
PHYSICAL REVIE% A VOLUME 27, NUMBER 2

Random close packing of hard spheres and disks

FEBRUARY 1983

James G. Berryman
Lawrence Liuermore biationa/Laboratory, P.O. Box 808, L 200-, Liuermore, California 94550

(Received 30 July 1982)

A simple definition of random close packing of hard spheres is presented, and the conse-

quences of this definition are explored. According to this definition, random close packing

occurs at the minimum packing fraction q for which the median nearest-neighbor radius

equals the diameter of the spheres. Using the radial distribution function at more dilute

concentrations to estimate median nearest-neighbor radii, lower bounds on the critical pack-

ing fraction gRcp are obtained and the value of ggcp is estimated by extlapolatlon. Ran-

dom close packing is predicted to occur for gRcp ——0.64+0.02 in three dimensions and

&Rqp=0. 82+0.02 in two dimensions. Both of these predictions are shown to be consistent

with the available experimental data.

I. INTRODUCTION

Packings of spheres with equal radii have been
studied for many years' because they serve as useful
models for a variety of physical systems. Perhaps
the most extensive literature on this subject has ar-
isen in studies of the molecular nature of fluids,
glasses, and amorphous materials. But this sub-

ject is equally fundamental to studies of the macro-
scopic, granular nature of powders and porous ma-
terials. 6

The three special packing models which are most

commonly discussed for dense packings of spheres
are the ordered close packing, random close packing,
and random loose packing. The ordered close pack-
ing of hard spheres of diameter o and number densi-

ty p occurs when the packing fraction g has the
values g =pm. g /6=m/(18)' —=0.7405 in three di-
mensions (fcc or hcp)y g =pm 0 /4=8 /(12)'
=-0.9069 in two dimensions (triangular), and

q =pa = 1 in one dimension. It is generally believed,
but not yet proven mathematically, that the ordered
close packing with q =0.7405 is the densest possible
packing in three dimensions. Random close packing
in three dimensions has been studied experimentally

by shaking containers full of steel ball bearings and
extrapolating the measured densities to eliminate
finite-size effects. The best estimate of g for ran-
dom close packing of ball bearings is probably' "
g~cp ——0.6366+0.0004. Random loose packing is
observed by dumping ball bearings into a container
and measuring the resulting density without shak-
ing. The best estimate of q for random loose pack-
ing of ball bearings is probably' qgLp ——0.60+0.02.
In two dimensions, the experimental numbers for
random packings are not so well known, ' ' but

they generally fall in the range g -0.82—0.89.
Although the experimental numbers for random

packings in three dimensions are reasonably well

known, a precise definition of random close packing
is still lacking. ' The process of arriving at a mean-

ingful definition of random close packing is further
complicated by the common desire to identify the
critical packing fraction q~cp with particular ther-
modynamic features of some other physical system
to be modeled, e.g., singularities in the equation of
state for a hard-sphere fluid along the supercooled
metastable fluid branch. ' ' Although such ther-
modynamic interpretations of random close packing
are no doubt of great interest, it seems advisable to
arrive at a clear definition of random close packing
which is independent of such interpretations. Gotoh
and Finney' have attempted to estimate gzcp using
a statistical geometrical approach based on a few
reasonable assumptions concerning average coordi-
nation number and the shape of the most probable
tetrahedron occurring in the packing. In contrast,
the approach which we propose makes no assump-
tions about the detailed structure of the random
geometry of the packing.

Let us first consider what we should mean by the
term "random close packing" of equal hard spheres.
Both the "random" aspect and the "close" aspect of
random close packing must be clarified in our dis-
cussion. We believe that random close packing
should occur when the fo11owing two conditions are
met: (1) The random packing (i.e., a packing con-
taining no statistically significant short- or long-
range order) is so dense that any increase in density
can be achieved only by a statistically significant in-

crease in short-range order; and (2) any decrease in
density from the random close-packed density leads
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to ensembles of particles which need not be close
packed (i.e., a given particle is not necessarily in

contact with another particle in the absence of inter-

particle forces and gravitational potentials).
It is clearly possible to build packings more dense

than random close packing by creating ordered
domains with the density of closest packing, but

such packings are by definition not random. It is

equally possible to build finite random packings
which are less dense than random close packing, in
which each particle is touching several others, e.g.,
random loose packing. However, in the absence of
external or molecular forces, one expects that, of all

the possible paekings with the same density, these
loose packings compose a negligible fraction of the
whole (i.e., a set of measure zero}.

