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New results for transition probabilities in two-level systems: The large-detuning regime
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The problem of calculating transition probabilities in two-level systems is studied in the
limit where the detuning is large compared to the inverse duration of the interaction. Cou-
pling potentials whose Fourier transforms V(co) are of the form f(ta)e '

~ ~
' for large fre-

quencies give rise to solutions which may be classified into families according to the form of
f(ta). Within each family transition probabilities may be calculated from formulas that
differ only in the numerical value of a scaling parameter. In cases where the coupling func-
tion has a pole in the complex time plane, the families are identified with the order of this
singularity. In particular, for poles of first order, a connection with the Rosen-Zener solu-
tion can be made. The analysis is performed via high-order perturbation expansions which
are shown to always converge for two-level systems driven by coupling potentials of finite
pulse area.

I. INTRODUCTION

In many areas of physics, one encounters prob-
lems involving two states of a quantum-mechanical
system coupled by a time-dependent potential. '

In the interaction representation, the equations of
motion for a& and a2, the probability amplitudes of
levels 1 and 2, are of the form

ia~ ——V(t)e' 'a2,

ia2 ——V(t)e '"'a»
(la)

(1b)

where m is the frequency separation of the states and
V(t) is the coupling potential. Decay effects are
neglected in Eqs. (1) (and throughout this paper),
and we work in a system of units in which A'= 1.

Equations of this type arise in many semiclassical
problems. A problem of current interest to which
they apply is the coupling of two levels of an atom
by a laser pulse that has a temporal width which is
small compared to the natural lifetimes of the levels.
The pulse V(t) is of the form

V(t) =23(t)cosQt,

where 0 is the central frequency of the pulse, and
2A (t) is the envelope function of its amplitude. As-
suming that

~

0 —ca
~
/(0+ca) && l, one can recast

Eqs. (1) in terms of 6, the detuning of the pulse
from resonance (rotating-wave approximation), as

ia, =A(t)e' 'a

ia2 ——A(t)e ' 'a) .

Equations (3) or (1) are deceptively simple in
form, and one might, at first glance, believe that the
system must be completely understood, so that noth-

ing remains to be investigated about the equations or
their solutions. Actually, there is very little known
about the overall qualitative nature of the solutions
to Eqs. (3) for arbitrary A(t). Apart from any in-

trinsic interest one might have in the dynamics of
two-level systems, such information could be useful,
for example, in applications ~here one wished to
choose the pulse shape to maximize the excitation
probability for a given detuning h.

To appreciate that our assertion concerning the
lack of knowledge about the behavior of systems
described by Eqs. (3) is valid, one need only recog-
nize that the answer to the following question is not
known in general: Starting with initial conditions
a

~ ( —oo ) = 1 and a 2( —oo ) =0, how does the proba-
bility amplitude a2(t) depend qualitatively on the
pulse area 5, defined by

on the detuning, and on the shape of the envelope
function A(t)'? A response to this query can be
made for a limited number of cases. Analytic solu-
tions are available if A (t) belongs to a class of func-
tions (including the hyperbolic secant of Rosen and
Zener ' ) mappable into the hypergeometric equa-
tion, or if '

A(t)=(const)exp( —a
~

t
~
),

or if A (t) is a step function (Rabi problem), or if the
detuning is zero. (Kaplan has also considered cases
where the detuning varies as prescribed functions of
the amplitude and obtained closed-form expres-
sions. ) In addition, there are approximate solutions
available in adiabatic or perturbative limits. Yet,
there remains a wide range of parameters and pulse
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shapes for which an answer to the basic question

cannot be provided.
In this paper, we shall examine the solutions to

Eqs. (3) in the limit where the product of the detun-

ing
~

b,
~

and the characteristic pulse duration r has

a magnitude greatly in excess of unity. In other

words, we are assuming that the pulse does not pos-

sess the appropriate Fourier components to signifi-

cantly compensate for the detuning. In conse-

quence, the transition probability
~
aq( oo )

