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The propagation of a Gaussian electromagnetic (optical) pulse with center frequency @
(laser) through a spatially dispersive exciton-polariton medium is investigated by a combina-
tion of analytical and numerical methods. The analysis used extends previous work by Gar-
rett and McCumber to the multiwave coupled exciton-polariton case. With the assumption
of normal incidence on a semi-infinite medium, laser frequencies very close to exciton reso-
nance and far from resonance are studied. Numerical results are obtained for power spec-
trum P(z,0) and amplitude profile f(z,¢) for parameters suitable to CdS 1S A4 exciton (a
fairly typical semiconductor). For pulses with 't >>1 or 't ~ 1 the pulse remains essential-
ly Gaussian, and its peak propagates with velocity close to the classical group velocity
vgj=(dwj/dk,), where j is the polariton branch index and k, is the real part of the propaga-
tion wave number. The power spectrum shows a crossover from lower to upper branch as
the laser frequency is varied through resonance. Some comparison with experiments on
CuCl, GaAs, CdSe, and CdS semiconductors is also given.
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I. INTRODUCTION

When an electromagnetic wave propagates
through a medium of refractive index n, the phase
velocity is given by c¢/n and the group velocity is
given by'?

c
Ug - " +a)ﬂ1_ . (1)
dow

In the region of normal dispersion dn /dw >0, and
the group velocity, v, is less than the phase velocity
vp. On the other hand, dn/dw <0 in the region of
anomalous dispersion and v, could exceed the velo-
city of light. The common belief is that concept of
group velocity breaks down in this case.

Sommerfeld and Brillouin? in their classical work
show that in an absorbing medium, for an incident
pulse of form

f()=06(t)sinwt ,

the original pulse is distorted. The first precursors
of the pulse travel at the vacuum speed of light c,
but the main pulse arrives at the signal velocity
vs <c. Loudon® showed that the electromagnetic en-
ergy travels at the energy velocity vg <c. Here the
energy velocity vy is defined as the magnitude of the
ratio of Poynting flux and electromagnetic-energy
density. Garrett and McCumber* in an important
paper studied the propagation of steady-state Gauss-
ian pulses through an absorbing medium, in the re-
gion of strong absorption. They predicted that

27

under assumptions which can be readily satisfied,
the peak of the pulse propagates with the group
velocity vy, even when Vg>c or foo. Related
theoretical work was reported by Crisp® who used a
different representation of the amplitude of the elec-
tromagnet field, and also obtained the result that the
peak of the pulse in absorbing media can travel with
the group velocity. Chu and Wong® performed a
time-of-flight experiment on GaP:N and have re-
cently verified Garrett and McCumber’s predictions
on the propagation velocity of the peak.

Recently there has been considerable interest in
studies of optical properties of bounded crystals
which, near an exciton resonance, exhibit spatial
dispersion (i.e., GaAs, CuCl, CdSe, CdS,’~'* and
others). As is well known in these types of crystals,
exciton polaritons are formed when light enters the
crystal. One characteristic effect of spatial disper-
.sion is that at any frequency several waves travel,
each with different phase velocity. These are cou-
pled exciton-photon waves. The physical polariton
is the correct linear combination of these waves,
with coefficients of the linear combinations to be
determined by relevant additional boundary condi-
tions.!!~13 Recently we studied the propagation of
electromagnetic energy in such media.'*

In Sec. II we employ the Garrett and
McCumber-type of analysis to study Gaussian pulse
propagation in spatially dispersive media, far from
exciton resonance wo as well as in the regime
wo <@ <w;. In Sec. III we give numerical results
for pulse propagation through spatially dispersive
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media close to an exciton resonance for CdS param-
eters. Finally, Sec. IV is devoted to a brief discus-
sion of pulse propagation near to and away from ex-
citon resonance.

