for the frequency depen-

dence of the shear viscosity was developed by Perl
and Ferrell and by Bhattacharjee and Ferrell. The
effect of the frequency dependence of the shear

viscosity on the decay of the order-parameter Auc-

tuations is twofold. First, it modifies the decay rate

I at zero frequency. This effect was not evaluated

by Bhattaeharjee and Ferrell, but has been con-
sidered by Perl and Ferrell and by Garisto and

Kapral. ' Secondly, it causes an explicit dependence
of the decay rate I on the frequency which in our
experiments is seen as 8 deviation from exponential
decay of thc crit1cal concentration fluctuations.
Here we focus our attention on these deviations
from exponential decay as revealed by the curvature
of lng (t) as 8 function of t.

Bhattacharjee and Ferrcll consider the decay
rate I as a function of wave number, temperature,
and frcqucncy and intioducc 8 dimcnsionlcss time v

such that

ET=T—T,

1.8
2.7
3.8
5.5

11.7
20.3

0.72
0.77
0.84
0.95
1.47
2.74

I 0+2oI

(.-)
'

3667+4
3683+4
3686+5
3723+4
3841+3
4040+5

while so is identified with the root of the equation

The coefficients a and b in (5.4) are given by
'

q2(2 3m+'

TABLE III. Parameters for the comparison with the

theory of Bhattacharjee and Fcrre11.

where I o is the decay rate I at zero frequency. To
specify thc dcv1at1ons from cxponcnt181 decay of thc
correlation function g'"(t) they define a deviation
function by writing lng (f) as

lng"'(~) = —~+e'AG = —~+ —e'4G,
3

where z is a dynamic scaling exponent, whose
theoretical value z=3.06 was previously found to be
in good agreement with experiment. 2o'33 They then
show that the deviation function e'AG is given by

I-„f(s)[e-'-"—1]
(s —1)

where q =1.93X10 cm ' is the wave number and
where A is a constant that characterizes the frequen-

cy dependence of the viscosity at the critical point

At the critical temperature (g'~ ao } the coefficients
a and b assume the values ao and bo, respectively.
The best estimates, proposed by Bhattacharjee and

Fcrrcll for Qo and &os arc

where f (s) is a spectral function such that f(s)=0
fol s +so. Th1s sPcctral function can bc 8PPloxi-
mated by

a bf(s)=1— I/3 g

Thc value of thc threshold so 1s dctcrm1ncd by sub"
stituting (5.6) into (5.4) and solving (5.5) numerical-
ly. Thc values thus obtained for so as 8 function of
temperature are presented in Table III.

Substitution of (5.4) into (5.3) yields for the devia-
tion function

e'&G =(1—b) rEi[(1 sp)r]+el—n
1 —so

&o
+b e'Ei( —sp~) —Ei[(l —sp)r] —ln +—+aX,

1 —so ~o
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—(s —1)r 1] ~ ds

0 ]/3 (S 1)2 Jso S4/3 (S 1)

and where Ei(u) is the integral exponential function

(5.10)

Ei(x)=P j—ae y

The first integral in (5.10) cannot be evaluated in closed form. Following the advice of Bhattacharjee and Fer-
rell we approximate X by a series expansion

a) n +{4/3) aa aa 1)nsn m+n+2
(5.12)

so n 0 (n + 3 ){n+ 3
)n! m=0 n =0 (m +n +2)(m +n + 1)m!n ~(n + 3 )

where I ( —,)=1.354. Equation {5.9) is not in a form suitable for numerical analysis; some individual terms

diverge as so~1, while the sum must remain finite. We must therefore rewrite the equation so as to cancel the
diverging contributions explicitly. This goal is achieved by introducing the series expansion for the integral ex-

ponential function

aa n

Ei (x) =y+1nx+ g nn!
(5.13)

where y=0.S77 is Euler*s constant. By substituting (5.12) and (S.13) into (5.9) and rearranging terms we ob-

tain

[(1—so)r]"
e'b, G=[(1 b)r b]—y+ —g

n=]

{1—so}r

-(1—b)
1 —so

( —so~)"
[b be' —(—1 —b)—r]ln(sor)+be' y+ Q nn!

3a b

ao ~ +{4/3) aa aa {—so)"~+"
-ar(-', ) g, , +as@2 g g

0 („+')(n+ '
)n! 0 n 0 (m+n+2)(m+n+1)mtn!