~

will al-

ways be very small (but stiH great enough to be ex-

perimentally measurable in atomic vapors of densi-

ties -10' atoms/cm ). We note that numerical

solutions of Eqs. (3) in this detuning range may be

possible but are very costly in computer time and

plagued with technical difficulties.
For the case

~

hr
~

&~ 1, we shall establish the fol-
lowing results. (1) Low-order perturbative approxi-
mations for a2(00) are not valid for arbitrary pulse
area S, despite the fact that ~ai(t)

~

g&1 for all
time. (2) An iterative solution to Eqs. (1) always
converges for mell-behaved envelope functions. (3)
Asymptotic solutions for a2(t), t finite, may be easi-

ly found, but expressions for a2( ~ ) are difficult to
obtain, (4) Asymptotic solutions for a2(m ) can be
obtained for a limited class of pulse-envelope func-
tions using contour integration techniques. This is a
broader set than that for which exact solutions are
known. (5) The asymptotic dependence of a2(~)
depends critically on the nature of the singularities
of the pulse-envelope function A(t), analytically
continued into the complex plane. (6) If two pulse
functions have the same Fourier transforms in the
limit of large frequencies and if the dominant
dependence of the transform is an exponential decay
in the frequency, then the asymptotic forms of the
solutions a2( ce) for these functions in the limit of
large

~

5
~

are simply related. In this paper, we ad-
dress points (1), (2), (3), and (6};methods for actually
obtaining asymptotic solutions [points (4) and (5)]
will be discussed in a future article. In the present
discussion, the initial conditions are taken as
a i ( —Co )= 1 and a 2( —~ ) =0.

II. ASYMPTOTIC SOLUTIONS

As we have indicated, the Rosen-Zener ' (hyper-
bolic secant coupling pulse) problem is one of the
few for which exact solutions are known. In this
case, a simple expression gives the transition ampli-
tude as a function of detuning and area for all values
of these parameters. Naturally, since this formula

2(-)=--V2 A(~) si

S (4)

where A is the Fourier transform of A (t), is exact, it
is valid in the special case of the asymptotic limit.

iYii pf(x)e' a——2,
iud pf (x)e ——' a i,

(3a')

(3b')

where a= ~bb,
~

and where the dot now signifies
differentiation with respect to x. The quantity P,
previously designated as S, is the pulse area. The re-
duced potential function f(x) is defined such that

j f (x)dx =1 .

The pulse area is invariant under the indicated
change of variable. One may also write Eqs. (3) as a
pair of uncoupled second-order equations

a, — —+ia a, +p'f 'a, =O, (5a)

ii2 — — ia a2+p —f ai D. ——(5b)

There are tmo aspects to the solutions of Eqs. (3}
or {5). These are the calculations of the amplitudes
at finite and infinite times, respectively. The former
are of interest if the transient solutions are to be
used as inputs to other problems, such as multipho-
ton ionization, "while the latter, with which we are
mainly concerned here, gives the transition ampli-
tude a2( 0c ). The two temporal regimes differ great-
ly in the methods that must be used to perform ac-
curate calculations.

We shall show that there is an entire class of
pulses for which the asymptotic transition ampli-

tude, as a function of S and 6, may be written by in-

spection once the Rosen-Zener problem has been
solved. We shall also demonstrate that there are
other classes of pulses whose solutions as t~ oo are
unrelated to Rosen-Zener but are connected to each
other in the sense that once one has been solved, the
solutions for the entire class may be obtained by in-

spection.
The existence of these related solutions will be es-

tablished via term-by-term comparison of nth-order
perturbation expansions which, under very general
conditions, are convergent in two-level problems (see
the Appendix). With suitable scaling of the cou-

pling strengths, the series for different members of
particular classes mill be seen to be identical in the
limit of large detunings.

