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A fully quantized many-particle theory of the standard free-electron laser in the small-

signal, cold-beam regime is presented. The approach is based on an evaluation of the time-
evolution operator in the interaction picture to first order in the quantum-mechanical recoil.
For algebraic convenience we use the moving (Bambini-Renieri) frame, in which resonance
occurs for zero electron momentum. Though we neglect space-charge effects, genuine

many-particle contributions still show up, because the radiation emitted by one electron can

be amplified by another electron. Our main results are gross features of the amplification,
such as gain and spread, are virtually without many-particle effects. These effects are
mainly important in the case of spontaneous emission. For a sufficiently high current, the
buildup of the laser field from vacuum is enhanced by amplified spontaneous emission. In-

coherence of the spontaneous radiation from several electrons induces deviations from Pois-
son statistics even if gain is neglected. For a dilute electron beam, spontaneous radiation is

slightly antibunched for negative gain. Squeezing is obtained for positive gain independent

of the number of electrons. However, owing to some idealizations used in the model, it is

uncertain whether this applies to a physically realizable situation.

I. INTRODUCTION

Apart from its rapidly increasing practical signifi-
cance, the free-electron laser' (FEL) provides a
fascinating example of the interrelations between
classical and quantum physics. Though all proper-
ties of the FEL which are relevant to its practical
performance can be understood in classical terms,
quantum mechanics provides an alternative, seem-
ingly very different, but depending on one's taste
and viewpoint, even simpler approach to its basic
concepts. Moreover, it has recently been shown '

that spontaneous radiation from a FEL exhibits
nonclassical effects such as photon antibunching
and squeezing which are obviously outside of the
scope of a classical approach. The objective of the
present paper is to provide a fully quantized many-
particle treatment of the free-electron amplifier in
the small-signal cold-beam regime. Though sloppy,
but in agreement with common usage, we will refer
to it as a free-electron laser. We shall assume that
the electron beam is sufficiently dilute to make
space-charge effects negligible. The emphasis will
then be on a clean separation of one- and many-
particle contributions to the basic quantities such as
gain and spread as well as to the quantum-statistical
properties of the radiation. Even with the neglect of
Coulomb effects, many-particle contributions occur,
because the radiation from one electron can be am-
plified by another, an effect which is obviously ab-
sent in a one-particle description. Many previous

classical approaches and all quantum-mechanical
ones consider the case of just one electron interact-
ing with the electromagnetic field. The tacit as-
sumption is then that relevant quantities like the
gain are just the single-particle quantities multiplied

by the number of electrons. We shall also investi-

gate how far this commonly adopted procedure is
justified.

The formalism we shall employ is a generalization
of an earlier approach which had been developed
for the one-electron case. It relies on an evaluation
of the time-evolution operator in the interaction pic-
ture which is expanded to first order in the
quantum-mechanical recoil. Although our superfi-
cial expansion parameter will be fur/mc, this is
nevertheless not an expansion in terms of overall
powers of fi, since other quantities that occur in the
expansion coefficients, such as the number N of ini-
tial photons, are implicitly proportional to fi . For
algebraic expediency we formulate our approach in
the Bambini-Renieri frame in which the laser and
the wiggler frequency coincide. In this frame the
electron motion can be described nonrelativistically,
which is the reason for its simplicity. We shall also
restrict ourselves to the standard Stanford-type FEL
with a circularly polarized wiggler, ' since this
gives rise to the simplest Hamiltonian. Both restric-
tions are not necessary, and we expect qualitatively
similar results to hold for a much wider class of
external field configurations. This will be eventually
considered in a separate publication.
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The outline of this paper is as follows: In Sec. II
we derive the time-evolution operator in the interac-
tion picture and introduce its linear-recoil approxi-
mation. Although the present paper is supposed to
be self-contained, we shall occasionally refer to Ref.
5 for some calculational details as well as more ex-
tensive arguments. In Sec. III we apply the formal-
ism to calculate various quantities of interest. Gain
and spread incorporate both one- and two-particle
contributions. One-particle contributions are, e.g.,
the usual terms in the gain, which refer to spontane-
ous and stimulated emission. They arise from the
present approach identical in shape to a one-particle
theory, but multiplied by the number N, of elec-
trons. There are no additional two-particle contri-
butions to the stimulated gain. Spontaneous emis-
sion, however, is modified by a two-particle term,
which is proportional to N, (N, —1). This term de-
scribes amplified spontaneous emission: Initial
spontaneous emission, which is proportional to N„
is then amplified by one of the other electrons which
introduces a further factor of N, —1.

In the one-particle case the photons emitted by
spontaneous emission satisfy Poisson statistics apart
from small corrections which are related to the pres-
ence of gain. These can have either sign, thus induc-

ing a slight amount of photon bunching or anti-
bunching. In the many-particle case there is an ad-
ditional two-particle term which increases the
spread in photon number under all circumstances.
Because this term is dominant it conceals the slight
gain-related effects on the photon statistics. This
term expresses the fact that spontaneous emission
from several electrons is incoherent.

Whereas photon antibunching can only be ob-
served, if at all, in the one-particle case, the small
amount of squeezing surprisingly formally persists
in the many-particle case. There are, however, seri-
ous doubts as to whether this has practical signifi-
cance. {This will be discussed in Sec. IV.) We con-
clude Sec. III by working out the interrelations be-
tween the final state of the electrons and the laser
photons, which are dictated by energy conservation.

In Sec. IV we recapitulate our results and discuss
more extensively the significance of amplified spon-
taneous emission. Since this effect shifts the line
center of spontaneous emission towards the positive
gain side, i.e., to larger wavelengths, by an amount
which depends on the magnitude of the electron
current, it provides in principle a diagnostic means
to determine the electron current.

