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During the last few years there has been an in-

creasing interest in incommensurate systems and
this development has been reviewed from the
theoretical point of view in Ref. 1 and from the ex-
perimental point of view (concentrating on reso-
nance experiments} by Bhnc. One of the systems
which seems to have been investigated most
thoroughly for 8 rather broad variety of its physical
properties is the IDercury chain compound
Hg3 sAsF6. ' Another example of an incommens-
urate system which is supposed to have interesting
properties in the domain of low-energy excitations is
an incommensurate smectic-E liquid crystal which
has been identified recently by Brownsey and Lead-
bcttcr using x-ray diffraction techniques. A
theoretical description of the behavior of an isolated
mercury chain (1Q Hg3 5AsF6) has bccQ g1vcn by
two groups. Emery and Axe used a harmonic
chain model leading to a sine-Gordon equation and
Mori, Shobu, and Yoshlda ' studied thc transport
behavior of an isolated chain.

In the present paper we mill focus our attention
cxclusivcly on thc thrcc-d1IDcnsional hydrodynamic
properties of the two systems mentioned above. By
hydrodynamic regime we mean that we look at time
scales long compared to any IDicI'oscopic tiIDc (c.g.,
time between two collisions, Tg), APT'g QK 1 y whcrc N is
the frequency of an excitation, and at length scales
which Rr'c long compared to any microscopic length
scale, I, of the system, i.c., wc have kl, ~~ 1, where k
is the wave vector of the excitation. To provide a
complete hydrodynamic description wc will combine
the thermodynamic framework (of, e.g., Ref. 11)
with the projector formalism of Mori' introduced
into hydrodynamics by Forstcl. Us1ng thcsc tcch-

II. HYDRODYNAMICS OF INCOMMENSURATE
8MECTICS-E

In 1980 it was pointed out for the first time by
Brownsey and Leadbetter that two incommensurate
density waves 1Q onc d1rcction can cocx1st in 8

%e discuss the linearized hydrodynamic equations for the incommensurate phases of
smectic-E liquid crystals and of the mercury chain compound Hg3 ~AsF6. In particular,
we clarify the nature of the spontaneously broken continuous symmetries and point out their
consequences for the number of hydrodynamic variables and thus for the number of propa-

gating and diffusive normal modes. In addition, contact is made with a microscopic
description by deriving Kubo relations for the transport parameters involved. A discussion

of the crossover between propagating and diffusive modes due to finite interactions between

the chains and the host lattice of Hg3 qAsF6 is also included.

I. INTRODUCTION niques we can shed new light on the material
presented very recently by Axe and one of the au-
thors' for Hg3 ~ASF6. Furthermore wc present for
thc first time 8 nlac1oscop1c description of incoID-
mensurate smectic"E (Sm-E) liquid crystals. In par-
ticular, we will clarify why additional normal modes
(COIDparcd to 8 crystal) can occur in thc systcIDs
under consideration.

The paper is organized as follows. In Sec. II we

present the hydrodynamics of incommensurate
smectic-E liquid crystals and propose some experi-
ments to verify the predictions made here. In Sec.
III we ccncentrate on Hg, ,AsF, for temperatures
larger than the temperature for the lock-in transition
of the mercury chains, and in Sec. IV the behavior
of Hg3 ~ASF6 at temperatures T~T, is examined.
Finally we discuss in the conclusions the relations of
our work to the papers on isolated mercury chains
and we investigate in some detail the siIDilarities and
the differences in the hydrodynamics of the "usual"
not incommensurate systems. For incommensurate
smectics E we will present the details of the hydro-
dynamic equations whereas for the incommensurate
phases of Hg3 5AsF6 cIDph8sis is laid on thc discus-
sion of the hydrodynamic variables, the spontane-
ously broken continuous symmetries, and the struc-
ture of thc normal Qlodc spcctruIIl. Thc QuIDbcrs of
the coefficients involved in the various tensors
describing the dissipative behavior is listed in a
table.
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smectic-E liquid crystal. In this section we derive
the general hydrodynamic equations for such a sys-
tem and specialize our results for the case of an
orthorhombic smectic-E liquid crystal.