Note that, in the present discussion, we have pur-

posely avoided including stability as a defining

property of random close packing. We are seeking a
universal definition of random close packing —true
in one and two dimensions as well as three. Al-
though the random close-packed state seems to be
stable in three dimensions, the experimental evi-

dence appears to show that it is not stable in two di-
mensions (see Sec. IV). Therefore, it is essential to
exclude stability from a definition which is intended
to be universal.

While the preceding discussion helps to explain
what we mean by the random close packing of
spheres, it does not help to clarify the significance of
random loose packing. To explain random loose
packing along similar lines, we would have to sup-
pose that there exists a minimum density below
which it is impossible to find (finite) configurations
with each particle touching several others. Howev-
er, this idea is certainly wrong unless we also intro-
duce the concept of stability. There may indeed ex-
ist a minimum density below which it is impossible
to find configurations which are stable against com-
paction to higher densities when acted on by gravity
alone (no shaking). Hence, we see that the concept
of random loose packing is in some sense less funda-
mental than the concept of random close packing.
We must introduce the concept of stability in the
presence of a force field to understand random loose
packing. Even though the problem of locating such
a minimum density is no doubt both interesting and
difficult, we choose to concentrate on random close
packing in the remainder of the present paper.

In Sec. II, an operational definition of random
close packing is presented. This definition leads
directly to a method of calculating ggcp. Sections
III and IV discuss the calculations and present the
results for three and two dimensions, respectively.
Previous estimates of ggcp are also tabulated for
comparison. Section V summarizes our conclusions.

II. DEFINITION OF RANDOM
CLOSE PACKING

is characteristic of random close packing since each
particle must be touching its nearest neighbor in a
close packing. Equation (2} is also characteristic of
all packing fractions greater than q ~cp so the
desired definition is given by

IRcp™~!IIRNN(r))=o] .

The problem of determining g~cp can now be re-
duced to one of estimating RNN(g ) for dilute
suspensions of particles and then extrapolating to
higher densities to find the point at which (3) is sa-
tisfied. Unfortunately, it is difficult to calculate
N(R) explicitly because the conditional probability
s(q, r) on which it depends (see the Appendix) is
only known approximately for o. &r & 00 and it is
not generally tabulated during computer experi-
ments. However, it is sufficient for our purposes to
know another function I.(R) related to the nearest-
neighbor distribution by L(R) &X(R), i.e., I.(R) is
a rigorous lower bound on X(R}. Such a lower
bound is shown [assuming (A6)] in the Appendix to
be given by

L;(R)= I f;(r)[l L;(r)]dr, —

where l = 1,2, 3 is the dimension,

2pgi(g, r}, i =1
f;(r)= 2nrpg2(ri, r), i =2

4~r pg 3(g,r), i =3

(5)

and g;(g, r} is the radial distribution function for
hard rods, hard disks, or hard spheres, respectively,
depending on the dimension i. (Note that g3 in our
notation is a two-particle distribution function in

Recall that o. is the diameter of the spheres in the
random packing. I.et N(R) be the cumulative prob-
ability that the nearest-neighbor of a sphere at the
origin is at some radius r in the range o &r &R.
Then, for fixed packing fraction q, the median
nearest-neighbor radius RN~(q ) is defined implicitly
by

+(RNN)

For dilute suspensions of spheres, the median
nearest-neighbor radius will be quite large (tending
to infinity as p~O). As the density increases to-
wards random close packing, Rzz~o. Further-
more, it follows from the discussion in the Introduc-
tion that
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three dimensions. This symbol should not be con-
fused with the three-particle distribution function—
often called g3—which does not arise in the present
discussion. ) The average number of particles per
unit volume is p. Note that L; and f; are implicitly
functions of q but this functional dependence is not
displayed for the sake of economy of notation.
When the g s are sufficiently well behaved, ' Eq. (4)
can be solved for L;(R) and yields

L;(R)=1—exp[ —6;(R)], (6)

G;(R)=B(R —o) J f;(r)dr (7)

is the cumulative radial distribution function and

is a step function. 6;(R) is the quantity which is
directly measured in computer experiments per-
formed to determine g;(r), r) Hence. , 6;(R) is a fun-

damental quantity and is known quite accurately—
certainly more accurately than g;(q, r), which is ob-
tained from 6;(R} by numerical differentiation.