II. PULSE PROPAGATION
THROUGH NONLOCAL
SPATIALLY DISPERSIVE MEDIA

Let us consider a Gaussian pulse incident on the
semi-infinite z > 0 spatially dispersive medium. The
amplitude of the field at the point z and time ¢ is
given by

flz,t)=7(2m) 1/2f dwe“"‘"zsz, ,

(2a)

where
£i(z,0)=4;(@)e"I'e—t0=0Pr/2 (2b)

Here @ is the central frequency of the Gaussian and
7! is the half width of the pulse; j=1,2 correspond
to upper and lower polaritons (UP and LP), respec-
tively; k; is the solution of the dispersion equatlon
for transverse electromagnetic waves k2=kZe(w,k);
€(w,k) is the dielectric function for spatially disper-
sive medium and is given in the “dielectric approxi-
mation” by!!~13

flz,t)=

i fw da)e""‘”im(w)exp i
T = j=1 J

ki (@) + (0 —

41Taoco(2,

€lw,k)=€g+— (3)

ws—w?—ioT+bk?
Here €, 4ma, wg, and T are background dielectric
constant, oscillator strength, exciton-resonance fre-
quency and damping constant, respectively, b is
given by #iwy/m*, with m* being the exciton mass.

In Eq. (2) 4j(w) are coupling constants to be
determined by the full set of boundary conditions
(Maxwell’s plus additional boundary condi-
tions!!—13),

For frequency regimes &/wo> >1, @ /wo<<1,
and wg <@ <w; there is effectively a single polari-
ton propagating and the Garrett and McCumber
analysis can be applied. We discuss these regimes in
this section. Assuming 't >>1, we can carry out
expansion of the wave vector k () around &,

k()= k(@) +(0—a)%
do

1 d’k
+ 70— =— 4
s(o—a do? (4)

(3]

For the oscﬂlator model this series converges* for
(@—@a)**<1 and I'r>>1. Thus we expand up to
second order in Eq. (4). Putting Eq. (4) in Eq. (2) we
get

xexp{ —[(w —@)*r%/2]} .

Substituting (0 —&)=u we get

2
flz)~—% A;(&)expli (k;(@)z —at)]
‘/211' ]§l J J

2

X f du exp | —iut —u —2—+t
Carrying out the integration we get
—-1/2
2 - d%k.
fen=3 [1-E—L| sy @)expli(k;(@
j=1 T d(J)
Xexp | — /2 2

Next we proceed to discuss various limiting cases.
We employ an expansion of k;j(w) for various cases,
following Frankel and Birman.'’

_ dk; (0—a)* d’k;
dk; , d%k; 5
o E+u do? |5 z (5)
D)z —ot)]
d*k;
3 zlf,(z,n (6)
@ j=

T

Case 1: & /wy>>1. Above the exciton resonance,
i.e.,, in the limit & /wq >>1, the dispersion kj(w) is
given by
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B
ki(w)=ve; L - —E
@) =Véo" bVeq (280 +iD) (7a)
. 2
ky(w)= (o) ir W0

Vs T Vbe—im) '

where 8 =4mayb /c2. Putting (7a) in Eq. (6) we get
1

fl(z,t)=mexp[—(Al+iA2)]A1(a‘i), (8)
where
8cB%w? 22 2
M= H__gz_ CBwor(IZ,Bco )
b [(28&)*+T?)?
4 —\2 a1
i LZSCB w(z)(ZBa))_26Ba;l'; ,
b [(2B& )" +T7]
(9a)
(t—a)? U 1
A= —4V|—+WwW, 9b)
! 27'% + Y + 27% + (
ri=y~ 7}, (9¢)
m=r}|M|?, (9d)
z 8cB'0oT 128%3%—T?
r=|1+=5— 2 127 (9e)
T [(2B& )"+ T*]

and a, U, V, W, and A, are functions of @, z, and
parameters appearing in the dielectric function
€(w,k) in Eq. (3).

Similarly putting (7b) in Eq. (6) we get

fz(z,t)=—‘7lﬁ,—exp[—(/&'1+iA'2)]A2(a’>), (10)
where

z 80’%
VB

z 80§ (25)'—65T?
2 Vb [(2@)72+T?)

(128%—-T?)
[(2@)*+T?)?

|

+i

’

]

2 E—3y8)+n(83—3y%)

(11a)

. (—a? | U 1 .
e e A

! 27"22 27'12

(11b)
=y lr?, (11c)
ri=rM|?, (11d)
z 80§ . 125%—T?

= 1—-= (11e)

v 2 Vb [(28)*+T2)

and a’, U’, V', W', and A} are functions of @, z, and
parameters appearing in dielectric function €(w,k).

Case 2: wo<d<w;. In the gap region
®o <@ < wy there is one polariton mode propagating
in the medium and the amplitude of this mode can
be calculated by considering the approximate form
of dispersion in the gap

kz(w)z%b[(w—ﬁ)(w-{—a?)]m, (12)

5=_%+QO(I+A—F2/2w3)'/2

and
A=bey/c? .