To set up the hydrodynamics we have to identify
the hydrodynamic variables. In an ordinary
smectic-E liquid crystal without incommensurations
we have as conserved quantities the total density p,
the density of linear momentum g, and the entropy
density o (or equivalently the energy density e).
Since smectics-E are believed to be identical to crys-
tal in the hydrodynamic regime, we have as vari-
ables characterizing the spontaneously broken
translation symmetries three displacement fields u.
Consequently one finds three pairs of propagating
modes and two modes which are diffusive (cf. Ref.
11 for the corresponding discussion of the case of a
crystal). If we now switch to the incommensurate
phase we have two incommensurate density waves in
a certain direction (which we will choose to be the z
direction, without loss of generality). In the direc-
tions transverse to the preferred direction nothing
changes when compared to an ordinary smectic-E
liquid crystal, i.e., we have as variables the two
transverse components of the density of linear
momentum and the two transverse displacement
fields which are conjugate variables to the two tran-
severse components of g, g, (g, serves as generator
of the transverse broken translational symmetries).
In addition, it is important to notice that the total
density p is dragged along by g, in these directions.
Parallel to the preferred direction, however, the situ-
ation is quite different. Due to the incommensura-
bility of the two density modulations along the pre-
ferred axis, it becomes possible, by definition of the
term incommensurate, to move one density modula-
tion with respect to the other without cost of energy
(for infinitesimal displacements). That is there is no
finite energy (for k~0) associated with the relative
motion of the two density waves. Correspondingly
one has to introduce two densities of linear momen-
turn and two displacement fields parallel to the pre-
ferred direction, i.e., it is possible to have more than
one spontaneously broken continuous symmetry of
the same kind (translational symmetry) in one direc-
tion, a feature unique to incommensurate systems
among all systems studied so far in the hydro-
dynamic regime.

The possibility to have two densities of linear
momentum in certain directions, however, is well
known from a rather different field: the case of
mixture of immiscible fluids (for a detailed account
of the behavior of immiscible fluids in a porous
medium, we refer to Ref. 15).

Furthermore, it is necessary to include in the list

u;+X; =0,

g;"+V o.,"=0,
~ A

g; +V)o,j ——0,
-B B

g, +Vjogj —0 s

(2.3)

o+Vj; =—,l l

where the currents j;, j;", j;, o,'J', O.,J, 0.
;J and the

quasicurrents X,",X;, X;" are defined via Eqs. (2.3).
As usual R denotes the entropy production. In a
first step we relate the thermodynamic conjugate
quantities to the hydrodynamic variables. To
achieve this it is most convenient to start from the
generalized free-energy functional F:

of conserved quantities the density of one of the two
modulations (p„i in addition to the total density

(p~pq+ps, where ps is the density of the other
modulation along the preferred direction).
Equivalently one might drop the total density as a
hydrodynamic variable and keep the two conserved
quantities pz and pq separately. Thus we have the
following hydrodynamic variables in the incom-
mensurate phase of smectics-E: p, the total density,
the density pz, the entropy density o, the two trans-
verse displacement fields u„, the two transverse
components of the density of linear momentum g„,
two densities of linear momentum parallel to the
preferred direction g,

" and g;, and two displacement
fields u;, u; . Correspondingly we expect to find 11
normal modes, diffusive or propagating. To set up
the hydrodynamic equations we start as usual (as-

suming local thermodynamic equilibrium) from the
Gibbs relation for the hydrodynamic variables

de= T der p, dp+P—",J.d V; uj" +P,jdV;uj +P,'Jd V; uj"

+ v "dg"+v;"dg;~+v; dg; +Z"d ~, (2.1)

where T, p, P;J, P,J, P~J, v'", v;", v;, and Z" are ther-
modynamic conjugates as defined in Eq. (2.1). For
the pressure we have

I ~+pp+Z pA +vi gi +vi gi +vi gi

(2.2)

and for the equations of motions for the conserved
quantities and the quantities characterizing the bro-
ken symmetries,

p~+V j'=0
~ Bpa+V j; =0,

u;+X; =0,
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l (~ tr)2 (gA)2 (g8)2
F=fd V g + ' + ' + r p (5p)(5o)+pC, T(5o )'+X,(5p„)'+X,(5p)(5p, )

