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The propagation of a Gaussian electromagnetic (optical} pulse with center frequency G
(laser} through a spatially dispersive exciton-polariton medium is investigated by a combina-

tion of analytical and numerical methods. The analysis used extends previous work by Gar-
rett and McCumber to the multiwave coupled exciton-polariton case. %'ith the assumption

of normal incidence on a semi-infinite medium, laser frequencies very close to exciton reso-

nance and far from resonance are studied. Numerical results are obtained for power spec-

trum P(z, co) and amplitude profile f (z, t) for parameters suitable to CdS 1S A exciton (a
fairly typical semiconductor). For pulses with I ~ &&1 or I ~ -1 the pulse remains essential-

ly Gaussian, and its peak propagates with velocity close to the classical group velocity

U~ =(dcoj ldk, ), where j is the polariton branch index and k, is the real part of the propaga-
tion wave number. The power spectrum shows a crossover from lower to upper branch as

the laser frequency is varied through resonance. Some comparison with experiments on

CuCl, GaAs, CdSe, and CdS semiconductors is also given.

I. INTRODUCTION

Vixen an electromagnetic wave propagates
through a medium of refractive index n, the phase
velocity is given by c/n and the group velocity is
given by'

Ug =
dpi

n +co
dQ)

In the region of normal dispersion dn/du y0, and
the group velocity, Ug is less than the phase velocity
U&. On the other hand, dn/dm «0 in the region of
anomalous dispersion and Ug could exceed the velo-

city of light. The common belief is that concept of
group velocity breaks down in this case.

Sommerfeld and Brillouin in their classical work
show that in an absorbing medium, for an incident
pulse of form

f (t) =8(t)sintot,

the original pulse is distorted. The first precursors
of the pulse travel at the vacuum speed of light c„
but the main pulse arrives at the signal velocity
U, «c. Loudon showed that the electromagnetic en-

ergy travels at the energy velocity v~ «C. Here the
energy velocity UE is defined as the magnitude of the
ratio of Poynting flux and electromagnetic-energy
density. Garrett and McCumber in an important
paper studied the propagation of steady-state Gauss-
ian pulses through an absorbing medium, in the re-
gion of strong absorption. They predicted that

under assumptions which can be readily satisfied,
the peak of the pulse propagates with the group
velocity Ug, even when ug &c or + oo. Related
theoretical work was reported by Crisp who used a
different representation of the amplitude of the elec-
tromagnet field, and also obtained the result that the
peak of the pulse in absorbing media can travel with
the group velocity. Chu and %ong performed a
time-of-flight experiment on GaP:N and have re-

cently verified Garrett and McCumber's predictions
on the propagation velocity of the peak.

Recently there has been considerable interest in
studies of optical properties of bounded crystals
which, near an exciton resonance, exhibit spatial
dispersion (i.e., GaAs, CuC1, CdSe, CdS, ' and
others). As is well known in these types of crystals,
exciton polaritons are formed when light enters the
crystal. One characteristic effect of spatial disper-
sion is that at any frequency several waves travel,
each with different phase velocity. These are cou-
pled exciton-photon waves. The physical polariton
is the correct linear combination of these waves,
with coefficients of the linear combinations to be
determined by relevant additional boundary condi-
tions. Recently we studied the propagation of
electromagnetic energy in such media. '

In Sec. II we employ the Garrett and
McCumber-type of analysis to study Gaussian pulse
propagation in spatially dispersive media, far from
exciton resonance ~0 as well as in the regime
mo «G«col. In Sec. III we give numerical results
for pulse propagation through spatially dispersive
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media close to an exciton resonance for CdS param-
eters. FinaBy, Sec. IV is devoted to a brief discus-
sion of pulse propagation near to and away from ex-
citon resonance.

II. PULSE PROPAGATION
THROUGH NONLOCAL

SPATIALLY DISPERSIVE MEDIA

Let us consider a Gaussian pulse incident on the
semi-infinite z & Q spatially dispersive medium. The
amplitude of the field at the point z and time t is
given by

00 2

f(z, t)=r(2') 'j f de e '"' g fj(z, to),
i=~

(2a)

aoo 2

e(ro, k) =ea+
No —6) —Lci) I +6k

Here eo, 4mno, mo, and I are background dielectric
constant, oscillator strength, exciton-resonance fre-

quency and damping constant, respectively, b is
given by Amo/m ~, with m* being the exciton mass.

In Eq. (2) Aj(co) are coupling constants to be
determined by the full set of boundary conditions
(Maxwell's plus additional boundary condi-
tions )

For frequency regimes G/uo » 1, G/uo ~g 1,
and coo ~G g~I there is effectively a single polari-
ton propagating and the Garrett and McCumber
analysis can be applied. %e discuss these regimes in
this section. Assuming I v »1, we can carry out
expansion of the wave vector k (co ) around to,

fj(z,co) =Aj(to)e ' e

Here G is the central frequency of the Gaussian and
' is the half width of the pulse; j=1,2 correspond

to upper and lower polaritons (UP and LP), respec-
tively; ki is the solution of the dispersion equation
for transverse electromagnetic waves k =koe(m, k);
e(to, k) is the dielectric function for spatially disper-
sive medium and is given in the "dielectric approxi-
mat, ion by

2dk+ (Q g ) + I 0 ~

dt's

For the oscillator model this series converges for
(e —G ) ~ &1 and I ~ &&1. Thus we expand up to
second order in Eq. (4). Putting Eq. (4) in Eq. (2) we
get

TIo, dkj (to —to ) a kjf(z, t)= f de e ™g Aj(to)exp i kj(to)+(a& —~o) + ~
z

V 2w —~ i &
d ~ 2 d&

&(exp[ —[(co —a) ) r /2]] .