In Appendix A we rederive the Bambini-Renieri
Hamiltonian, pointing out that this requires neither
the Weizsacker-Williams approximation nor a quan-
tized wiggler field. Appendixes B and C deal with
some technical details which have been omitted in

the main body of the paper. In Appendix D we fi-
nally discuss the consequences of relaxing some of
the idealizations which we made in specifying the
initial state of the electrons and the radiation field.

II. THE TIME-EVOLUTION OPERATOR

The many-electron Hamiltonian in the Bambini-
Renieri frame where co =ck/2, as rederived in Ap-
pendix A, is

H =Hp+Hr,
N 2

Ho ——g +ficoa ta,
2m

N —'(kz + ) '(kz+ )

Hr ——i' {a e ' —ae

(1a)

(lb)

(1c)

Here N, is the total number of electrons, p; and z;

are the operators of momentum and position of the
ith electron, [z;,pJ]=iR5J, and m is the renormal
ized electron mass. a and a denote the creation and
annihilation operators of the laser photons. All
quantities in Eqs. (Ia)—(Ic) refer to the moving
frame, and we have omitted the primes, which indi-

cate the moving frame in Appendix A. The cou-

pling constant is
1/2eA

mc %co V
(2)

but

A;A;=a a,
[A;,Ai ]=[A;,A)i] =0,

(4a)

(4b)

(4c)

The fact that the last commutator is no longer a c
number as it was in the one-particle case is the dis-
tinctive difference between the many- and the one-
electron formalism.

In the interaction picture we then have

iHot /A —iHOt /A
Hr(t) =e Hre

i i(sk 2+ 2kp, 1/2m— .

We note that if we replace the momentum operators

with A the amplitude of the vector potential of the
wiggler and V the quantization volume. Equation
(1c) suggests the introduction of the operators

A; =ae (3)

with
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p; by a c number pc, we have [Ht (t}=Ht(t)
~ z ~ ]

[Ht(t), Ht(t')]= 2i(Rg) sinP(t t—'}

inasmuch as

[[Ht(t),Ht (t'}],Ht (t")]=0 .

with

Wk' kS o+
»m m

N

ik(z; —z )x
i,j =1

The time-evolution operator in the interaction pic-
ture is

T/2
$(T/2, —T/2) =Wexp ——I dt Ht(t)

fg —T/2

(10)

The right-hand side (rhs) of Eq. (6) is proportional
to the Hermitian positive operator

N

(&)

The latter can often be regarded as a e number
I

As in Ref. 5 we now attempt a first-order expansion
of S(T/», —T/2) with respect to the quantities

p; —po. Since these are operators this looks like a
questionable procedure. However, what we shall do
is equivalent to writing p; =pc+tr;(p; —pc), expand-
ing with respect to the c number a; and setting
a;=1 in the end. Hence we write

S(~/» —~/» =So(~/» —~/»+Si(~/» —~/»+
f2

Sc(t2, t, )=Wexp i/A —I dtHI(t)
1

e

Si(T/2, —T/2)= g (p; —po) S(T/2, —T/2)

(1 la)

(11b)

T/2
ig — —dt Sc(T/2, t)t g [e '~'(p; pz)A—; +e'~'A;(p; po)]$—0(t, —T/2} .

m i=1

The first line of Eq. (1lc) is, of course, a symbolic
notation. The correct order of the operators is exhi-
bited in the second line. Notice also that the latter
expression is properly time ordered.

our goal is now to commute $0(t, —T/2) in the
second line of Eq. (11c) with the square bracket so
that the group property

I

where
f

t'e(t~, ti)=—,I, dt' f, dt"[Hto(t'), Hto(t")]
1 1

=i%,BF(t2, t& )

with

(14)

$,(t„t,)S,(t, ,t, )=S,(t„t,) (12)

can be exploited. In order to compute the required
commutators, a more explicit representation for
So(t2, t&) is required. Since the commutator of
H i(t) with itself at different times is essentially a c
number [cf. Eq. (9)] the time ordering in Eq. (lib)
can be disposed of, viz. ,

So(t2, ti )= expi8(t2, t~ )

~ f

Xexp ——f dt Ht(t)
1

g{(t2 ——ti }/P

—[sinP(t2 —ti)]/P ] . (15)

Here Eq. (6) has been used and the operator 8 was
defined in Eq. (8). We further split the second ex-
ponential in Eq. (13) into a product of contributions
from the individual electrons

E2 g

F(t2, ti)= —g I dt' I dt"sinP(t' t")—

f2

exp f dtHt(t) = exp[j'(ti, ti)Ai —j(t t~, } A]i.exp[j'(t2, ti)A~ j(t2, ti)A& —]

l+J
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with
E2

j (t„t,)=g dte' '=j( t—, , —t, )'.
In particular,

j(T/2, —T/2):j(—T) =2gP 'sin(PT/2) =j*(T) .

(17a)

(17b)

The last product in Eq. (16) is a consequence of the commutator (4c). If the first exponentials in Eq. (16) are
split by means of the Baker-Hausdorff formula, viz. ,

exp(j 'A; jA;)—=exp(j'A; )exp( —jA;)exp( —1/2 ~j ~
),

the computation of the following commutators is straightforward, though tedious:

[A ,Sp(t2, ti )]=j (tz, ti ) g e ' Sp( t2, ti ) ,
j=l
N

[A,Sp(t2 ti )]=J(t2, ti )'g e ' Sp(ti i ti )

j=1
( N N

Lp Sp(tz ti )]= —AkSp(t2 ti ) 2F(tz ti ) g siilk(z —zj )+
~
J(t2 ti )

~ g cosk(z —zj )

j=1 j=1

(18a)

(18b)

+ j*(t2,ti )A; +j(t2, ti )A; (18c)