2p 2pA 2p8 8T

+73(5pA )(50 ) +p
~

(5p) +Z Jkl(V; u,")(Vkul") +aj'kl(V'uj' )(Vkul
imp

+kg~(V u)")(Vkui )+&Jki(V uj )(Vkui )+&~vs(V u~')(Vkui')+5jkt(V uj'")(Vkui")

+XJ(5o)(V;uj")+I;,(5' )(V;uj")+IJ (5p)(V; uj")+ QJ (5' )(V;uj")+g;; (5p)(V;uj". )

+g; (5o)(V;u )+A,; (5p„)(V;u. )+X; (5p)(V;u )+iL(5o)(V;u )+r, (5„u,"—B„u, )2

+~,(a„u,'+a, u„)'+~,(a„u,"—a, u,')(a, u,"+a,u„)+~,(a„u,"—a, u,')'

+~5(Byu,"+B,u ) +~6(i3 u, —0 u, )(3 u,"+3,u„)

5F
5p

p=
5p

The thermodynamic conjugates are then found sim-

ply by taking partial derivatives with respect to one
quantity while keeping fixed all other variables
(representd by the ellipsis in the subscript):

BR
ofJ PB ej+eiek4kj

A A —1

X» =g» PA

8 8 —1& =g»PB

&;"=g;"(PA+P8) '

(2.11)

(2.12)

(2.13)

5F
v 5~ tr

g

5F
A

5F
5g;

A A 8 8 tr tr
g» =PAD» i g» =PBU» ~ g» =(PA+PB)U»

(2.1S)

5F
(~J

5V 8

~ 0' tr A 8=ovj5»j+(oAUj +oBuj )e;ej,
~ A~ A tr

J» =PAUj e»&j+PAU»

8 tr
=pUj e;ej+pBU»

o'J =P5'J'+5'klan, '
ARo J =pqe;e, +e;ekPk, .

(2.9)

(2.10)

To complete the derivation of the hydrodynamic
equations we have to relate in a second step the re-
versible and irreversible parts of the currents intro-
duced via the balance equations (2.3) to the thermo-
dynamic conjugate quantities presented in Eqs. (2.4),
and (2.5). In detail we find for the reversible
currents (e; =—unit vector parallel to the z direction)

Some of these equations show quite remarkable
features which are unique to incommensurate sys-
tems and have not been found for any other hydro-
dynamic system considered so far. From Eqs.
(2.9)—(2.11), e.g., it becomes obvious that the hydro-
static pressure, which must be isotropic, picks up
two contributions from the two densities of linear
momentum parallel to the preferred direction, where
as nothing changes compared to crystals in the
directions perpendicular to e;. Thus we arrive at

@A+@8——p. Even for superfluid systems it has not
been necessary to split up the pressure. A quite
analogous effect occurs for the reversible current of
the entropy density [Eq. (2.5)] where we have to split
up the density o. into the contributions coming from
the components A and 8 which are dragged along
with the velocities UA and UB, respectively. A cross
term, which ~ould be allowed by pure symmetry
considerations (as behavior under parity or time re-
versal), has to be excluded in order to guarantee the
incommensurability of the system. Or in other
words, the structure of the current [Eq. (2.6)] is a
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direct consequence of the term incommensurability.
The same reasoning applies to the quantities gz and

gjj listed in Eq. (2.1S) and to the reversible currents
of the concentrations p~ and pjj [Eqs. (2.7) and
(2.8)]. The irreversible currents may be derived in a
convenient way from the dissipation function R, a

i

quantity which is positive by definition. After hav-

ing obtained the general structure of R as a function
which is quadratic in the thermodynamic conju-
gates, the irreversible currents are the derivatives of
R with respect to the gradients of the thermodynarn-
ic conjugate quantities. In detail we have

R = JdV[jrj(V;T)(VJT)+g'j(V, itj,')(Vkpjk)+gj'(V, p;, )(V itjj )+gj"(V,$;, )(V p; )

+ g~lj ( Ve itjie )( Vm itjj m )+ gijkj ( Vi Uj )( Vk Ul ) + gi jkl ( Vi Uj }( Vk Ul ) + rjij ki ( Vi Uj )( Vk Ul )

+n;,"kj(V;U,")(VkUi")+ nij jd(V; U,")(Vk Uj")+njkj(V; U,")(Vk Uj')+ fj(VJk'."}(V,T)