The particular potentials analyzed in this paper
are A(t) whose Fourier transforms for large ~ as-
sume the form p (co )exp( —

~

bee
~
), where p is slowly

varying in a frequency interval
~

b
~

', and b is a
constant. It is convenient to make a variable
change, such that v=

~

b
~

ro and x =i /
~

b
~

. Conse-

quently, the exponential decay factor in the Fourier
transform becomes exp( —

~

v
~

) and the equations of
motion transform to
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where

(2k+}}P2k+}( 1)k
k=0

ai —— f(xi)e dxi
(2k+1) —@XX)

2k+1 x.

f ' f(x)e 'd, .
J 2

One may write the solutions to Eqs. (3) as pertur-
bation series in the usual fashion, noting that only
even orders enter the expression for a1, while only
odd orders appear in the formula for a2. The ex-
pansion for ai(+ 0o) is

In the Appendix, it is shown that this series con-
verges for all finite pulse areas.

For the remainder of the paper we will restrict
ourselves to the case of pulses that are symmetric in
time and where

~

a
~

&&1, the adiabatic or asymp-
totic limit. The Fourier transform will be sym-
metric in v. %e shall begin by comparing the finite
and infinite time solutions of the Rosen-Zener prob-
lem, which exemplify relevant properties of transi-
tion amplitudes induced by smooth pulses.

With initial conditions a1( —Oo ) = 1 and
a2( —oo )=0 with a pulse-envelope function
f(x)=sech(nx/2)/2, Rosen and Zener ' obtained
an analytic solution to Eqs. (3') of the form

a, (x)=,~, (a, ~,c,z),

g2(~) =—jgz 2 pi(g —c*+1,6 —c + 1,2—c,z),

g 2(~)= —$gz '-"(1—z)' '
2F1(1—a, 1 —b, 2 —c*,z),

P 1 iaa= —b= —,c=—— Z
2 4m' 2

E=
1 ia

4m

and 2p} designates the hypergeometric function. The form of a2 given by Eq. (6b) is valid for all x, while that
given by Eq. (6b') holds only for finite x, unless p corresponds to an eigenvalue, a pulse area for which

a2(+ ao ) vanishes. %e recall that a2( oo ), the transition amplitude for the Rosen-Zener problem, is given by
Eq. (4)-

%e may obtain the finite time solution by explicitly expanding the 2F1 function of Eq. (6b )

1 I,'a
4m

2 4m.

KX
e ' sech 1+

2 ia
2m'

KX
tanh +1 +.

2

For large a, it is sufficient to retain the leading term

62~—8' sechP; rrx

a 2

This is equivalent to first-order perturbation theory
in the adiabatic limit

a2"=—i}(I}f f(x')e ' dx'

~
f(x)

a

where subsequent parts integrations are neglected,
since they are 0(1/a"), n g 1. %e immediately see
that this sequence of parts integrations is unsuitable
for calculating a2(00), since each term separately

vanishes when x~00. Even including the third-
and higher-order terms in the perturbation series via
analogous sequences of parts integrations does not
enable one to obtain a nonzero amplitude as t~ ao.
Consequently, other methods are necessary to calcu-
late a2( ao ).

It is clear from the preceding paragraph that for
large enough a, first-order perturbation theory is a
sufficiently accurate approximation for most pur-

poses, provided x is finite. For infinite times, not
only does the adiabatic sequence of parts integra-
tions lead to an incorrect a2(ao ), but even an exact
evaluation of the first-order integral may be insuffi-
cient. This is typified by the exact Rosen-Zener am-

plitude, Eq. (4), in which the factor sinP does not
reduce to its first-order limit of P unless ~P ~

is
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small compared to unity. This failure of the first-
order theory occurs no matter how large the detun-
ing becomes. One must retain enough terms in the
perturbation expansion to accurately represent the
sine function. Thus for the Rosen-Zener pulse, if
the coupling is great enough so that saturation ef-
fects would appear at resonance, simple first-order
theories cannot be used for a nonrcsonant pulse of
the same strength. As me shall see, other smooth
pulses also possess this "saturation memory. " In
fact, in some cases, a higher-order theory is neces-
sary off resonance even for a case where a first-order
theory mould suffice at resonance. This is exernpli-
fied by the formulas of Eqs. (9) below.