By means of Eqs. (18a)—(18c) we can now rewrite Eq. (1 lc) as

S1(T/2, —T/2) = — So(T/2, —T/2)
m

T/2 e

X J dtte '~'g p; —pp —Ak ~j (t, —T/2) ~'g cask(z; —z, )
i=1 j=1

+j '(t, —T/2)A; +j (t, —T/2)A;+ 2F(t, —T/2) g sink(z; —z )

J

N

&& (A; +j (t, —T/2) g e ' ' )+H.c. ; (19)
j=1

S(T/2, —T/2)=Sp(T/2, —T!2)+S1(T/2,—T/2)+ is now evidently unitary up to first order since
So(T/2, —T/2) is unitary. It depends on the expansion parameter po. Inasmuch as a first-order expansion
like f (x)=f(xp)+(x —xp)f'(xp)+ ' . is actually independent of xp, we expect it not to depend on pp up to
first order. Since we have been dealing here with an expansion in terms of operators, we will verify this in Ap-
pendix 8 with the result

'2
a [S (pT 2/, —T/2)+Si(T/2, —T/2)]=0

Bpo m

We can then safely exploit this fact in Sec. III by making a convenient choice for po.

III. GAIN, SPREAD, AND PHOTON STATISTICS

(20)

The time-evolution operator S(T/2, —T/2) which we derived in Sec. II transforms initial states
~

in) prior
to the interaction mediated by the wiggler into final states

~

out) after the interaction time T,

~

out) =S(T/2, —T/2)
~
in) . (21)

A11 quantities of interest, such as gain, spread, etc., are then given by the final-state expectation values of the
corresponding operators,
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(out~0(out)=(in(S (T/2, T—/2) ~0(g(T/2, —T/2))in) .

As an initial state we shall take

~in)= ~p(1), . . .,p(N, ),N)—:~(p) ',N), (23)

describing N, electrons with identical momenta p and N laser photons. Ignoring Fermi statistics is justified for
all reasonable current densities. The restriction of the initial state of the electrons to a pure state seems ques-
tionable. However, we demonstrate in Appendix C that a density-matrix description of the electrons leads to
identical results. The operators p;,A;,A; act on this state like

p; [in)=p (in),

A; ~in)=VX
~

. . ,p(i.)+8k, . . . ,N —1),
A; ~in)=V'N+1

~

. . .,p(i) Ak, .—. . ,N+1) .

%e fix the so far arbitrary expansion parameter po by
1

po ——P

which implies for the detuning parameter

P =kp/ m, (26)

and therefore resonance at p=0, which is somewhat obscured otherwise. The derivation of the following re-
sults is then straightforward. Some of the calculational details are presented in Appendix D.

A. Gain and spread

The change in the number of photons during the interaction time T comes out to be

haik Ak
(out~a a ~out) N=~=—N j [(2N—+1)Njj'+N, (N, —1j)j']+ , N, (N, —1)—4+N,5,

m
e e e 2 e e

(27)
wherej =j (T),j'=Bj(t)/dP, and

T/2
a=igak'j /m I d«& '~'[2

I
J(T/»t)

~

'+2
~
J(t, —T/2) (' J'(T/2, t) j'(t, —T/2)], — —

T/2
+=tgj J „,«« '"[ (J-(T/2, t) ('+

~
J(t, —T/2) ~' ~~'(T/2, t)

—2j'(t, —T/2) —Zi[E(t, —T/2) —E(—t, —T/2)]] .

By inserting the explicit expressions (15) and (17b)
for j and I', these functions can be expressed in
terms ofj and its derivatives

4g'P 'j(J' Pi"—)+2ji'. —

The final simple result for the gain is then

5Ã = N,j — (2N + 1)N,jj'

—2g P j(j' Pj")N, (N, —1)—
m

+N, 5 . (32)
Here the first term represents spontaneous emission
which is proportional to the number of electrons.

The second gives the usual small signal-gain expres-
sion which is also proportional to the number of
electrons, as it should be. It is not modified by
0(N, ) contributions. The third term which is ab-
sent for N, =1 represents amplified spontaneous
emission. It is proportional to N, (N, —1) and an-
tisymmetric with respect to P =0. Recalling that
positive gain implies j ~0, i.e., p gO, we see that
spontaneous emission is enhanced on the positive
(p ~ 0) and reduced on the negative-gain side (p gO).
The physical origin of this term is evident: Starting
from the field vacuum (%=0), spontaneous emis-
sion is initially proportional to N, . This initial radi-
ation is then amplified by stimulated emission, pro-
vided the gain is positive, or attenuated otherwise.
Since gain is again proportional to N„ this
effect should go as N, . Futher support for this ar-
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gument comes from the fact that the first term on
the rhs of Eq. (32) is proportional to T for small T,
whereas the third term starts with T . %e shall dis-
cuss the order of magnitude of amplified spontane-
ous emission in Sec. IV. The last term in Eq. (32) is
negligible under all conditions: For N, &&1 it is
small compared to the third term, and for N, =1 it

I

is small compared to the first one. Counting powers
of A we conclude that all terms in Eq. (32) contri-
bute as classical terms to the energy change AuhÃ,
with the only exception being the one within the fac-
tor 2N+1.

The spread is calculated along the same lines. We
first compute

(out ~ (a a) ~out) = (N+Nj ) +(2N+1)Nj '+N, (N, —1j)

N, [(4N +2N+lj)j'+4(2N+1)Nj j'+(4N+1)(N, —lj)j'
m

+4(N, —1)j 5j' —,(N—,—1)(4N+1+4(N, —1)j )4]

+ [4N +1+2(3N, —2)j2]N, 5 .