+g'j(V, itj;", )(VjT)+gj'(V jitjj )(VJ T)+p'j(V;Z")(VJZ")+elj'j(V;Z )(VJZ )

+gj'(V;Z")(V,Z )+p;', (V;Z )(V, T)+p'j(V;Z")(VJT)+v'k(V;Z )(Vjp'kj)

+&'k(V Z')(Vjkkj)+&'k'(V Z )(Vjkkj )+&'k(V Z")(Vjitkj)+&k(V Z")(Vjkkj }

+vjk(V;Z")(V jitjkj )+I ],
I:&(~xUz ~xUz ) +~2(~xUz +~zox) +~3(~xUz ~xoz )(~xoz +~z"x)

+1k(BIUe —i)IUe } +1 g(BIUe +BeUI) +T 6(B yUe
—i)IU )(eBjtUe +deUI) .

For the irreversible currents we have then

'.g' M
5q ZB

5~
' " =5VZ" . . .

5R
5VT

M
i (2.17)

0'lj. 0 lj'
M

5V, v,
'-

5~
&J 5p tr

J ~ ~ ~

%e have written down in Eq. (2.16) the terms for
g;", g;, g;, etc., separately explicitly in order to
show the intricate couplings brought along by the
incommensurability. In Table I we have listed the
number of coefficients involved in the various
viscous tensors for an orthorhombic lattice [which is
quite common for smectics-E (Ref. 16)]. In order to
exploit the complete set of linearized hydrodynamic
equations given above we discuss first the structure

of the normal modes (specializing to an orthorhom-
bic structure).

For the reversible part of the spectrum we find to
lowest order in k (50.=—0): (a) for k„=k,=0, k„&0,

IUi+Ujz=lp~ «i+r2+r3)+pjj ri]k

tUw2=(p~ps) k. f&i«i+&2+&3}—«i+&3) ]2 2 ] 4 2

TABLE I. Number of parameters that enter the dissipative tensors for orthorhombic in-

commensurate smectics-E and Hg3 +sF6 above the lock-in transition.

HI3 ~sF6 1 parameter:
2 parameters:
3 parameters:
6 parameters:
1 parameter:
2 parameters:
3 parameters:
4 parameters:

Pij
I I II I I I II

+ijlPij&PlJt+JJt jrijt(ljt Cljk |kijs AJI PI I Pl~JI PI~J~

pijkl

gijkl
tt I lit ~jy I tt I ltt tl Itl y yj I tt ty
ij sgij I gij~gjiI gij s&ikI &ik I +ik I+ik I gijkls gijklt gijkl

gij~Sij ~viki~ik~'jjijki» jjijki

&ij I Pij I Pij I Pij IPij IPij

gijkl



for the modes formed by gag&, uz, uz which are
dccoUplcd to lowest order form thc othcI' varlablcs.
In addition, we get a biquadratic equation in m for
thc I'cvcls1Mc Inot1on of u„,u„g„,g p„,p~ and two
modes a) =0: (b) for kg&0,k„=ky

——0 the modes for
u„g„and uy, gy are decoupled from the rest and we
haVC

%'e find for the Kubo relations which are dif-
ferent in the incommensurate phase (when compared
to usual smectics-E or crystals)

g"= lim lim coI„" „(k,co),
ok o

= 11m Ilm cog„„(k,cd ),a~ok~o
g'"= lim lim a)X„" „(k,co),

m-+0 k-+0

For the motion of u, , u, , g,",g, , p» and p~ we get
8 b1quadratlc cquRt1on 1n co coup11ng thcsc s1x varl-

Rblcs, two modes wh1ch RI'c pUrcly dl ffUslvc, 1,c.,
QP =0, and tw'o pairs of plopagRtlng IYlodcs.

ThUs wc have ln clthcr case four paris of pIopaga-
ting modes. As it is easily checked the same holds
for arbitrary directions of the wave vector; the struc-
ture, however, becomes more involved bemuse all
modes are coupled together and one has to solve a
fourth-order equation in ~ . Since no detailed ex-
periments have been reported so far on the hydro-
dynamic IIlodcs of 1ncoIIlIncnsuratc smcct1cs-E wc
refrain from writing this rather opaque expression.
Thus we find one additional pair of propagating
modes in the incommensurate phase; this fact is inti-

mately connected with the existence of an additional
broken symmetry and of an additional density of
linear rnomenturn. As expected from general hydro-
dynamic considerations we find that the dissipation
is always proportional to k (both for purely dif-
fuslvc Rnd for propagat1ng normal modes).