Since each coupling function f(x) is different, one
might be led to believe that separate calculations
must be performed for each individual case. For-
tunately, as we have stated earlier, there prove to be
classes of pulses where, if one knows thc functional
dependence of the asymptotic transition amplitude
on a and P for one member of the class, one knows
it for all members of the class, although the actual
time dependence of the potentials may be drastically
different. What is significant is that their Fourier
transforms assume the same form as a ~ 00.

When Rosen and Zencr deduced Eq. (4), they sug-
gested that similar formulas might hold for other

smooth pulses. This conjecture proves not to hold
in general. It is manifestly false for asymmetric
pulses and is not even valid for all symmetric
pulses. ' What we shall show is that a kind of
Rosen-Zener conjecture does apply at large detun-
ings for pulses in which f(x) has simple poles at
x =i. This law does not apply to pulscs which have
higher-order poles at this point, although scaling
laws for these do exist, different for each order.

The following theorem will be established. Let
two coupling pulses f(x) and fo(x) have
Fourier transforms f(v) and fo(v). The Fourier
transforms of both approach, for large values of the
argument, the same asymptotic form f, (v). If f, is
of the form P(v)e ~ "~, where P(v) is a slowly vary-
ing function of v, then the asymptotic transition am-
plitudes generated by the two pulses will be the
same, provided that the pulse areas are both finite.
A sufficient condition for the indicated asymptotic
behavior of the Fourier transforms is that they be
equal, for large v, to a contour integration whose
value is given by the product of the residue at x =i
and the usual Cauchy factor 2m. If two such pulses
are to have the same P(v), they must possess poles
of the same order at x =i.

The contribution of order (2k+1) to the transi-
tion amplitude may be rewritten slightly,

The factors e ' ' do not affect the integrals. They are used to remove ambiguities as xj~ —oo in the treat-
ment below, where we express the amplitude in terms of integrals in the frequency domain. The limits Aj~0
are to be taken before the x1 integration is performed. Expressing each (xJ), j &2, in terms of its Fourier
transform, we find

0

By working in the frequency domain, we shall be able to examine the structure of the integrals for a 2
+"and

establish that the contribution from regions where the asymptotic form of f is not valid is lower by 0(1/a)
than the contributions from regions where it is valid.

The integrals over the xJ are trivial to perform. We obtain

(2k+1) ~
2k+1 2k+1

a2 + —lim „, dv2 . dv2k+if g v —a
0 (2~) J= J=

f(vj )

2k+1
[v, + ( —1)'a —ii)]

l =2k+3 —j

- f(vi)f(vz)f(vi+v2 a)dvidvi-
a',"= lim

0 V 2n ~-~ ~-~ (vi —a —iA)(vi+v, —iA)

We nom proceed to determine the asymptotic form of these amplitudes. The analysis is easiest to follow for
the third-order contribution a2 ', but exactly the same reasoning and conclusions will apply for the higher-
order terms. (The theorem is true by inspection in first order, since that contribution is, apart from a constant
multiplier, just the Fourier transform itself. Thus if two coupling functions have Fourier transforms of the
same asymptotic form, their first-order transition amplitudes scale the same way with P and a.) The leading
nontrivial term is a 2

'. Changing the dummy variable v1 to v3, we find
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where, without loss of generality, all XJ and sums of XJ have been replaced by the single infinitesimal A,. It is
convenient to make the change of variable v; =y;o.. One finds

J- f(ay~)f(ay2)f(a(yi+y2 —1))dyidy~
a,"'= lim

o V2w —~ —~ (y» —1 —rA, )(y»+y& —rk)