The spread is then

h(N )= (out
[
(a ta ) )

out ) —(out
)
a ta

(
out )

= (2N+1)N j ~+N, (N, —1j)"

N, [jj '+(2N+1}[3(N,—1)+2]j'j '+2(N, —1)(N, 2j)'j '—
m

(33)

——,(N, —1)[2N+1+2j (N, —2)]4]+[2N+I+4j (N, —1)]N,& . (34)

Utilizing Eq. (31) this expression can be rewritten as
r

b(N2)= (2N+1)N, j 2 —2 Nj ~j
' (N,——1)g p j(j ' pJ'")+5 +—N, (N, —1)j

m m

N. [jj'+4g'P '(N, l)(N, 2j)'(—j' Pj"—)]+4N, (—N, 1)j'5 . —

It is well known that gain and spread are intimately
related. In view of Eqs. (34) and (3S) as well as (32),
we can infer two relationships. First, there is a
derivative relation between the dominant term of the
spread, i.e., the first term of Eq. (34) or (3S), and the
gain due to stimulated emission, i.e., the second term
of Eq. (32), which can be written as

(6N)„; = —— h(N ),16k 3
2 in 8

having in mind that this only refers to the just-
mentioned terms. It might well be that Eq. (36) is
actually better than that, i.e., taking the derivative of
the large parentheses in Eq. (3S) instead of just its
first term might yield O(A'k/m) corrections to the
gain. (Note that the latter are not necessarily quan-
tum corrections. ) Since, however, we calculated the
gain only up to the order of Rk/m, we are unable to
check that possibility. Equation (36) is the well-
known gain-spread relation. Note that it refers

I

only to stimulated emission, i.e., the derivative of
the term N, (N, —1)j of the spread is not related to
any contribution to the gain. Second, the dominant
term of the spread equals (2N+1) times the dom-
inant term which specifies spontaneous emission.
This relation can be written so as to include ampli-
fied spontaneous emission:

h(N )„; =(2N + 1)(bN ), „,+2j (hN )„;

(37)
We finally note that Eqs. (32), (34), and (3S) show

a clean distinction between one- and two- (or more)
particle contributions: The former such as the gain
due to stimulated emission are proportional to N,
whereas the latter are proportional to N, (N, —1).

B. Photon statistics of spontaneous
CM1881on

Here we deal with the case N =0, i.e., no photons
being initially present. The notion of spontaneous
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emission is not supposed to imply that this a
genuine quantum-mechanical regime. It could be
and is referred to as bremsstrahlung as well.

From Eqs. (32) and (36) we have for N =0
2A'k

6(N2) bN—= N, (N, —1)j4 — N, j3j'+ .
Pal

where the ellipsis represents terms of order j . If
this quantity is greater than, less than, or equal to
zero, the emitted photons are bunched, antibunched,
or coherent, ' respectively. For X,=1 the first term
is missing, and we can have either case depending on
the sign of the gain. For X, & 1 the first term is al-
ways dominant, so that there is photon bunching
under all circumstances. "

For %,=1 we had remarked earlier that devia-
tions from Poisson statistics are only due to the
presence of gain, as indicated by the second term in
Eq. (38) being proportional to the derivative j'. For
X~ Q 1 this is no longer tAlc, since even when gain is
neglected, the first term in Eq. (38) still violates
Poisson statistics. This had to be expected, because
spontaneous radiation from one electron is supposed
to be coherent, whereas from several electrons it is
not. On the other hand, amplified spontaneous
emission is coherent, as indicated by the fact that
the term proportional to j(j'—pj") in Eqs. (32) and
(35) dropped out of Eq. (38).

The photon bunching or antibunching in the one-
electron case can easily be understood intuitively (see
Fig. 1). Suppose the electron has initially momen-
tum p pO. Then j'gO and gain would be positive.
By emitting a photon the electron changes its
momentum to p —Ak. Since j(p —A'k) g j(p) the
probability of emitting an additional photon has in-
creased as compared to the initial state, hence we
have photon bunching. It is also evident that this

effect should be proportional to the probability of
emitting one photon times the change in that proba-
bility due to the emission of one photon, i.e., propor-
tional to j (8/BP)j, which is exactly the second
term in Eq. (38). Obviously, for p gO the opposite
happens, since j(p —flak)~j(p) for pgO, and w' e
have antibunching.

For more than one electron this argument is still
valid. The much larger incoherence, however, intro-
duced by several electrons radiating, completely
masks the effect.

C. Squeezed states in spontaneous emission

It was realized earlier that spontaneous radiation
from one electron is in a perfect squeezed state, i.e.,
in a minimum uncertainty state with either quadra-
ture component squeezed at the expense of the other.
Unlike photon antibunching, it is not a priori obvi-
ous that this effect ought to disappear in the many-
electron case. In calculating the squeezing proper-
ties we will encounter an essential difference be-
tween the one- and the many-electron ca.se.

Owing to conservation of energy and momentum,
the annihilation and creation operators of the laser
field always appear in the Hamiltonian in company
with the operators exp(+ikz;) which increase or de-
crease the energy of one of the electrons, as exhibit-
ed in Eqs. (3) and (5). Hence taking expectation
values of nondiagonal combinations of only the field
operators, such as, e.g., (out

~
a

~
out), always

yields a zero result. The same still holds if the elec-
tron coordinates have been eliminated by going over
to a reduced density-matrix description. Hence in
the one-electron case we defined squeezing in terms
of' the operators A =a exp(ikz) instead of just a.
The analogous choice for the many-electron case is

For N, =l we had [A,At]=1 and AtA=ata. In
general we have instead

[g gt] N
— y e'"'* 'i''

(4N
i j =1

1

O'O O P O py2
FIG. 1. Spectrum of spontaneous emission vs detuning.

The figure shows how by emitting one photon the proba-
bility of emitting another photon changes. The magni-
tude of Ak is greatly exaggerated.

Hence A A is no longer the intensity operator of the
field. Since, however,

and we shall see below, also

{out
~

8
(
out) =1,
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for expectation values we still have ([A,A ])=1.
Hence we believe that squeezing derived for the
operator A would apply to the physically realizable
situation where electrons and field are separated
after the interaction.