Since L (R) and X(R) are both monotonically in-

creasing functions of R, it follows that, if we replace
the criterion (1) by L(RN&)= —,, then R~N &RNN.
Substituting into (6), Eq. (1) can now be reformulat-
ed in terms of GI. as

6;(RNN }= —in[1 —L;(RNN)] =ln2

for g g gRcp. In (9), RNN is a radius greater than or
equal to the median nearest-neighbor radius RNN.
Alternatively, we can say that RN~ is an inclusive
radius for which the probability of having found the
nearest neighbor is at least 50%. With this under-

standing, we now drop the bar over RNN in the
remainder of the paper.

The radial distribution function g;(q, R) vanishes
for R ~o and has a sharp peak at R =o even for
moderately large values of q. As g~gRcp, the
peak at R =o. becomes higher and narrower until, in
the limit, this peak becomes a 5 function. The
value of 6;(o.) in this limit is just the average coor-
dination number per particle. As long as the right-
hand side of Eq.(9) is less than the average coordina-
tion number, we expect an extrapolation based on (9)
to yield thc desired limit. Since the close-packing
coordination number is equal to 2 in one dimension,
greater than or equal to 3 in iwo dimensions, and
greater than or equal to 4 in three dimensions, the
method is expected to work in the cases of interest.

Each time we determine RNN(g) using (9) and
find that RzN(g ) ~ o, it follows from definition (3}

that we have found a rigorous lower bound on gRcp.
The extrapolation procedure we use in Secs. III and
IV does not produce a rigorous estimate or bound on
"g Rcp, but it would do so if we knew the analytical
form of the radial distribution functions.

Other measures of the nearest-neighbor radius are
certainly feasible and one might wish to consider
some of these other possibilities. The most probable
nearest-neighbor radius is the radius for which
d¹/dR has its maximum value. However, it is no
easier to calculate d¹/dR than ¹ and bounds are
more difficult to obtain. Hence, there do not appear
to be any advantages in using the most probable ra-

dius as our measure of the nearest-neighbor radius.
Estimates of the mean nearest-neighbor radius can
in principle be calculated' with only slightly more
labor than RN~. However, estimation of the mean
requires knowledge of g;(r), r) [or s;(r},r)] for all r,
whereas the median can be estimated from the
values of g;(q, r) in the immediate neighborhood of
r =o. Still other measures of the nearest-neighbor
radius can be defined by replacing the right-hand
side of (9) by any number

p
& 0. Then, we define the

nearest-neighbor radius R gz such that

6;(Rg~)=y= —ln(1 Pr), — (10)

Pr ——1 —e r=L;(RgN) . (11)

Thus, Rg~ defines the minimum Pz quantile, i.e.,
Pz is the minimum probability that the nearest-
neighbor radius r is in the range cr & r &R gN. The
Rg~ s are no more difficult to calculate in general
than is the special case y=ln2. We will therefore
consider the RgN's further in Secs. III and IV. The
definition (3) is changed accordingly by replacing

RNN w&th RgN.
Although the only possible close-packed state in

one dimension is the trivial one with g=1, it is
nevertheless instructive to check the predictions of
our method in this case. The radial distribution
function for hard rods is known analytically and is
given by

(12)

l =(1—q)o'/q, p=q/o . (14)

As g ~1, the median nearest-neighbor radius

RNN eventually satisfies RzN g2o so only the first

where

(r —ko)"
hg, (r) =6(r —ko)

k
e ' ' ' (13)

lk(k —1}!

with
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term of (12) contributes to (9). We find for g suffi-
ciently large that

"NN
G (R ) e

— — )/d&
1 NN

=2[1—exp[ —(RNN —o)/I]) =ln2
(15)

or

RNN(g )/o = 1 — ——1 ln(1 ——, ln2),
1

71
(16)

where (16) provides an upper bound on the median
nearest-neighbor radius. Extrapolating from small

g, we find that RNN ——o. at g=1 as expected.
Furthermore, we see that the function RNN(g )/o. is
a straight line when plotted versus 1/g.