In the limit 0 =@,
172

(@—a)?. (13)

kz(a))= b

Using Egs. (13) and (6) we can write the amplitude
in the gap region as

fz(z,t)=~‘/—lﬁ—,exp[—(A'1+iA'2)]A2(a‘>) ,

where

: (P —3y8H)—£(8°—37%) ”

M=||1-— +i
[ l T2V2b (y2+8%)° T2V2b (y2+8%)°
(15a)
(t—a')? U’ 1
A= — 4V +wW', (15b)
! 2752 v’ 2712
7_12217_!127;—-1 , (150)
7“12=T2|M']2, (15d)
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, z  E(3=3y8)+7(83=3y%)
=|1— , 15
4 +2V2b (y2+82) (15¢)

and y, 8, 1, &, U’, V', W’, and A) are functions of @, z, and parameters appearing in dielectric function.

Case 3: @/wg<<1. Finally, away from reso- A= (t —a')? U’ p 1 W
nance (below resonance), i.e., @/wg<<1, there is 1=y + 7,_+ 27 ST (18b)
only one propagating polariton branch in this limit; 2
the dispersion relation is approximated as =y~ I, (18¢c)
) 3 , ,
kaw)=g=+ 2 . T teoas s 16 =7 M7, (18d)
4903Vb  8qwdVb
= l1g—2L (18¢)
where r=T 21%q0*V'b ‘
be 4mra 12
q= -0 0 —T?/40} and a’, U', Y', V', W’ are functions of @, z, and
c? €o parameters appearing in the function €(w,k).

Again as in previous cases putting Eq. (16) in (6) we

. . . III. PULSE PROPAGATION CLOSE
obtain the amplitude of the polariton as

TO w,(a’)Zw,)

falz,t)= —‘/—l_ﬁrexp[ —(Aj+iAy)]4,(@),  (17) In the case of nonlocal spatially dispersive media,
at each frequency there is more than one propaga-
where ting mode. In the frequency region just above w;
_ there are two polariton modes which couple strongly
M=||1+— Fz S ii ;‘) ] , to each other. Now we concentrate on this frequen-
7 2‘1600 4 77 qugvb cy region. We have been unable to obtain analytical
results and thus we perform a numerical study. We

(18a) compute the power spectrum P (z,» ) where

|

P(z,0)=2772| f(z,0) | 22277 | f1(z,0) | >+ | f2(z,0) | )
=277 | A\(o | *exp[ — (@ —@)r*—=2Imk(0)z]
+ | Ay(0) | %exp] — (0 —&)72—2 Imk;(@)z]} . (19)

(upP)

[ 1og [P(z,w)/2w %)

5 7l

|

i

~ 1
N

~6-01

FIG. 1. logi[P(z,w)/2mr?] for 't >>1 case is plotted
against (o —@)/c for various crystal thicknesses z, rang-
ing from 107 to 10™* cm. In the figure, logoz is taken.
Parameters used for CdS are defined in the text. FIG. 2. Same as Fig. 1 for the ['7=1 case.
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" log [Pz,w)/2me’]
, \

(uP)

(LP)

L= (w

T9o\0

FIG. 3. logio[P(z,w)/2w7?] for 't << 1 case is plotted
against (w —wg)/wo for various crystal thicknesses z,
ranging from 10~* to 1072 cm. In the figure, logz is
taken. Parameters used for CdS are defined in text.

As an illustrative case, we consider CdS, and we
used parameters I'/2w,=1075, hw,=2.55 eV,
m*=0.9m,, €y=38, and 4ma,=0.0125, respectively.
We consider three cases, namely, 't >>1, I'r=1,
and I' << 1. For each case 7 is taken as 0.1 psec, 13
psec, and 10~° sec, respectively. Figures 1—3 show
computed power spectra corresponding to these
cases. Figure 4 shows the power spectrum corre-
sponding to I't << 1 very close to exciton resonance.