J- f(aye)f(ay2)f(a(yi+y2 —I»dying»
P

(y» —1)(y»+y»

f(a)[f(ay2) l' ff(ay2) I'f(a)
pic lim dy2 +

A~0 ~ 1+y2 —1A, —y2 —1 —/1,

where P indicates that the integrand excludes infinitesimal regions near y»
———y2 Rnd y»

——1. %'c may formally
integrate the last two terms. If ( —1) is factored from the second of the two integrals, they combine to become

Ce

in lim dy2f(a )[f(ay2)]
A,~O 1+y2 —

& A, 1+y2+ iX

It is immediately obvious that if these are parti-
tioned according to the rule

(j)(x)dx P(x)dx
lim =P +in j xo),
e~o x —xo+EE x —xo

the principal value contributions exactly cancel,
while the im terms are proportional to e and are
exponentially sInall compared to a2", which decays
only like e . Terms proportional to exponentials
which decay moic rapidly than 8 do not contri-
bute to the asymptotic forIn.

Wc now proceed to examine the remaining contri-
butions to a q, where it is again understood that the
small regions in the neighborhood of y2 ———y» and

y»
——1 are excluded from the intcgrals. For all re-

gions except where
~ y ~

&
~

a /a ~, where a
is a number of order unity, f(ay) may be replaced
by its asymptotic form f, (ay). Thus for the entire

y» —y2 plane, except where y»-0, y2-0 (but not
both simultaneously) and y»+y2 1, the numerator
of the integrand is well represented by its asymptotic
form. Furthermore, since at most one of the three
Fouricr-transform factors departs from its asymp-
totic form in any given region of space, the area in
the y, —y~ plane over which one of the f both
dcpRrts from 1ts asymptotic form and decays no
more rapidly than e is 0(1/a}. It is, of course,
implicitly assumed that the exact and asymptotic
forms of the Fourier transforms remain bounded as
their arguments approach zero. For the former, this
is equivalent to the requirement, which we have al-
ready stated, that P be finite.

Now consider that portion of the y» —y2 plane
where all factors in the numerator are well approxi-
mated by their asymptotic forms. Examine in par-
ticular the exponential decay factors

—~ lx& l
—~ !~2 I

—+ l&»+&g —»
l

e e

I

The only portion of the plane where the combined
effect of the exponential factors leads to an overall
decay that is not faster than e is the range
Ogy» &1, Ogy2g1 —y». The integrand does not
change sign in this portion of y» —y2 space, which
encompasses an area ——, (to be compared with the

area of order 1/e which was found for the
nonasymptotic contribution). Note that there is no
portion of the plane in which the iniegrand decays
more slowly than e . Thus the nonasymptotic in-
tegrand contribution is O(1ja) compared to that of
the asymptotic integrand. Similar considerations
enable one to deduce that one may also replace the
Fourier transforms in thc higher-order integrals by
their asymptotic forms. %'e thus conclude that if
the time dependences of two coupling functions are
such that the asymptotic forms of their Fourier
transforms are identical and of the indicated form,
the large-detuning transition amplitudes are the
same.

As we have indicated, a sufficient condition that
two pulses have the same a2((x) } for large o. is th'at

both asymptotic Fourier transforms be equal to con-
tour integrations given by (2ni)[Res(x =i)]. We
compare the hyperbolic secant of Rosen and

1
Zener, f= —,sech(n.x I2), with the I.orentzian

f=( 1 ln )(1+x') '. The corresponding 3 (x)
=Pf(x) are

AL (x)= (1+x )

AH(x) = sech
PH rrx

2 2

Thc transforms for both may bc calculated v18 con-
tour integrations. The Lorentzian case is trivial and
applies to all v, not just large frequencies. %c
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choose a contour that runs along the real axis from
—R to +R and is dosed by a semicircle in the
upper half plane. The contribution to the contour
integral from the arc vanishes as R ~ oo, so that the
Fourier transform is identical to the contour in-

tegral, whose value is determined by the residue at
the simple pole at x =i. The result is