Using the projector technique of Mori applied to
hydrodynamics by Forster it becomes possible to
connect the equations derived above to expressions
containing correlation or absorptive response func-
tions 1n thc hydrodynamic regime. And thcsc qUan-

tities can be either determined by experiment (light
scattc11ng, ncutlon scattering, ctc.) QI' cvaluatcd Bp"
proximately by purely microscopic techniques like,
e.g., the equation of motion. Here we concentrate
on the presentation of Kubo relations which allow
us to establish a connection between the transport
parameters involved and the small wave number,
small frequency limit of the absorptive response
functions. For 8 detailed account of the formalism
we refer to Refs. 13, 17, and 18. After having de-
rived the ingredients of the projector approach in
the hydrodynamic regime (matrix of static suscepti-
bilities, frequency matrix, and Inemory matrix) it is
well established (cf., c.g., Rcf. 18) how to pIocccd
directly from these expressions to the final Kubo re-
lations without using the explicit results for the ab-
sorptive response functions in the hydrodynamic re-
gime (which look unwieldy in the present system,
due to the intricate couplings involved).

q'"= lim lim lirn J"»(k,~),
ok ok ok2

g x,y

'71+'T2+T3= 11m 11In 111Tl g g g(k~Q)) ~

ok ok ok2x y, z

= lim lim 11In g q z(k, N),
ok, ok k ok2

—73—TI = 11m 11m llm g g g(k, ~),ok„o k„,k, o k2

q'= lim lim lim g "»(k,~),
ok, -o k„,k, 0 k2

"gy~y~ 11m 11In 11IIl J (k + )
op~ok ~0 k k -+0 k

q~= lim lim lim gg'g (k,m),
cy —+ok —+0 k, k -~0 k

g„' = lim lim —I"„(k,co),
m~0k —+0 k

g'"= lim lim —X"„(k,co),
ok ok

g"= lim lim —I"„(k,co),
ry~ok~o k

v"'= lim lim —
X~ „(k,~),

ok ok

v"= lim lim —
X~ „(k,~) .

~ ok-o k

Thus it might become possible to determine experi-
rnentally some of the new viscosities involved by us-
ing light-scattering techniques, supplementing the
information which can be gained studying the dissi-
pation of the sound attenuation in specific direc-
tions.

At temperatures above T, =120 K the mercury
hBin cQmpQund Hg3 ~ASF6 1S Qnown to fQrm an

interesting incommensurate phase ' in which the
AsF6 anions form a body-centered tetragonal lattice
which is penetrated by two nonintersecting orthogo-
nal arrays of mercury cations parallel to the basal
plane edges of the AsF6 lattices. In Refs. 8—10



HYDRODYNAMICS OF THE INCOMMENSURATE PHASES OF. . .

these mercury chains have been dealt with as one-

dimensional fluids and in Refs. 14 a continuum-type
description of the compound as a whole has been
presented starting from a Hamiltonian which con-
sists of thc clRstlc cncrgy fo1 foUl d1splaccIBcnt
fields and a corresponding expression for the kinetic
energy. Here we will focus on the characterization
of the hydrodynamic variables and the long-
wavelength, low-frequency properties of Hg3 ~ASF6
or T~ Tc

From the hydrodynamic point of view the two ar-

rays of mercury chains give rise to two additonal
densities pH& and pHz (aside from the density of the
AsF6 lattice, p). Furthermore, we have two addi-
tional densities of linear momentum parallel to the
two arrays of mercury chains, reflecting the fact
fhat thc mercury chains can bc IIlovcd w1th rcspccf,
to the "host" lattice of AsF6 anions without cost of
energy for k —+0. These two densities of linear

momentum gH& and g~H& for the two separate arrays
of mercury chains (wc have taken thc z direction to
bc orthogonal to any mercury chain) have to be sup-
plemented by thc thlcc coIQponcnts of thc dcns1ty of
11ncRI' momcntuIQ of thc AsF6 lattice g and by fhlcc
displacement fields u for the AsF6 lattice which
characterize the three broken translational sym-
metries of this lattice. Finally we have to take into
account the entropy density a, Thus we have a total
of 12 hydrodynamic variables in Hg3 ~ASF6 above
T, : three variables characterizing the spontaneously
broken continuous translational symmetries u and
nine conserved quantities p,pHg, pH&,

o.,g,gHgg~H&.