The definition (3) of random close packing leads
to the conclusion that random close packing and or-
dered close packing coincide in one dimension-
certainly a correct but uninspiring result. The next
two sections will treat the more interesting cases of
random packing in three and two dimensions.

III. HARD SPHERES

To implement our algorithm for estimating gRcp
in two and three dimensions, we need analytical or
experimental values for the radial distribution func-
tions g2(g, r) and g3(g, r). For hard spheres, g3(g, r)
has been studied extensively using both Monte Carlo
and molecular-dynamics methods. ' For hard
spheres, the Percus- Yevick equation has been solved

exactly ' and gives a good fit to the data from
computer experiments at lower densities. However,
the best analytical approximation to g3(q, r) which
is currently available is the semiempirical result of
Verlet and Weis. These authors shift the Percus-
Yevick radial distribution function so that oscilla-
tions in g3(q, r) at large r are in phase with the re-
sults of computer experiments and then add a
short-range correction term near the core (r =cr) so
that g3 (g, o ) agrees with the Carnahan-Starling
equation of state. Verlet and Weis state that their
radial distribution function differs from the "exact"
one in the range 0.35 & g &0.49 by at most 3% and
the statistical error is estimated to be about 1%. A
computer code for calculating g3(g, r) using this
Percus- Yevick approximation with Verlet-Weis
correction has also been published.

Using Henderson's code to estimate g3(g, r), we
then compute G3(R) by numerical integration using
the trapezoidal rule with a fixed (small) step size in
r. Since G3(R) is monotonically increasing, we in-
tegrate until we find that Gs(R) &y and then use
Newton's method to determine R gN, i.e.,

RgN=R+[y G—;(R)]/f;(R) for i =3 .

(17)

We tabulate these computed values of Ri]'N(i) ) for a

range of values of g. Figure 1 shows the curves ob-
tained when y=ln2, 1, 2, 3, and 4. We see R i]'N/o.

appears to follow a straight line when plotted versus

1/i) for y=ln2 and y= I [compare Eq. (16)], but
some significant curvature develops for the higher
values of y.

Since the plotted values appear to fall along a
straight line for y=ln2 and y=1, we have fitted a
straight line to the tabulated points in these two
cases using the least-squares method. The resulting
extrapolated values for gRcp vary somewhat de-

pending on which range in values of g is chosen.
We decided to use 15 points (spacing Ag =0.01) in
the range 0.35&g &0.49, since the data used by
Verlet and Weis when constructing their semiempir-
ical formula were taken at g =0.35, 0.40, 0.45, 0.47,
and 0.49. The extrapolated values obtained in this
manner were g Rcp ——0.642 for y = ln2 and

7/ Rcp =0.645 for y = 1. If lower values of g were
included in the least-squares calculation for y=ln2
(y=1), the predicted value of ggcp was lower
(higher). If q was restricted to a small range of the

H,-WHO SPHERE+

y = 3

y ='-'

y 1

A

)0 10:)0 hO 70 HO 90 100
1 ))

FIG. 1. Minimum P~ quantiles for the nearest-

neighbor radius RNN as a function of the inverse packing
fraction (1/g ) for hard spheres, as determined using Eqs.
(10) and (11) with i =3. Solid lines connect the computed
values for fixed y=2, 3, and 4. Dashed lines for y=ln2
and y=1 show the straight line obtained from a least-

squares fit to the selected data points

(g =0.10,0. 15, . . . , 0.50). The extrapolated values ob-

tained for this data set were gRcp ——0.621 for y =ln2 and

&Rcp =0.653 for y = 1. Better estimates were obtained by
restricting the data points to the range 0.35&g &0.49.
See Sec. III for a discussion.