If we introduce the Hermitian quadrature com-
ponents of A and A f by

(45)

for M; =A; —(A; ) . Since (8 ) = 1 for all out states
that we are considering, we can define a state to be
squeezed if

(46)

A =A1+iA2,

then we have the uncertainty relation

(44)

for i = 1 or i =2. Notice that the state does not have
to be a minimum uncertainty state for this defini-
tion to apply.

In order to evaluate (M; ) we need

haik
(out

~

A tA
~

out ) = N+ (2N, —1j)jj—'[ [(2N + 1)(2N, —1)+N(N, —1)]+4(N, —1)j ]
m

haik
(N, —1) 4+(3N, —2)5,

m
2

(out ~A'+At'~ out) = 2(2N, —1j)4jj—'[(2N+1)N, +2(N, —1)j ]
m

haik+2 (N, —1) 4+2(3N, —2)5,

(47)

(48)

Rk haik
(out ~A+A

~

out) =N,' 2j j'[2N—+1+2j (N, 1)]+ —. (N, —1)C&+j '5
m 2mj

(out ~A —A
~

out) =0 jhaik .3
m

Along the same lines Eq. (43) can be verified, thus justifying the definition (46). We can then coinpute

(M i 2) = —,(2AtA+ I+(A +A" ))+—,(A+At)

with the result

A'k
(M i)= —, +(N, —1)j + [ N, + —, —2(N—,—1)(N, 2j)]jj'—

m

Ak+ (N~ —1)(N~ —2)4+ 2(Ne 1)5
2m

(~2) = —,+ jj'.haik

2m

(49)

(50)

(51)

(52)

(53)

Owing to the second term in Eq. (52) for N, &1 we
always have' (bAi) & —,. (M2), however, is in-

dependent of the number of electrons. Hence we
have squeezing in A2 for an arbitrary number of
electrons on the positive-gain side (i.e., j &0, p &0
corresponding to a laser wavelength above resonance
in the lab frame if p is fixed). However, only for
N, =1 is minimum uncertainty maintained. Wheth-
er or not the squeezing, derived here formally, ap-
plies to an experimentally realizable situation, will
be discussed in Sec. IV.

D. Electrons after the interaction

It can easily be checked that the operator

N

P = g p; +iiika ta (54)

commutes with HI(t) and consequently is conserved.
Maybe surprisingly, we also have

[P So(T/2, —T/2)] = [P Si(T/2, —T/2)] =0,
(ss)
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which is verified utilizing the commutation relations
(18a)—(18c). So, in spite of our approximation of
letting p =po even the zeroth-order approximation
is consistent with energy-momentum conservation.
This 18 cv1dcnt fo1 formal I'casoQS, since the coIDIDU-

tators (55) do not care about the dependence of So
and S1 on p;, because [P,p; ]=0 anyway.

Hence the average change in the momentum of
the electron is immediately related to the gain via

N

(out
i p; i

out) =N, out g p; out
i=1

=N, '(out ~P A'kata—~out)

=p —fikX, 'hÃ,

where

P
~
out, in) =(N,p y1)IkN)

~
out, in)

has been used.
To estimate the average electron spread after the

interaction,

6(p )=&out)p iout)

—(out
i p; i

out)',

'2
(out~pt~out) N, t(out gp; —gppt out)

5+j

&out) P' —(rku'u)' —2akgp;u'u )
out) —(X,—1)&«t ( p1p2 ) «t) .

If we introduce

6(p,p~)=(out) p;pj. i
out)

—(out
) p; ~

out) (out ) p; ] out), (59)

6(p ) =N, '(Ak)'4(N') —(N, —1)&(p1p2) (60)

w1tll thc spread k(N ) gtvc11 111 Eq. (35). BELausc
Eq. (59} is independent of the particular values of
i&j, the values i =1,j=2 are arbitrarily chosen for
this discussion. Hence for N, ~1, the relation be-
tween hp; and h(N ) is not as straightforward as
that between hp; and hÃ, which is given by Eq.
(56}. If the momentum of one particular electron,

p~ for cxaiIlplc, 18 above Rvcragc, this IDust bc com-
pensated for by ihe IDornenta of the remaining elec-
trons» hcncc wc cxpcct

~(p1p1) &0
Rnd

h~p«pe~=0 ~
1

The electron momentum spread is therefore in-
creased as compared to the case E, =1. Of course,
5(p,p2) can be evaluated explicitly along the lines of
the calculations outlined thus far, utilizing the com-
mutation relation (18c).

In this section we summarize and discuss our
IIlain results.

(a) There are no many-particle effects in the gain
for stimulated emission.

(b) Spontaneous emission is modified by an addi-
tional contribution which is proportional to
N, (N, —1), i.e., the third term in Eq. (32). This
terrD shifts the spectrum of spontaneous emission
towards the positive-gain side, cf. Fig. 2. If a small
shift 18 assuIDcd» thc maxim uID of spontaneous
emission now occurs at

Rewritten in the lab frame the corresponding shift
in wavelength is

AA, =1r/(10@ )(cA~/mc ) roAL (N, /V) . (63)

Herc A„denotes the peak aIDplitude of the vector
potential of the wiggler field, I. the length of the
wiggler, A, the laser wavelength, E =moo y the elec-
tron energy, and ro the classical electron radius. For
the data of Ref. 2, assuming an electron beam area
of 0.01 cm2, Eq. (63) yields EA, =0.004 pm. With
RQ1plified spontaneous emission taken 1nto account, ,
the line center is at A, +hi, , where

'2
eA~

NfC

X 1+ , 1+1

2y',
is the line center for N, =1 and Q the period of the
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bunching, which for N, = 1 can lead to sub-
Poissonian photon statistics, is for S, g 1 hidden
behind this larger incoherence.