Since we have presented the procedure to set up
the hydrodynamic equations in detail in Sec. II (for
thc incommensurate phRsc of smcctlcs-E) wc con-
centrate on some special features; we usc for the dis-
placement fields u the same notation Rs in Ref. 14.
For the free energy we find

F=Jd I' Xi[(5pHs)'+(5pHs)'l+X2[(5pHs)(5pHs)]+»[(5 Hs )+(5pHs) ]5p

+X4[(5pHs)+(5pHs)]5o+X5(5o) +X6(5o)(5p)+Xq(5p) + +, +1 2 2
g' (gHs)' (gHs)'

P 2PHg 2PHg

+cjkt(V;uj. )(Vku()+il. ,. (J5o)(V; u) +A;, (5p)(V; ,u)+g)[(5pHs)(V„u„)+(5pHs)(Vyuy)]

+ t(3[(5pH, )+ (5pH, )](V,u, )+t(2[(5pH, )(V~u~ )+(5pHs)(V„u„)]

In Eq. (3.1) e,-,» contains the same ~erms as present-
ed in Eq. (4.5d) of Ref. 14 and g, ,. . .,l(3 as weil as

X&,. . .g7 have been chosen to satisfy the symmetry
properties of a tetragonal lattice symmetry; A,;J con-
tains two independent parameters:

A(J =A )(8~8~ + eye@ )+A2( 5J —8~ e~ —
8y 8y ) .

As is easily checked, e and e~„of Ref. 14 corre-

l

~

~

s ond to pHs and pHs, whereas quantities like
have no analog in our description. In

Rcf. 14 contributions involving these terms have
bccn dclctcd Using thc Rl"gUIBcnf, that thc Hg chRlns
support no shear strains; in the present description if,

is obvious from the outset that pHg and pHz are sca-
lar conserved quantities. All terms involving
5o,5p(A, ;,A, ,J, X3,. . .g7), however, have been deleted
in Ref. 14, whereas general symmetry considerations
clcRfly ROGER for thc cxlstcncc of thcsc terms (cf.
Refs. 11 and 19 for a discussion of corresponding
terms in liquid crystals and crystals). For the nor-
mal modes the discussion can be carried over (for

the most part) from Ref. 14.
For q„/0, q& =q~ =0 wc find thc same expression

as Eqs. (4.8) and (4.9) of Ref. 14. The two longitudi-
nal modes, however, are formed by six variables: g„
pHg, g„, g„~, Rnd ~a', 5p. These six variables lead fo
R biquadlaflc cquaflon in QP and two IDodcs M =0,
i.e., a total of eight propagating modes and four dif-
fus1vc Inodcs Ric found.

For q, &0, q„=q~ =0 we find expressions identi-
cal to Eqs. (4.10) and (4.11) of Ref. 14. In addition,
we find one longitudinal propagating mode and two
modes wh1ch arc diffUs1vc. Thcsc foUl' modes arc
formed by u„g„e, and p. Thus we find the modi-
fied Cauchy relation of the transverse mode propa-
gating in the x direction and polarized along the z
axis, and the mode propagating in the z direction
and polarized in the x direction to hold as well in
the present description; i.e., we have shown that this
relation must, hoM rigorously in the hydrodynamic
reglue Rnd 1S Qot influenced by thc variables p and
o which have not been taken into account in the
continuum-type description of Ref. 14. For general
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directions we find five pairs of propagating modes
and two diffusive ones (compared with four propa-
gating pairs and four diffusive for q„&0, q„=q, =0
and with three propagating pairs and six diffusive
for q, &0,q„=q~ =0). The crossover between propa-

I

gating and diffusive modes found in the present sys-
tem resembles most closely that discussed for biaxial
discotics.