27 RANDOM CLOSE PACKING OF HARD SPHERES AND DISKS 1057

TABLE I. Estimates of the packing fraction gRcp for
random close packing of hard spheres.

g RCP

0.64+0.02
0.62—0.64
0.6366+0.0005
0.6366+0.0004
0.62
0.64
0.610—0.647
0.637+0.002
0.6436,0.6537
0.665
0.654
0.638—0.647

Reference

Present work

Haughey and Beveridge (Ref. 7)
Scott and Kilgour (Ref. 10)
Finney (Ref. 11)
Bennett (Ref. 4)
LeFevre (Ref. 15)
Gotoh and Finney (Ref. 14)
Woodcock (Ref'. 28)
Gordon et al. (Ref. 29)
Finney (Ref. 30)
Woodcock and Angell (Ref. 16)
Aguilera-Navarro et al. (Ref. 17)

higher values for y=ln2 (y =1), the predicted gRcp
was higher (lower). Overall the predicted values
were generally in the range 0.64+0.02, which is suf-
ficiently well localized to distinguish this prediction
from random loose packing and ordered close pack-
ing.

Table I compares the present result to previous es-
timates of random close packing of hard spheres.
Although there is little doubt that 0.6366+0.0004 is
an accurate estimate of gRcp for steel ball bearings,
it is not so clear that this number is correct (within
the stated error) for packings of idealized hard
spheres. A collection of steel ball bearings of nomi-
nal diameter 0 will necessarily possess a distribution
of sizes and shapes within some tolerance. Perhaps
more importantly, the relative friction between the
ball bearings does not vanish. These nonideal prop-
erties of real ball bearings act in opposite ways to af-
fect the final packing fraction: Random deviations
in size and shape tend to allow denser than ideal
packing, while friction tends to inhibit progress to-
wards the densest possible packing. It is difficult to
make quantitative estimates of the size of these ef-
fects but it should come as no surprise that our best
estimates (0.642—0.645) do not fall within the error
bars for gRcp of ball bearings.

LeFevre' has shown that, if equation-of-state
data from molecular-dynamics and Monte Carlo
studies are plotted so that 1/Z ( =pkT/P) is shown
as a function of packing fraction, the data points
seem to fall on a straight line which passes through
zero in the vicinity of g =0.64. Similar results have
been obtained recently by Aguilera-Navarro et al. ,

'

who find various Fade approximants which pass
through zero in the range 0.6382 (g (0.6465.
These results are motivated by the desire to find an

accurate fluid equation of state for hard spheres.
The present results are related to the results on equa-
tions of state because

(18)

Thus, the singularities in Z and g3 occur in the same
place [also see the Appendix and especially Eq.
(A17)]. However, our results are not just a restate-
ment of these earlier results because RNN depends
not only on the magnitude of the peak in g3(g, r) [or
$3(rj, r) for N3(R)] at r =u, but also on the slope at
this point.

Gordon, Gibbs, and Fleming quote two esti-
mates of close packing for spheres. The higher esti-
mate is for the close-packed state of the equilibrium
hard-sphere liquid. The lower estimate is for the
nonequilibrium, jammed state of the liquid (a glassy
state). This lower estimate g =0.6436 is their more
accurate extrapolation of the available data using
LeFevre's method. ' This value is very close to our
best estimates g=0.642 (y=ln2) and g=0.645
(y= &).

We conclude that the present method predicts a
value of &Rcp consistent with previous estimates but
somewhat higher than the value found for steel ball
bearings. The method can be expected to give more
accurate estimates of gRcp when more accurate esti-
mates of g3(g, r) [or s3(r), r)] become available.

IV. HARD DISKS

The radial distribution function g2(q, r) for hard
disks is not as well known as gi(g, r) and g3(g, r).
Recent analysis ' has improved this situation, but
the methods used to solve the integral equations for
various approximate theories fail to converge for
large packing fractions. Lacking analytical results
(as for hard rods) and semiempirical formulas (as
for hard spheres), it seems advisable to go directly to
the results of computer experiments to obtain our
best estimate of g2(g, r). We have used Wood's
Monte Carlo results, since his tabulated data cover
the widest range in packing fraction and also give
the most detailed information about g2(g, r) in the
region close to r =0., where our integration takes
place.

The numerical method for solving Eq. (9) for
hard disks is the same as that used for hard spheres
described in Sec. III. Other than the differences in-
herent in the change in dimension [e.g., Eq. (5)], the
only difference in the calculation is the subroutine
used to calculate g2(g, r). We use Wood's tabular
results with a straight-line interpolation between
values at adjacent radii in the table. No attempt was
made to interpolate between the experimental values
of packing fraction.
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The results of our calculations are plotted in Fig.
2. The straight lines resulting from the least-squares
fi t give extrapolated values for the critical packing
fraction of &Rcp =0.817 (y = ln2) and gRcp =0.823
(y = 1 ). Since we have comparatively few data
points, it is difficult to assess the error in the present
calculation. Judging by the observed deviations for
the case of hard spheres, our estimate for the critical
packing fraction of hard disks is gRcp ——0.82+0.02.