Substituting (~ —G) =u we get
2

f(z, t)= g Aj(aT)exp[i(kj(to)z —a)t)]
v'2m- i

X f du exp —iut u +—i u — +u—00 2 dN ~ d~ g
z

Carrying out the integration we get
' —1f2

z~ d'k
f(z, t)= g 1 ——,

ddt
P

dki
Xexp — t —z

dc'

A (co)exp[i(k (to)z tot)]—
zg dki

2& 1——
d6)

= g fj(z, t) .

Next we proceed to discuss various limiting cases.
%e employ an expansion of ki(m ) for various cases,
following Frankel and Birman. '

Case 1: co/a)o »1. Above the exciton resonance,
i.e., in the limit G/coo»1, the dispersion ki(~) is
given by



2 2
c o

c b~Eo (2Pco+iI'} '

2
N EI No

k2(ar ) = ~b 2~b ~b (2' —i I')

where P =4mczobic'. Putting (7a) in Eq. (6) we get

1f, (z, t) = exp[ —(i}i+ii},2)]A |(co),
M

+, +V'(t —a') U'

2~2' y'

&2 t —1
&2 —V

1 2+8",
2v

(11b)

«P coo (12p2co —I 2)

[(2p~ )2+ I 2]3

«P 2 (2Pco ) 6Pco I—
[(2p

—}2+I 2]3

+ —+ V 2+8',(t —a) U 1

2'T2 j 271

2 —1 2
~2 7 ~1

/M i

z g&P cooI 12p co —Iy= 1+—
2 [(2p~ )2+ p2]3

and a, U, V, 8' and dk2 are functions of G, z, and
parameters appearing in the dielectric function
e(ro, k) in Eq. (3).

Similarly putting (7b) in Eq. (6) me get

f2(z, t)= exp[ —(5', +ih2)]A2(co),

z 8o (12' —I )
2

1 —— I [{~)2+ I 2]3

2
z 8o (2a) ) —6@I+l

[(Zco) +I'2]

k2(co) = [(co —o3)(co+co)]'i',
b

where

iI
2

+no(1+5 —I /2coo)'/

(12)

6=be()/c

In the limit ~ =co,
1/2

k2(~ ) = (ar —6)26) —1/2

b

Using Eqs. (13) and (6) we can ~rite the amplitude
in the gap region as

f2(z, t)=,exp[ (t}', +i—h2)]A2{co },

z 8~o 12~'—r'2

y'= 1 —— I
r2 ~b [(2~ }2+P2]3

and rx', O', V', 8", and hz are functions of co, z, and
parameters appearing in dielectric function e(~,k).

CQ$8 2: Qpo & Ql & QpI. In the gap region
~o «ro ~ ~I there is one polariton mode propagating
in the medium and the amplitude of this mode can
be calculated by considering the approximate form
of dispersion in the gap

M'= 1— z g(y' —3y52}+ri(5' —3y 5) . z 2)(y —3y5 )—g(5 —3y'5)+l
r22v 2b (y2+ $2)3 r22v 2b (y2+ $2)3

t2 t2
+2 +1

1 2+8",
27
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y'= 1— z g(y' —3y5')+ t) (5' —3y'5)
r22~gy ( y 2+5 2

)
3

and y, 5, t), g, O', V', W', and b, 't are functions of rD, z, and parameters appearing in dielectric function.

(1Se)

Case 3: co/mp &&1. Finally, away from reso-
nance (below resonance), i.e., r0/coo~&1, there is
only one propagating polariton branch in this limit;
the dispersion relation is approximated as

3

where

+2 7 +1

r', ' =r'
I

M'
I

zl"
&'= '+

227 qrD V b

(18c)

(18d)

be() 4map
1+ —I /4o)p2 2 and a', O', F', V', 8" are functions of G, z, and

parameters appearing in the function e(m, k).

Again as in previous cases putting Eq. (16) in (6) we
obtain the amplitude of the polariton as

Iz 1
M 1 +

2/co p b

3 z G
l

T qrooV b

f2(z, t) = exp[ —(6&+ id')]22(ro ), (17)

where

III. PULSE PROPAGATION CLOSE
TO tip~(6) ~N~)

In the case of nonlocal spatially dispersive media,
at each frequency there is more than one propaga-
ting mode. In the frequency region just above m&

there are two polariton modes which couple strongly
to each other. Now we concentrate on this frequen-

cy region. %e have been unable to obtain analytical
results and thus we perform a numerical study. %e
compute the power spectrum P(z, m) where

I'(z ~)=2«'If(z ro) I'=2«'( Ifi(z ro) I'+ If2(z r0) I')

=2«'[
I
A)(co

I
zexp[ —(co —rD)r' —21mk)(ro)z]

+ IA2(ro)
I exp[ —(co DT)r 21 mk—p(co) ]z}—.