The dissipation function for Hg3 ~AsF6 for
T & T, takes the form

R = I 1 V[lrj(V'; T)(V'J T)+I)jkI(V;uj)(VkuI )+pj(V'; uy"s)(VJuy"s)+ pj(V;u„"s)(V,u„"s)

+p~j(V;u„s)(V'Juy s)+yjld(V';uj )(V'kul"s)+I, ', (V; T)(V,ZHs)+X J'(V; T)(V', ZHs)

+kj(~I(tk)(~IPJI)+PJ(~k«I )(~IT)+Aj('4«k)(~JZHs)+«j'('40k)(~, ZHs)

+«, (&;ZHs)(&,ZHs)+p, ', (&;ZHs)(&,ZHs)+«j'(V;ZHs)(VJZ„'s)+rI(B„u„" +B„u„")'

rI [(B„u,+B,u„"s)'+(B,uy"I+ By u, )']I,

t(I ——lim lim lim —I", (k,cu), (3.3)

The number of the coefficients involved in the vari-
ous tensors together with corresponding results for
the dissipation of smectics-E and Hg3 ~AsF6 below

T, is listed in Table I. As in Sec. II, one can derive
Kubo relations for all transport coefficients in-
volved. Here we list only a few of them which will
be used in the discussion below:

assume that we have still to deal with the same set
of macroscopic variables. Among those, however,
only g„+g„"s andp+gy"s are strictly hydrodynam-
ic, whereas g„—g„~ and g~

—g„~ are, at best, macro-
scopic variables which relax, due to the interaction,
with a finite but long relaxation time ~, . This ap-
proach makes sense if ~, is very large compared to
any macroscopic time scale of the system. For the
equations of motion of g, =p„+g„"s,gl ——gy+gy s,

Hg
g3 =gx —gx s and g4=gy —

gy

t(t)= hm lim lim —X", (k,ro),
co~ 0 k)) ~ 0 kg~ 0 k A~HI

y = lim lim lirn g" „(k,~), (3.5)
u~ 0 k„~0 k„,k ~ O k 2 gage

XI~= lim lirn 4m g & (k,~),
a)~Ok)(~o k~~O k2 ~~Hg

g) +VJo. )J-
——0,

gP+ VJo2J. ——0,

v
g4 +~J+4J

{3.11)

p +rl = llII1 lllll lllll g IIs II (k,ru),
~-Ok„,k, O k~~-O k' gy '4'

lp~)= llnl lllll llIIl X ) I (k,ru),
a)—+ 0 k)

~

~ 0 k~ ~0 k ~HIPHg
(3.8)

where, e.g., k„,k, —+ 0 means k„—k,~ 0, etc.
Finally we sketch which of the results presented

so far have to be modified if a small coupling be-
tween the mercury chains and the host lattice is tak-
en into account. One reason for the existence of
such a coupling can be the screened Coulomb in-
teraction, but many other mechanisms could be im-
agined. If this interaction is sufficiently small it can
be treated as a perturbation in the hydrodynamic ap-
proach [like, e.g., the magnetic dipole interaction in
the superfluid phases of IHe (Ref. 18)]. That is, we

The source term v in Eqs. (3.11) and (3.12) charac-
terizes the strength of the interaction. The structure
of all other conservation and quasiconservation laws
remains unchanged. Of course, it is no longer neces-
sary to split up the pressure and the entropy current.
The consequences of the source term in Eqs, (3.11)
and (3.12) on the mode structure, however, is quite
drastic. Instead of five pairs of propagating modes
we are left with three pairs of propagating modes.
In addition, we have now two purely diffusive
modes of the structure u-iI k (I is anisotropic
and mostly due to the conserved quantities 5pHg and
5pHg) and two microscopic modes co-i 6 (i.e., modes
with a finite gap 6-v at k =0). Thus we predict a
crossover of modes for the mercury chain com-
pounds as a function of the frequency: %e can have
either three (m very small) or five (m larger) pairs of
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propagating modes. The frequency u, for which the
crossover occurs is directly proportional [cf. Eqs.
(3.11) and (3.12)] to the strength of the interaction
between host lattice and mercury chains.