No results from experiments on random close
packing of hard disks comparable to the work of
Scott and Kilgour' and Finney" for hard spheres
have been published to date, although the work of
Quickenden and Tan appears to be the most accu-
rate published so far. The presently available data
are compared to our results in Table II. The experi-
mental work of Stillinger, DiMarzio, and Korne-
gay

' gives g Rcp
——0.8 1 +0.02, which is quite close

to our result. Shahinpoor quotes two critical values
of g for packing of cylindrical wood dowels. The
lower value g =0.84+0.02 is attributed to random
loose packing and the upper value g =0.89+0.02 is
attributed to random close packing. The higher
value is so close to the value for ordered close pack-
ing (0907) that it seems certain a high degree of
short-range order must have existed in these close
packings, so we can believe that g -0.89 should not
be interpreted as g Rcp. On the other hand, the
value g =0.84+0.02 is essentially in agreement with

II'RD DISKS

y
' "3

y I))

I

100 I
') ) I )0 17~) '00 '. , ) " )0 ' (')

FIG. 2. Minimum P~ quantiles for the nearest-
neighbor radius R NN as a function of inverse packing
fraction ( 1 /q ) for hard disks, as determined using Eqs.
(10) and (11) with i =2. As a visual aid, solid lines con-
nect the computed values for fixed y =2 and 3 ~ Dashed
lines for y =ln2 and y = 1 show the straight-line fit to the
six data points from Wood's Monte Carlo study (Ref. 32).
The extrapolated values obtained for this data set were

9RcP O. 8 17 for y = ln2 and p RcP =0.823 for y = 1.

TABLE II. Estimates of the packing fraction gRcP for
random close packing of hard disks.

I RCP

0.82 +0.02
0.8 1 +0.02
0.821 +0.002
0.82
0.830+0.015

0.82
0.85
0.84—0.89
0.84
0.866—0.874
0.846

Reference

Present work
Stillinger et al. (Ref. 12)
Kausch et al. (Ref. 34)
Visscher and Bolsterli (Ref. 1 3)
Quickenden and Tan (Ref. 331
Sutherland (Ref. 36)
Kanatani (Ref. 37)
Shahinpoor (Ref. 6)
Sugiyama (Ref. 38)
Schreiner and Kratky (Ref. 39)
Shahinpoor (Ref. 40)

our estimated value of g Rcp. Therefore, we specu-
late that random loose packing and random close
packing occur at nearly the same (possibly exactly
the same) g in two dimensions and that the observed
packing fractions on the order of g =0.89 corre-
spond to small deviations from ordered close pack-
ing caused by the particular choice of boundary con-
ditions.

Further evidence in favor of this speculation is
supplied by the computer experiments of Visscher
and Bolsterli. ' These authors found that typical
packing fractions for hard disks of g -0.82 resulted
from their particular choice of packing algorithm.
Their results are in good agreement with our extra-
polated values. Moreover, they found clear evidence
of an ordered domain structure even at g =0.82,
which indicates again that the packings with

g -0.89 must have exhibited very strong short-
range order. From our definition (3) of g Rcp and
the discussion of random close packing in the Intro-
duction, we conclude that the value g =0.82 found
by Visscher and Bolsterli may be an upper bound on

g Rcp. Since this value is lower than most of the
other estimates of QRcp in two dimensions, we con-
clude that most of the previous experimental esti-
mates of g Rcp for hard disks also provide upper
bounds on g Rgp. Kausch, Fesko, and Tschoegl
corrected their estimates of gRcp from computer ex-
periments for the presence of ordered domains and
again found &Rcp 0.82.

The fact that random close packings near

g =0.82 appear to be difficult to achieve experimen-
tally may indicate that random close packing is un-
stable in two dimensions. This conclusion is con-
sistent with the observations of Quickenden and
Tan, who found a sharp break in the contraction
curve for disks in a contracting coordinate system.
In their experiment, the packing fraction increased



rapidly until q =0.830+0.015, but continued to in-

crease more slomly and asymptotically to the value
of closest packing in two dimensions. Thc computer
simulations of Mason are in qualitative agreement
with the experimental results of Quickendan and
Tan and therefore lend further support to the con-
jectured lack of stability for random close packing
of disks.