ID
pe

e-o )

FIG. l. log, o[P(z,ro )/2mr'] for I r » 1 case is 'plotted
against 4u —~)/c for various crystal thicknesses z, rang-
ing from 10 to 10 cm. In the figure, log&~ is taken.
Parameters used for CdS are defined in the text.

6-)O

0
~) ic

FIG. 2. Same as Fig. 1 for the I ~= 1 case.
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FIG. 12. Same as Fig. 9 for the I ~= 1 case.

I"w gg1 as shown in Fig. 3, as z is increased more
and more asymmetry in the power spectrum can be
noted. In this case an interesting "sharp cross over"
is observed at coI in the power spectrum from lower
to upper polariton. This is shown in Fig. 4.

For I r))1, the amplitude plots ~f((z, t)
I

and

f2(z, t)
~

designated as UP and LP, respectively,
show very little variation in the shape of the packet
as crystal thickness z is changed from z =10 to

0,7-

IQ i I i I I

-10 -6 -2 2 6 10

(kJ-uj))jld~ (io )

FIG. 14. Transit time of the Gaussian pulse through a

1 pm thick medium arith CdS parameters. Time in sec is

plotted vs reduced frequency (~ —mo)/~o. This graph

applies for cases I ~=1 and I ~ p~1. Curve passes

through calculated points, and coincides with the group
velocity on each branch calculated from Ug =(d~~ /dk, ).
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FIG. 13. Same as Fig. 9 for the I ~ && 1 case.

10 cm (see Fig. 5). This case corresponds to many
oscillations in time as the packet is wide in time
domNn.

For I r= 1, the amplitude plots of
~ f I (z, t)

~

and

~

f2(z, t)
~

show relatively more variation in the
shape of the packet as we increase the crystal thick-
ness z, compared to the case I t &g1. It is useful to
compare Figs. 5 and 6.

In the limit I w gg 1, the packet gets more distort-
ed as it propagates in the crystal as shown in Fig. 7.
Notice here If i(z, t)

~

or UP becomes broadened and
distorted as it moves in the crystal, i.e., as z is in-
creased Also,

~

f.z(z, t)1 or LP, even for z =10
crn does not appear Gaussian; it is rather flat and as
it moves in the crystal more oscillations develop.

In the limit 1"~g~l, the pulse shape remains
Gaussian as the frequency is varied through reso-
nance; this is shown in Figs. 8 and 11. The pulse
width remains substantially constant on both upper
and lower polariton branches. Similar behavior is
noted for I x=1, as shown in Figs. 9 and 12. In this
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case very little variation in pulse width is noted as
we sweep across resonance (for example, a 26-psec
pulse shows maximum variation of 4 psec). The
I ~ && 1 limit corresponds to considerable pulse dis-
tortion as demonstrated in Figs. 10 and 13. There is
a great deal of structure in the lower polariton
branch above resonance as seen in these figures.

Our analysis demonstrates that the velocity of the
peak of the pulse is the group velocity in those cases
where the pulse maintains an essentially Gaussian
shape: I ~p&1 and I v=1. This is shown in Fig. 14
for frequencies in the resonance region. We com-
puted the transit time of the peak of the pulse wave
packet as co is varied through the resonance, which
immediately gives the velocity of the peak. We plot
in Fig. 14 the transit time t (sec) versus reduced fre-
quency (ct) —N p)/ct) p for the cases I ~ =1 and
I v &&1 for UP and LP branches near exciton reso-
nance for crystal thickness of 1 pm. These delay
times correspond to peak of the pulse propagating
with group velocity. In these cases, the pulse shape
remains substantially Gaussian, with very little vari-
ation in pulse width.

We shall compare our results now with more re-

cent experiments, taking into account that our
theory assumes a Gaussian initial pulse, whereas the
pulse shapes achievable experimentally may not be
of Gaussian shape. Taking the experiments to cor-

respond to the cases I ~=1, our numerical results
agree with the work of Refs. 7—10 which reported
peak propagation at the group velocity

Ug (dc'j /dk ) in each branch. Also noteworthy is
~J

our calculated crossover from lower to upper polari-
ton branch in the power spectrum as the laser is
varied through the resonance frequency from below:
This agrees with the experiments of Masumoto
et al. Finally, our theory predicts that the Gauss-
ian shape will be preserved in cases I ~=1 and
I &~pl in spatially dispersive media. Taking into
account the experimental uncertainties, this is in
agreement with experiment.

It would clearly be desirable to obtain analytical
expressions for pulse propagation in the spatially
dispersive medium in different frequency ranges, in-
cluding frequency-dependent coupling of the dif-
ferent branches. Work is continuing on these lines.
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