Next, using Eq. (2) the amplitude f(z,¢) is com-
puted for various cases, namely, 't >>1, ['t=1, and
T <<1,  respectively. logio | f1(2,1) | and
logio| f2(z,¢)| are plotted in each case against time ¢
for various crystal thicknesses z in Figs. 5-—7,
respectively. For all the numerical studies (Figs.
1—-7) @ is taken slightly above wy, i.e.,

d=wo(1+107%) >,

(uP)

log [P(z,w)/2we?)
®

FIG. 4. Same as Fig. 3 but very close to resonance,
showing crossover from LP to UP at ;.

log |f(z,D|

\ ?i%—' sec)

\ \O\C())_' <eC)

6 -\0

FIG. 5. logy|f(zt)| for I't>>1, case is plotted
against time ¢ for various crystal thicknesses z, ranging
from 10~% to 10~* cm. These are shown on separate
plots. Parameters for CdS are defined in the text.

so that the effect of both polariton UP and LP can
be incorporated.

We also studied the pulse shape for the various
cases mentioned above. The fixed value of crystal
thickness, namely, z=1 um, f(z,t), is computed for
upper and lower polaritons as a function of time as
we vary the laser frequency @ across the resonance.
Figures 8—10 demonstrate plots for various cases as
we sweep laser frequency @ from

wo(1—1072) <oy
to
0o(1+1072) > w; .



27 PULSE PROPAGATION IN SPATIALLY DISPERSIVE MEDIA 1049

-l
\/\(/um
-2
(LP)

-3

e

\/’ \0
° 00
9> S \ Uo_\osec\

6 -

log |f(z,1)]

FIG. 6. Same as Fig. 5 for [7=1.

Figures 11—13 show the corresponding plots for @
very close to resonance, ranging from

wo(1-107Y) <y
to
wo(14+107%) > .

A finer scale is used in those figures. The quantity
S appearing in the Figs. 8—13 is the reduced fre-
quency (@ —wg)/g.

IV. DISCUSSION

In Sec. II we presented results of an analysis of
Gaussian pulse propagation in spatially dispersive

(urP)

log |f(z,1)]

(LP)

FIG. 7. Same as Fig. 5 for 't << 1.

media analogous to that of Garrett and McCumber
in the local case. There we considered frequency re-
gimes far from resonance: cases 1 and 3,
(w/wg)>>1 and << 1, respectively; and also in the
pseudo-gap region wy <@ <@;. The pulse is charac-
terized by I'r >>1. Equations (8), (10), (14), and (17)
show that in the various frequency regimes men-
tioned above, the Gaussian pulse propagates sub-
stantially as a Gaussian both on upper and lower po-
lariton branches. In general, there will be a shift in
the peak of the packet, and a change in full width at
half maximum, as given in those equations.

Close to exciton resonance but above the longitu-
dinal mode frequency (w;), our numerical study (for
CdS parameters) reveals the following (as given in
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FIG. 10. Same as Fig. 8 for I't << 1 case.
FIG. 8. |f(z,t)| for 't >>1 case is plotted against ¢

for various @, ranging from S =(& —wg)/we=—10"%to
10~2. Here z=10"* cm. Parameters for CdS are defined
in the text.

Sec. III): For I't >>1 we obtain a symmetric power
spectrum as shown in Fig. 1. As z is changed, the
shape of the power spectrum remains unchanged. A
slight asymmetry in the power spectrum is observed
for the case 'T=1 as shown in Fig. 2. For the case

0.5

0.4+

0.3r &

osl %
0.2+ =
we | = (Le)

O.1F :_':
< 0 o 1072
o o 6x1073

o J] 7o+ N s=2x1073

0
j \\\(Lp—)so -29 (o zo) 60
0 -2x1073 psec

o -6x1073

o S$=-10"2
-60 -20 20 60
t (psec )

FIG. 9. Same as Fig. 8 for the I'r=1 case.

|#(z,0] (102)

1073

ol A N\ | s=8xi0*
-60 -20 20 60
t(107'%sec )

-2x107¢

(LP)

-4x1074

-6x107¢

-8x1074

0 $=-1073
60 -20 20 60
t {10-"%sec )

FIG. 11. Same as Fig. 8 for S =—10"3to 1073, i.
being very close to exciton resonance.

e., @
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So0 -2020 100,
t

o -2x10-4 1P

()
o -4x107*

NI\
A/ B N

S=-10"3

0
-60 -20 20 60
t(psec)

FIG. 12. Same as Fig. 9 for the I'T=1 case.

I't << 1 as shown in Fig. 3, as z is increased more
and more asymmetry in the power spectrum can be
noted. In this case an interesting “sharp cross over”
is observed at w; in the power spectrum from lower
to upper polariton. This is shown in Fig. 4.