(d) The squeezing which we have obtained in Eq.
(53) is surprising owing to the apparent asymmetry
between (M I ) and (M I ) and its independence of

The question arises as to whether this is an
artifact of our formalism or reality. %C first note
that introducing phases into the effect of an opera-
tor A; on the state

~

in ), i.e., writing

A;
~
in) =~Re '

~. . ,g7(.i)+4k, . .,.N —1)

FIG. 2. Spectrum of spontaneous emission for the
parameters of Rcf. 2 [1=2.6 A, (0.1 cm)' beam arcs];
dashed line, usual (sinx /x)~ spectrum; solid line, corrected
for amplified spoiltaneous emission. The spectrum be-

colllcs llcgatlvc fol' sonic values of pT/2 olltsldc of fhc
figure. This indicates that our first-order expansion is no
longer justified. Inclusion of higher orders would restore
the spectrum to positive values.

wiggler. Owing to uncertainties in the electron ener-

gy and the wiggler field strength, A, is not known
with sufficient precision so that hA, cannot be in-

ferred from the absolute position of the line center.
Since, however, gain still derives from the spontane-
ous emission line shape for N, =1 [cf. remark (a)],
hA, should show up as a shift between the center of
spontaneous emission and the position of zero gain.
This should look like Fig. 9 of the ACO-LURE gain
measurement, " ~here an analogous shift of -0.5
MCV exists. (Here the electron energy instead of the
wavelength is taken as the variable. ) This shift,
however, is not explained for by Eq. (62) which
yields a result which is smaller by many orders of
magnitude owing to the large y, small L, and the
low current of the ACO experiment. The decisive
test of whether an observed shift is due to amplified
spontaneous cImssion of something clsc would bc 1ts
pfopoftionallty to thc current dcns1ty N& /V.

(c) Spontaneous emission from scvc1al elections 18

incoherent, amplified spontaneous emission is
coherent. The slight quantum effect of photon anti-

with an arbitrary i-dependent phase in place of Eq.
(24b) does not change anything, since in a nonzero
expectation value each A; is matched by a A;.
Changing, however, the relative phase between the
laser and the wiggler field„shifts the squeezing into
a different quadrature component. For example,
adopting the Hamiltonian (A16) instead of (A13)
would interchange the right-hand sides of Eqs. (52)
and (53). It is not clear to us how by an actual ex-

pcriIDcnt th18 phase 18 fixed and, IDoic important,
h the 't wouldha th a 1 fo seq e ce

of experiments which are performed as identically as
possible. Still, it is surprising that RB many-particle
effects enter only one field-quadrature component
(with ollr cholcc of thc Hallllltolllall, ( M 1 )) leav-

ing the other one unaffected. This seems to be an
unambiguous consequence of our formalism. It will

certainly change if the electrons are described by a
nondlagonal density IDatf 1.

(c) The electron-energy spread is increased in
coIDpafison to the onc-paft1clc case. Gain and
electron-energy spread are the saIDe regardless of
whether the initial state of the laser field is taken as
a photon number eigenstate, a coherent, or a (phase-
averaged) generahzed coherent state.
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APPENDIX A

The Hamiltonian for the electron in the Bambini-
Rcnicri frame is dcflvcd by staftiilg with the cla881-

cal Hamiltonian for an electron in the laboratory
ffaIDC

H ={[p—e(A +AJ )] cl+mcc ]'~
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where p is the momentum of the electron and mo is
the rest mass. The vector potentials for the ~igglcr
flicld A~ and thc optical field AL afc glvcn by

Am =Am (sinkqzx —coskqzy")

=—iAm(e me ' e—e q )/V2 (A2)

p c +pl

A e
, (~&e"' —a,'e -"")

/Pl, C

. I/2

8nd

(g eeet
tkt mt)+—g tte~ me I (k—z mtl)/~— g

(A3)
with e =(x+iy)/v 2. The initial momentum of the
electron is chosen to be parallel with the axis of the
magnetic field so that

p AL ——p A~=0. (A4)

The substitution of the Eqs. (A2) and (A3) into
tllc Hanlllto111a11 (Al) g1vcs, wltll tllc aid of condi-
tion (A4),

H=Lu c ie Am—(AI e q —c.c.)c
i j,k~+k)s —oe

%herc p ls thc longltudlnal coInponcnt of thc
momentum and

m =rno+e A~/e

is the renormalized mass. %C have also made use of
the condition Ai ggA~ to neglect terms proportion-
al

tonal

.
In order to move to a frame saith velocity v along

the z direction, the frequencies and a&ave vectors are
transformed to thc ncw cooldlnatc systcIQ %'ith thc
81d of

z =(z'+ut')y',
t

t +
C2

where primed quantities refer to the ncw coordinate
system and

k'=kq+k(l —U j

=(2kqk+kq)'~ =(2kqk)'~I .

The momentum p' in the moving frame is related to
the quantities in the laboratory frame through

EUP=P 2
'V

llccausc p' is nonrclativistic, thc Hanultornan (A9)
can bc approximated as

l2 8 lH'- +tttc — (A e' ' —A'e
2plC

(A12)
In order to quantize the Hamiltonian„ the vector

potential (A3) for the optical field is replaced by

AI ~e 2~ '"-;
(eae' +e*ate '+),

V

where a (a ) are photon destruction (creation)
opcratols of the laser Inodc ln qucstlon, and V ls thc
quantization volume. The net effect of this substitu-
tion ls to make thc replacement

1/2
4fpfl iypg

AL, —+e ge
uV

' lit'2

VA'th these transformations, the phase of the interac-
tloll tcrnl Ill Eq. (A5) becomes

(kq+ k)z cot = [kq+ k—(1—u) ]z'

—[t0 u(kq+ k)]t' . —
If the velocity of the moving frame is chosen so that
the Hamiltonian is time independent,