Schreiner and Kratky have recently simulated
random packings of hard disks on the surface of a
sphere, taking advantage of the spherical curvature
wh1ch 1nh1bits thc formation of hexagonal pRckings.
The extrapolated value of qRcp found by these au-
thors was in the range 0.866—0.874.

Clearly, morc accurRtc experiments comparable 1Q

quality to those of Scott and Kilgour'0 and Finney"
in three dimensions are needed to resolve the
remaining qucstlons 1Q two «i1Incns1ons.

In this paper, we have presented a definition of
random close packing and an operational method of
estimating the packing fraction qRcp at which ran-
dom close packing occurs. In one dimension, the
method correctly predicts that ordered close packing
and random close packing coincide. In three dimen-
sions, the method predicts qRcp ——0.64+0.02 I
good agreement with experimental results. The
pnncipal Qcm prcdlctlon of th1s metllo«i is thc oc-
currence of random close packing in two dimensions
at g Rcp

——0.82+0.02. Most previous studies of
pack1ng in two diIIMnsions have paid 1nadcquatc at-
tention to thc presence of short-range order when es-
timating the location of random close packing (Ref.
34 is one exception). %e conclude that most of the
previous results quoted in Table II provide reliable
upper bounds on qkcp. %ith this proviso, our re-
sults arc again 1Q good agrccmcnt m1th thc earlier re-
sults.

If thc radial distribution functions mere known

exactly, we could use (9) to show conclusively the
existence of random close packing in two and three
d1IIlcns10Qs and to dctcrm1nc Rccui'ately thc packing
fraction where it occurs. %ithout exact formulas
such as (12) and (13), we must extrapolate the best
data that me have. Our conclusions must be corre-
spondingly weaker. %'e cannot therefore be certain
that extrapolation of (9) correctly predicts the loca-
tion of random close packing. However, the results
are very suggestive and further work along these
11ncs should bc pursued.

Future theoretical efforts should be focused on
better estimates of the radial distribution function to
improve the results of this extrapolation tcchniqu.
Since computer experiments measure the cumulative
radial distribution function 6;(R) directly, highly

accurate predictions of qacp should be possible us-

ing the ram data in (9) rather than deriving g;(q, r)
Rnd then reintcgiating as wc have bccn forced to «io,

Alternatively, ¹(8)could be measured directly in

computer experiments or better theoretical estimates
of s;(g, r) could be sought. More experimental ef-
forts should be expended to determine the value of
@RE foi hRrd d1sks Rnd, 1Q particular, to dctcml1nc
whether random close packing and random loose
packing coincide in two «iimcnsions, or are merely
very nearly coincident.
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APPENDIX: NEAREST-NEIGHBOR
DISTRIBUTION

In a uniform distribution of point particles, the
probability of finding the nearest neighbor of 8 par-
ticle at thc origin in the spherical shell between ~

Rnd r +df 1S

dX(
=h;(r)[1—Ã~(r)],

2p, i=1
h;(r)= 2rrrp, i =2

4&f' p ~ I =3

p is the number density, and i is the dimension.¹(r)is the probability of finding the nearest neigh-
bor i thc i tc 'o of the sphe e of r dius . Eq a-
tion (Al) is motivated by the fact that h;(r) is the
probability of fin«iing 8 particle between f and I'+dI'
while [1 Ã, (r)] is the probabili—ty that the nearest
neighbor has Qot bccn found in thc 1ntcrio.