Ar e
—

I (7a)
2m'

For the hyperbolic secant we choose a rectangular
contour which runs from —R to +R along the real
axis, and is continued by rectangular segments
parallel to the imaginary axis from the points
(+R,O) to the points (+R,2i), and is closed by a line

parallel to the real axis which runs from (R,2i) to
( —R,2i). The two vertical segments give vanishing
contributions as R ~ ao, and the horizontal segment
off the real axis goes exponentially to zero compared
to the segment along the real axis as v~00. Thus
for the hyperbolic secant, the Fourier transform is
identical to that of the Lorentzian in the asymptotic
region. For large v it is given by

a21 —— i v'2~ 2fL (—a )sin
2

(8a)

This result has been independently obtained by car-
rying out an asymptotic solution of Eqs. (3).' Qne
can also show that for the pulse

A, =P,x cosechn.x,
the appropriate scaling law is

. v'2m-
a2, —— i f, (a—)sin2P, .

2
(8b)

AH- e
2m'

Since the Rosen-Zener solution gives the transi-
tion amplitude for all detunings, according to Eq.
(4), as (recall that A =Pf=Sf)

—EV 21TfH(lX )slnpH

this formula must be valid asymptotically also. As
we have shown that the asymptotic Fourier
transforms of the Lorentzian and hyperbolic secant
are proportional for large detunings, the Lorentzian
must induce a transition amplitude that obeys a for-
mula similar to Eq. (4). From Eqs. (7), we see that
to construct the Lorentzian and hyperbolic secant
Fourier transforms so that they are asymptotically
identical, it is necessary to choose the Lorentzian
pulse area PL, to be twice that of PH. Since fH 2fL——
and PH ——PL, /2, the asymptotic transition ampHtude
for the Lorentzian pulse may be obtained from the
known result for the hyperbolic secant pulse as

For the hyperbolic secant pulse, the transition am-

plitude vanishes for pulse areas PH =nor, n integral,

for all detunings. The zeros of a2L, on the other

hand, occur for PL nn——for zero detuning, while

those for large detuning are PL 2——nm T. hose of a2,
go from nm at a =0 to nm/2 as a~ ao.

The existence of a pole at x =i is a sufficient, but
not a necessary, condition that the asymptotic
Fourier transform of a coupling pulse vary as

p (m)e . For example, the function (1+x )

has an asymptotic Fourier transform proportional to
v'~ e ". The factor v'~ precludes deducing the
asymptotic transition amplitude from the Rosen-
Zener formula. Similarly, the squares of the hyper-
bolic secant and of the Lorentzian each have poles
of second order at x =i with the consequence that,
for both of these, A, -v'e ~ ~, so that while these
will have asymptotic transition amplitudes that are
related to each other, they cannot be obtained by

scaHng from Eq. (4). In a future paper, we shall

show how to calculate asymptotic transition ampli-

tudes when the coupling pulse has second- and

higher-order poles at x =i. For now, we merely

present the formulas for the transition amplitudes
generated by the squares of the hyperbolic secant
and Lorentzian

' 1f2

(H2)= —'
~ ~sin C

' 1/2

X sinh C

1/2

Q2(L2)= —l e sin C—~a~ I aP I

2'
1lr2

Xsinh C
2m

I 1

where C=1+—,+—56. I- », + . =1.198. Equation
(9a) can be obtained from Eq. (9b) by scaling tech-
niques derived in this paper. Equation (9a) is valid
only for

[ P [ & l a (, and Eq. (9b) for
[ P [ &

(
2a

(
.