Tllc quantized version of thc HaIIIIlto111all (A12) Is
then

I @act(k x +m't') 'a'te t(kY+m t-I)''
2M

(A13)

where p' and z' are now operators, [p',z'] = i A, ctt '—
is the laser frequency in the moving frame

ckkq
k' 2

then me are in the Bambini-Rcnieri frame. The
Hamiltonian in this frame is then given by

e A~2

g=
me uVA

L
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There are several interesting features associated
with this derivation. Unlike previous derivations of
the Bambini-Renieri frame, this one does not require
the Weizsacker-Williams approximation or quanti-
zation of the wiggler field. Also, the final form of
the Hamiltonian depends upon the initial phase of
the wiggler field. For instance, if the substitution
z~z+a/2 is made in Eq. (A2), the wiggler vector
potential becomes

A =A (e 'e '+ee ' )/V2,

which causes the Hamiltonian (A13) to become

I +g (a~i (k's'+a)'f') +a f —i f k'z'+co't')
)

2ppl

(A16)

For most calculations this phase-induced change of
the Harniltonian does not affect the results. It does,
however, affect the squeezing (see Sec. III C).

The Lorentz transformation, specified by Eqs.
(A6) and (A7), depends via Eq. (A8) on the laser fre-

quency ck. Hence it appears as if, once we have
chosen the frame, we cannot vary the laser frequen-

cy any more. Although this is true in principle,
varying the value of p' is essentially equivalent to
varying the laser frequency. This is evident from
Eq. (All): The quantity in the parentheses is just
the detuning parameter, which can be interpreted
either as a detuning in energy for fixed k or a detun-

ing in k for fixed energy.

APPENDIX 8

In order to prove Eq. (20} we note that So depends on po only via the parameter P with

BP k

8po Pal

Since we are only interested in terms up to the order of haik/m, when differentiating S» with respect to po, the
only contribution comes from the explicit po in the integrand. We then obtain

BSO( T/2, —&/2)

~J0
=—So(T/2, —T/2) iN, B F(T/2, —T/2)+ g (A; —A;)'

ap
'

ap , ,
(B2)

t}S~(T/2, —T/2} k g(T)
Bpp trt Qp

=—So(T/2, —T/2) — g (A; —A;)

T/2+i',BI dt te '~'fj (t, T'/2) j—(T/2, t)—l (B3)

The use of the explicit representations for I' and j,
and Eqs. (15), (17a), and (17b), in the above equa-
tions gives

T/2
g I dt te ' '[j (t, T/2) j(T—/2, t)]—

F(T/2, —T/2) . (84)

This proves that So+S» is independent of po at least
up the order of haik /m, as expressed in Eq. (20).

APPENDIX C

In this appendix we shall discuss the consequences
of taking a more general initial state than that
adopted in Eq. (23). In a density-matrix description&
the final-state expectation value of an operator 0
would be given by

(O).„,=Trp.„,O (C1)

instead of Eq. (22) with

p,„,=S(T/2, —T/2)p;P(T/2, —T/2)

We assume that p;„ factors into an electron and a
field part,

PiII =Pe Pf ~

We first note that describing the initial field in
terms of a pure coherent state

with a
~
a ) =a

~

a ) instead of a photon number
eigenstate

~
X) introduces only minor changes if X

is replaced by
~

a
~

. The reason is that the interac-
tion Hamiltonian (5) does not contain the operators
a and a separately, but only in the electron-field
combination A; =a exp(ikz;). The orthogonality of
electron states with different momenta then still
guarantees that terms with unequal numbers of a' s
and a 's never contribute to any expectation value.
The only changes then arise from terms which are
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Pf= J; ", I la le" && la le'~l . (C6)

From Eq. (38) and its analog for X&0, which could

be derived from Eqs. (32) and (35), it is then evident

that field coherent states are not conserved by the
interaction.

Also describing the initial state of the electrons by
a density matrix

S
IPe= Pe si=1

pe =+fr I p+lhk) (p+lfik

with gfi= 1 and glf~=O does not change any-

thing, again owing to the fact that all operators
exp(+ikz;) for each index i must cancel separately in
view of the orthogonality of the electron states.
This would no longer hold true, however, in the case
of a nondiagonal ansatz for p, instead of (C7).

By adopting the factorization property (C3) we
have actually ruled out the possibility of an initial
electron-field coherent state. This can be defined in
terms of the operator A introduced in Eq. (39) in
analogy to the one-particle case

Alla) =alla)

quartic in a and a, e.g.,

(N I(a u) IN) =N

whereas

&a
I

«'a)'
I
a &

=
I
a

I

'(
I
a

I

'+I) =N(N+1) .

It turns out that among the quantities which we
have computed in Sec. III only (outl(a a) lout)
and consequently b, (N ) change. For an initial field
coherent state

I
a ) with

I
a

I
=N we then have

h(N~) =h(N )~+N —4 NNjj ', (C5)
m

where h(N )~ is given by Eq. (35). The quantity,
which is easily accessible by experiment, is not
h(N ) but the electron-energy spread 6(p; ), Eq. (60).
It turns out that the additional terms in Eq. (C5)
cancel when h(p; ) is recalculated for a coherent
state. Hence the relevant quantities, the gain and
the electron-energy spread, are the same irrespective
of the laser field being initially in a photon number
or, what is more realistic, in a coherent state. Obvi-
ously, this applies even more so to the physically
most reasonable description by a generalized
coherent state

where C (a) is a normalization constant and
@=X, '(I' —A'kÃ) according to Eq. (S7). It has pre-
viously been pointed out in Ref. 5 that electron-field
coherent states are not sensible initial states since
they already involve electron-field correlations
which are supposed to evolve only afterwards owing
to the interaction mediated by the wiggler. Also,
reinjecting the laser output of a first transit does not
lead to an electron-field coherent state as an input
for the second transit, since in this process phase
correlations are destroyed.