For 't >>1, the amplitude plots |f;(z,¢)| and
fa(z,t)| designated as UP and LP, respectively,
show very little variation in the shape of the packet
as crystal thickness z is changed from z=10"° to

07
0.6f
o5t
0.4}
Q
= 0.3+
0.2} (uP) < o2} (LP)
ot N I
0 \rc L/ 1073
=0 /M o - L 1S=8x107*%
- A/, 100-2020 100
et (LP) t (10-'4sec)
— 0 2x10-4
[o] -4x107¢
) -6x1074
0 -8x1074
S=-10"3

[0}
-100-2020 100 200
t (107'*sec)

FIG. 13. Same as Fig. 9 for the I't << 1 case.
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-3

T T T

-4

-0 -6 -2 2 6 10

(W- W, (10°7°)

FIG. 14. Transit time of the Gaussian pulse through a
1 pm thick medium with CdS parameters. Time in sec is
plotted vs reduced frequency (@ —wg)/wo. This graph
applies for cases I'r=1 and I't>>1. Curve passes
through calculated points, and coincides with the group
velocity on each branch calculated from Vg, =(dw;/dk,).

10~* cm (see Fig. 5). This case corresponds to many
oscillations in time as the packet is wide in time
domain.

For I'r=1, the amplitude plots of | f(z,7)| and
| f2(z,t)| show relatively more variation in the
shape of the packet as we increase the crystal thick-
ness z, compared to the case I't >>1. It is useful to
compare Figs. 5 and 6.

In the limit 't << 1, the packet gets more distort-
ed as it propagates in the crystal as shown in Fig. 7.
Notice here |f,(z,¢)| or UP becomes broadened and
distorted as it moves in the crystal, i.e., as z is in-
creased. Also, |f,(zt)| or LP, even for z=10"°
cm does not appear Gaussian; it is rather flat and as
it moves in the crystal more oscillations develop.

In the limit '7>>1, the pulse shape remains
Gaussian as the frequency is varied through reso-
nance; this is shown in Figs. 8 and 11. The pulse
width remains substantially constant on both upper
and lower polariton branches. Similar behavior is
noted for I'r=1, as shown in Figs. 9 and 12. In this



1052 ASHOK PURI AND JOSEPH L. BIRMAN 27

case very little variation in pulse width is noted as
we sweep across resonance (for example, a 26-psec
pulse shows maximum variation of 4 psec). The
I'T << 1 limit corresponds to considerable pulse dis-
tortion as demonstrated in Figs. 10 and 13. There is
a great deal of structure in the lower polariton
branch above resonance as seen in these figures.

Our analysis demonstrates that the velocity of the
peak of the pulse is the group velocity in those cases
where the pulse maintains an essentially Gaussian
shape: T'r >>1 and I'r=1. This is shown in Fig. 14
for frequencies in the resonance region. We com-
puted the transit time of the peak of the pulse wave
packet as @ is varied through the resonance, which
immediately gives the velocity of the peak. We plot
in Fig. 14 the transit time ¢ (sec) versus reduced fre-
quency (w—wg)/wy for the cases I'r=~1 and
I't >>1 for UP and LP branches near exciton reso-
nance for crystal thickness of 1 um. These delay
times correspond to peak of the pulse propagating
with group velocity. In these cases, the pulse shape
remains substantially Gaussian, with very little vari-
ation in pulse width.

We shall compare our results now with more re-
cent experiments, taking into account that our
theory assumes a Gaussian initial pulse, whereas the
pulse shapes achievable experimentally may not be
of Gaussian shape.® Taking the experiments to cor-

respond to the cases 't =1, our numerical results
agree with the work of Refs. 7—10 which reported
peak  propagation at the group velocity
vgjs(dwj /dk,) in each branch. Also noteworthy is

our calculated crossover from lower to upper polari-
ton branch in the power spectrum as the laser is
varied through the resonance frequency from below:
This agrees with the experiments of Masumoto
et al.® Finally, our theory predicts that the Gauss-
ian shape will be preserved in cases I'r~1 and
I'r >>1 in spatially dispersive media. Taking into
account the experimental uncertainties, this is in
agreement with experiment.

It would clearly be desirable to obtain analytical
expressions for pulse propagation in the spatially
dispersive medium in different frequency ranges, in-
cluding frequency-dependent coupling of the dif-
ferent branches. Work is continuing on these lines.
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