(5.14)

In order to evaluate the theoretical expression for
the deviation function we need to determine the de-

cay rate I 0. Taking I 0——I df as quoted in Table I as
a first guess, we subtract the deviation function
e'AG from the data for lng'"(t) and fit the results

I

to a linear function of t so as to obtain a new esti-
mate for I o. The procedure is repeated until con-
vergence is obtained. The values thus obtained for
I 0 are included in Table III. Upon comparison with
the effective decay rates in Table I we note that the

a«

i.G-
QT= l.e mK

0.5—
0«0

l.0—
AT=2.7 mK

05—

0.0, 0.0

8'

l 0 l I I I I I I I I I I I

0.0 0.2 OA 0.6 0.8 l.G l.2

T =I"t
FIG. 7. Deviation e'AG =lng("{t}+~as a function of

w at AT =1.8 mK. The circles represent the experimental
data and the curve the function calculated from the
theory.

, 6.
0 O 0

l 0 ~ I i I ~ I ( I

0.0 0.2 GA 0.6 0.8 I.G l.2

FIG. 8. Deviation e'AG =lng'"{~)+~ as a function of
v at ET =2.7 mK. The circles represent the experimental

data and the curve the function calculated from the

theory.
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I.O—
ET=5.8 mK

0.5—
0~O

I.O-
6T =

I l.7 mK

0.0
OO Oo

0 0

0.0

-I.O
0.0

0~0~~ bo 0
0~ 0

0
I I I I I I I k I I

0.2 OA 0.6 0.8 I.O I.2

T=l t
FIG. 9. Deviation e'AG =lng"'{r)+w as a function of

r at AT =3.8 mK. The circles represent the experimental
data and the curve the function calculated from the
theory.

Q
I I I I I I I I I l I l

0.0 0.2 0.4 0.6 0.8 1.0 l.2

T =1"t

FIG. 11. Deviation e'AG =lng"'(7. )+~ as a function
of ~ at AT =11.7 mK. The circles represent the experi-
mental data and the curve the function calculated from

the theory.

shift in the decay rate is negligibly small. This re-
sult does not necessarily mean that the effect of the
frequency dependence on the viscosity is negligibly
small. Calculations of Garisto and Kapral' indi-
cate that the frequency correction could be as much
as 2%. When in our previous work the effective de-

cay rate data were compared with the mode-
coupling equations without including any frequency
corrections, deviations of a few percent were also
noted. However, the result does mean that the effect
of the curvature of lng'"(t) upon the determination
of the decay rate is very small.

To compare the observed deviation from exponen-
tial decay with the theoretical predictions, we can
proceed in two mays. An indirect procedure is to
evaluate the predicted values of the deviation func-
tion

e'AG = (z/3)e'b, G

at the experimental values of ~ and to subject the
theoretical data to the same cumulant analysis as
was done with the experimental data. The theoreti-
cal estimates thus obtained for the normalized
second cumulant k2 are given in the last column of
Table Il. The agreement between the experimental
and theoretical values of k2 is satisfactory.

However, as is evident from (5.14} the actual cur-
vature of lng"'(t} cannot be represented by a qua-
dratic function of ~. A more direct and accurate
method is to determine the experimental deviations
as lng"'(t)+~ and compare these experimental devi-
ations as a function of ~ with the theoretical values
for e'hG directly. The results of this procedure are
shown in Figs. 7—12. The figures clearly illustrate
that ihe theory reproduces the experimentally ob-
served curvatures well within experimental error at
all temperatures.

I.O-
AT =5.5 mK

I.Q—

ET=20.5 mK

O~
0

P q, o
00 O

0 0 0 0

I I I l I I I I I I I t

0.0 0.2 OA 0.6 0.8 I.Q l.2

~O0

0
0.5—

0 0 0
0

0

0.0 o ~g oo Z& p oo

00O 4 o 0 + oo0 0-0.5— 0
0 0

I 0 I I I I I j I I I I I

0.0 0.2 OA 0.6 0.8 I.Q l.2

FIG. 10. Deviation e'AG =lng"'{~)+v as a function
of w at AT=5. 5 mK. The circles represent the experi-
mental data and the curve the function calculated from
the theory.

FIG. 12. Deviation e'EG =lng'"{~)+v as a function
of g at hT =20.3 mK. The circles represent the experi-
mental data and the curve the function calculated from
the theory.
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VI. CONCLUSION

We have observed deviations from exponential de-
cay of the critical concentration fluctuations in a
binary liquid mixture and have demonstrated that
the effect can be attributed to the coupling with a
frequency-dependent critical viscosity as estimated
by Ferrell and co-workers.
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