APPENDIX D

In this appendix we point out some details of the
evaluation of final state expectation values. For an
arbitrary operator 0 =0(A;,A;,p;) we have from
Eq. (22)

(out
I
0

I
out) = (in

I
Sooso I

in)

+(in
I s,'os, +s', os, I

in)

+ \ ~ ~

where S; =S;(T/2, —T/2). %e have on the rhs of
Eq. (D1) omitted the contribution proportional
to SiOSi, since it is of the same order of magnitude

as, e.g., SOOS2, which is beyond the scope of our
first-order approximation. The utilization of the
commutation relations (18a—18c) and unitarity, i.e.,
StSo ——1, gives for the first term on the rhs of
Eq. (Dl):

(in
I
SooSo I

in) = &in
I
0

I
in)

+(inlSo[O, So] lin) . (D2)

Since the commutators (18a)—(18c) are all propor-
tional to So, the So also disappears from the second
term on the rhs of Eq. (D2). To evaluate the first-
order contribution to Eq. (D1), we note that Si as
given by Eq. (19) is proportional to So, viz. ,
Si ——SOXi. Hence we can write

&in
I s,'os, +s', os, I in&

=(in
I
(0+S [O,so])Xi I

in)+c c (.D.3)

for Hermitian or anti-Hermitian operators, respec-
tively. Exploiting Eqs. (24a)—(24c), which specify
the action of the operators A;, A;, and p; on the

t'
states

I
in), we are finally left with matrix elements

of the type
with the solution

I Ia) =C(a)exp(aA 8 ')
I (p) ',0),

a„=(in
I

8"
I
in) (D4)
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p„= in ge ' ge ' B" in

(D5)

( 1 )~(~ 'f )222~ $2n
a„= Jo(y) '

N"(2n)I ()y
"

and

y=0
(D8)

where the operator B was defined in Eq. (8). These
matrix elements are calculated by recalling

'
~
pt(I), . . . ,p;(t), . . . ,pn (N, ))

=
~ p, (1),. . .,p;(i) +6k, . . .,ptt (N, ) ) (D6)

as well as the orthogonality of the rnornentum states
(notice that our states are not symmetrized)

(p' (1),. . .,pst (N, )
~ p t (1), ,p~ (N, ) )

Straightforward manipulations then yield

)n+1(n +2)122n+2 g2n+2

N,
" (2n +2)) gy

"+

N —1

X[J&&(y)
'

&2(y)]y=c .

We actually only need

ap=a1 = 1

a2 ——N, '(2N, —1),
a3 ——N (6N —9N +4),
Po N, ,

——

P, =3N, —2.

(D9)

(D10)

L. R. Elias, W. M. Fairbank, J. M. J. Madey, H. A.
Schwettman, and T. I. Smith, Phys. Rev. Lett. 36, 717
(1976).

2D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J.
Ramian, H. A. Schwettman, and T. I. Smith, Phys.

Rev. Lett. 38, 892 (1977).
3An account of most of the relevant work on the subject

can be found in Nouel Sources of Coherent Radiation,

VoL 5 of Physics of Quantum Electronics, edited by S.
F. Jacobs, M. Sargent III, and M. O. Scully (Addison-

Wesley, Reading, Mass. , 1978); Free-Electron Genera-

tors of Coherent Radiation, Vol. 7 of Physics of Quan-

tum Electronics, edited by S. F. Jacobs, H. S. Pilloff,
M. Sargent III, M. O. Scully, and R. Spitzer (Addison-

Wesley, Reading, Mass. , 1980); Free-Electron Genera-

tors of Coherent Radiation, Vols. 8, 9 of Physics of
Quantum Electronics, edited by S. F. Jacobs, G. T.
Moore, H. S. Pilloff, M. Sargent III, M. O. Scully, and

R. Spitzer (Addison-Wesley, Reading, Mass. , 1982)~

4W. Becker M. O. Scully, and M. S. Zubairy, Phys. Rev.
Lett. 48, 475 (1982).

W. Becker and M. S. Zubairy, Phys. Rev. A 25, 2200
(1982).

A. Bambini and A. Renieri, Lett. Nuovo Cimento 31,
399 (1978); Opt. Commun. 29, 244 (1978); S. T.

Stenholm and A. Bambini, IEEE J. Quantum Electron.
OE-17, 1363 (1981).

R. Bonifacio, Opt. Commun. 33, 69 (1980).
sJ. M. Jauch and F. Rohrlich, The Theory of Electrons

and Photons, 2nd ed. (Springer, New York, 1976), p.
399. Note that the right-hand side of Eq. (12b) of Ref.
5 should have the opposite sign.

J. M. J. Madey, Nuovo Cimento B 50, 64 (1979); N. M.
Kroll, in Free Electron Generat-ors of Coherent Radia
tion, Vol. 8 of Physics of Quantum Electronics, Ref. 3,
p. 315; W. Becker, in Free Electron Gene-rators of
Coherent Radiation, Vol. 9 of Physics of Quantum
Electronics, Ref. 3, p. 985 ~

' In fact, this is only a necessary criterion for coherence.
"Apparently, the right-hand side of Eq. (38) can still be-

come negative near the zeros of j. In this region, how-

ever, our first-order approximation is insufficient.
12Reference 11 applies here as well.
'3C. Bazin et al. , in Free Electron G-enerators of Coherent

Radiation, Vol. 8 of Physics of Quantum Electronics,
Ref. 3, p. 89.

t4R. J. Glauber, in Quantum Optics and Electronics, Lec
tures delivered at Les Houches, 1964, edited by C. de

Witt, A. Blandin, and C. Cohen-Tannoudji (Gordon
and Breach, New York, 1965), p. 63.