In a distribution of hard spheres with finite radius
0, the particle locations Rre correlated and (AI)
must be modified. This modification has some-
times been taken incorrectly to be of the form in
Eq. (4). However, the correct form is known from
scaled particle theory ' to be of the form

de' =h (r)s (r) r)[1—X(r)] for r)o'. (A3)
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The probability that the spherical shell of thickness
dr and volume 4mr dr contains the center of a parti-
cle is defined to be h;(r)s;(q, r}dr. The concentra-
tion of centers just outside of the exclusion sphere is

ps;(q, r). Therefore, s;(q, r) measures the condition-
al probability that a particle center will be found
within the spherical shell between r and r +dr when
the interior region is known to be free of particle
centers. [Note that, in papers on the scaled particle
theory, the symbol G(r) has generally been
used for the function we are calling s;(g, r). ]

The scaled particle theory considers s;(g, r) for all
values of r in the range 0&r & op. For the nearest-
neighbor distribution, we need to know s;(q, r) in the
range 0 &r & Oo. Two exact results for each s;(q, r)
are known in the region of interest

s;(g,a) =g;(g, o) for all i

g~(q, o), i =1
s;(g, ao)= 1+2gg2(q, o), i =2

1+4gg3(g, o), i =3.
Furthermore, since the density of particles exterior
to the exclusion sphere necessarily increases mono-
tonically (though slowly) with r, we expect s;(q, r) to
be a nondecreasing function of r. It is easy to check
for both low and high densities that
s;(g, ao ) & s;(g, o ) for i =2 and 3, while in one di-
mension s&(q, ao ) =s&(q, o). The approximations to
s;(g, r) at intermediate values of r obtained using
scaled particle theory ' confirm the monotonically
increasing character of s;(q, r) for i =2 and 3.
Nevertheless, we lack a general proof of the mono-
tonicity of s; (g, r), so we conjecture that
s;(g, r}&s;(q,o) for r &0.

In contrast, g;(q, r) for the hard-sphere liquid is
known to achieve its maximum value at r =o., and
so g;(q, r) &g;(q, o.) for r & o.. This inequality is not
satisfied for the hard-sphere solid, since g; has
been observed to have its maximum for r close to
but slightly greater than 0.. However, the hard-
sphere solid possesses too much short-range order
for the present purposes and may therefore be ex-
cluded from further consideration.

Combining these facts and conjectures, we have
the relations

g;(g, r) &g;(g, o.}=s;(q,o) &s;(g,r) .

Thus, if we define functions I.;(r), M;(r), and N;(r)
by

(A7)

dM;
=h;(r)g;(rl, o)[1 M—;(r)],

dr

and (A3), we find directly that

I.; (r) &M;(r) &E;(r) .

(A8)

The inequalities in (A9) follow after substituting
(A7), (A8), and (A3) into (A6) and integrating.

The case of one dimension will serve as a simple
illustration of these ideas. The nearest-neighbor dis-
tribution Xi(r) can be calculated directly in several

different ways. One way is to recall that Tonks
has calculated the probability of finding the next
particle (say to the right of one at the origin) in the
range r to r +dr as

L,(R)= 1 —exp( —2[1—exp[ —(R —o ) /1] ] )

for o. &R &20 . (A15}

%e see that as R~o all three functions have the
same limiting form

(A16)

The convergence of all three functions in this limit
is to be expected because of (A4).

Since we are interested in the R~o limit in the
present work and since we expect both L; and M; to
be good approximations to X; in this limit, we are
free to study whichever function is most convenient.
Using M;(8), we find easily in three dimensions that

where 1 is given by (14). [Also, compare (12).]
Thus, the probability of the particle to the right be-

ing the nearest neighbor in this range is P(r) times
the probability that the particle to the left is not the
nearest neighbor or

P(r) f P(A, )dA, =IP (r) . (A11)

An identical contribution to dX;/dr comes from the
particle to the left so that

dX]
=2lP (r)

dr

and

N, (R )= 1 —exp[ —2(R —o ) /l] .

Since g&(s),o) =1/I [from (12)], we have immediate-
ly that

M~(R) =1—exp[ —2(R o)/I) =N~—(R) . (A14)

The second equality is a consequence of the constan-
cy of s, (q, r) in one dimension for r &o. L, (R) is
known from (6) and (15) to be
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R3=cr3+. 1n[1—M3(R)] .
4m.pg3(g, o.)

(A17)

Setting M3(R ~~ ) =const and taking the limit
R~~~o as v)~viRcp, we find g3(ri, o)~co as ex-
pected. Being based on our definition of gRcp, this

procedure provides a new justification for the esti-
mates of gRcp by LeFevre" and others. ' ' We
choose to study L;(R) instead because this function
depends on G;(R) which, at least in Monte Carlo
and molecular-dynamics experiments, will generally
be known more accurately than g;(g, o ).
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