nI. SUMMARY AND CONCLUSION

In this paper, we have demonstrated that pulse
shapes A (t) whose Fourier transforms asymptotical-
ly approach the form P(v)e ~" where (( is slowly

varying, may be categorized into families which
differ according to the function P. Within each
family, the transition amplitudes a2(ao) are related

by simple scaling laws, so that if one is able to
derive an expression for the transition amplitude
generated by one member of the family, correspond-
ing formulas for all other members of the family
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may be written down by inspection.
A sufficient condition that the Fourier transform

be of the required form is that it be obtainable in the
asymptotic region as a contour integral evaluated
from the residue at a single pole on the imaginary
time axis. For the case where 3 (t) has simple poles,
a2(op) may be inferred from the solution of the
Rosen-Zener problem, ' known for 50 years, by a
trivial scaling operation.

Our results were obtained by examining the struc-
ture of the terms in perturbation expansions for
transition amplitudes. (We have demonstrated that
these sequences always converge in two-level prob-
lems provided that the pulse areas are finite. Low-
order approximations, however, are frequently not
useful for t~ oo even when they are valid at finite

times. ) With suitable choices of ratios of pulse
areas, corresponding terms in the series for different
members of the same family will be identical.

In a future paper, ' we shall present methods for
explicitly calculating transition amplitudes that ap-
ply to higher-order, as well as simple poles. Thus
we are not restricted in practice to writing scaling
laws for pulses which may be compared in the
asymptotic region to the hyperbolic secant.
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APPENDIX: CONVERGENCE OF PERTURBATION THEORY FOR THE TRANSITION AMPLITUDE

We demonstrate here that the perturbation series for a2 converges for all finite pulse areas. The contribution
of order (2k+1) is

y(k) ~2k+1 (2k+1)

2k+1 x.
ip"—+'( I)"—f" f(x, )e 'dx, g f '

f(xj)e 'dxJ .
J=2

(A1)

(A2')

Invoking the theorems on repeated integrals of the same function

l. 2k +1 . 2k+1
b it' —— ( —I )" f f (x)dx

(2k +1)t
and the terms are recognized as identical to those for the series i sinp. —Now consider the series

I

p2k+i
I

+i
I

p~k+I'(P)=g
l
bio'I =g „,f f&x)dx

This is evidently the series for sinhp, which converges as long as p is finite. Hence, the series of Eq. (A2) is ab-
solutely convergent. Now

2k+1 x.
Ib

"'
I

= IP""
I f f( ) 'd P f f&, )

J=2

2k+1 x.IP""
I f If& ) Id. g f '

If&
J=2

( lbIk)
I

Now assume that A (x) is of a single algebraic sign. Without loss of generality we may take this to be positive.
We compare the series with the corresponding expansion for a =0,

2k+1 x.
bIO' —— iP'"+'—( —l)k f f(x, )dx, g f ' f(x, )dx, (A2)

J=2
2k+1 x.=- P'"+'(-I) f If( ) ld g f If(, ) ld, .
1=2

so that the series, Eq. (A1) is also absolutely conver-
gent, and our result is established.

We note that the same arguments will apply to
perturbation series at finite times, provided merely

I

that f f(x')dx'=P(x) is of one sign and finite.
If f(x) changes sign, the results will still be valid
provided the generalized area f I

f(x')
I
dx', is

finite.
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A simple case where the convergence theorem
does not apply is the coupling function

A (x)=(const)(tanhmx/2)/x,

since P is logarithmically divergent. In addition,
since the pulse area is proportional to the Fourier
transform at zero frequency, the multiple integrals
in the frequency domain for the third- and higher-
order contributions to the perturbation series contain
regions where the integrands blow up, so that the in-

dividual terms beyond first order may not even ex-
ist. (The first-order contribution will be finite, since
the Fourier transform for this pulse exists for v&0.
In this case, we note that the infinite area does not
imply a pulse of infinite energy, so that it theoreti-
cally could exist. One evidently cannot use the
methods developed here to describe the dynamics.
At the very least, decay would have to be included
in the analysis, and a completely nonperturbative
treatment utilized. )
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