IV. HYDRODYNAMICS OF Hg3 gAsF6, T g T,

Below a critical temperature T, a phase transition
(which 1S pI obably dlscontlQuous ) takes place
which leads to 8 locking of thc IIlcrcUry ch81Qs, 1.c.,
it takes energy to slide the x system with respect to
the U system. ' Furthermore the symmetry is
lowered from tetragonal to orthorhombic (1,1,0) and
(1„—1,0) are no longer equivalent. From the hydro-
dynamic point of V1cw thc varlablcs p, g, and u
characterizing the AsF6 system remain unchanged.
Due to the lock-in transition, however, there is only
one density pHI associated with the mercury chains.
Furthermore, the Hg chains bring along now only
one additional component of density of linear
momentum gHz, because only along the (110) direc-
tion the mercury chains can be moved with respect
to the AsF6 lattice without cost of energy for k~ 0.
In addition, 1t 1s known that thc mcrcuI'y ch81ns
show now long-range poslt1onal order (contrary to
thc quasifluid behavior 8bovc T~),

Correspondingly we have to introduce a displace-
Inent field m which is parallel to the (1,1,0) direction
and which characterizes the spontaneously broken
translational symmetry of the mercury chains. Ac-
cordingly we have a total of 11 hydrodynamic vari-
ables in Hg3 ~AsF6 below T, : four variables
chal actcriz1ng bl okcQ symmctrlcs U, K Rnd scvcn
conserved quantitics gH, pH&, p, g, and 0, the entro-

py density. For |:onvenience we choose the follow-
ing coordinate system: (1,1,0)=—x, (1,—1,0)=—y, and
(0,0, 1)—=z. These coordinates take into account ex-
plicitly the preferred direction in the plane. After
having made this identification of the coordinate
axes it becomes evident that Hg3 ~ AsF6 (T ~ T, ) is
isomorphic to the incommensurate phase of
smectics-E in the hydrodynamic regime and all con-
clusions can be carried over immediately.

%c have prcscnted thc gcnc181 llncarlzcd hyd10-
dynamic equations appropriate for the low-
frcquency, long-wavelength description of the in-
commensurate phases of smectic-E liquid crystals
Rnd thc mercury ch81Q compound Hg3 g AsF6.
Some of the features presented, however, are clearly
not restricted to the system discussed but will occur
for all incommensurate systems. Among these wc
mention the necessity to split up the pressure paral-
lel to the directions showing incommensurations and

one further feature unique to incommensurate sys-

tems, namely, the structure of the entropy current

which consists of various contributions. In addition,
it seems worthwhile to notice that incommensurate

systems provide us with the first example where two
spontaneously broken continuous symmetries of the
same kind (broken translational symmetry) can
occur along certain directions. The possibility of
having additional densities of linear momentum,
which reflects the fact that the subsystems can be
moved with respect to each other without cost of en-

ergy for k —+0, gives rise to additional normal
modes. A rather unique feature, namely„ the so-
called modified Cauchy relation for the mercury
chain compound above the lock-in transition, which
has been put forward by Axe and one of the authors,
has been established rigorously in the hydrodynamic
regime without any restrictions,

Furthermore, we have found for the first time in 8
hydrodynamic system that the static susceptibilities
and the irreversible currents can depend on the an-

tisymmetric parts of the gradients of thc displace-
ment and velocity fields, respectively. Throughout
the paper we considered the system as three-
dimensional Rnd composite. For the mercury chains
in Hg3 ~AsF6 more microscopic techniques have

been put forward by Emery and Axe, and by Mori,
Shobu, Rnd Yoshida leading to interesting predic-
tions such as singular heat conduction, etc. %c be-

lieve, however, that these results only hold for truly
one-dimensional systems and we expect them to be
modified (to a smaller or larger extent, depending on
the quantity under examination) if the real problem
of a composite, three-dimensional problem must be
faced. From our results for the Kubo relation, c.g.,
it is obvious that there are dissipative couplings be-
tween the mercury chains and the AsF6 lattice and
we think it will be very interesting to test experimen-
tally the order of magnitude of these couplings. In
addition, symmetry considerations allow for various
couplings in the free energy and these couplings are
not excluded by the term incommensurable whose
consequences show up most clearly in the hydro-
dynamic regime in the reversible currents. These
additional static and irreversible couplings which
occur in the general thermodynamic formulation
presented here will certainly allow for a better ex-

planation of experiments in the hydrodynamic re-
gime Rnd 8 dccpcr UndcI'standing of incommensurate

systems.
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